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Multimodal Data

Combining multiple physiological features (oscillations, SCPs, maps)
(cf. Dornhege et al 2006)

Combining multiple subjects data (cf. nonstationarity)

(cf. Fazli et al 2009 and 2011, Samek, Meinecke & Mdller in Press)

Correlating apples & oranges i.e. computing correlations between multiple measuring
modalities (EEG & EMG, EEG & NIRS, EEG & fMRI, LFP & fMRI)

(cf. tkCCA Biessmann et al 2010, 2011, 2012)

Combining multiple measuring modalities (EEG & EMG, EEG & NIRS, EEG & fMRI)

(see Fazli et al 2012, Biessmann et al 2011; Pfurtscheller, Muller-Putz, Calhoun, Adali,

Ritter et al, Cohen, Villringer, Eichele,)

Nonlinear correlations between modalities NIRS & EEG

(see Dahne et al to appear)



Multimodal<—Nonstationary



Motivation: Shifting distributions within experiment
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But: Is the nonstationarity different between subjects, i.e. could we learn it
from other subjects?
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Changes are similar !

Modalities = Other Subjects

Changes between training and test data are similar between users.

Other multi-subject methods, e.g. cov matrix shrinkage, may improve
estimation quality but do not reduce non-stationarities.
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Cartoon: learn from adverse nonstationary subspace across subjects

Non-Stationary
Subspace

Stationary
Subspace

Discriminative
Subspace

Dimensions

Usually discriminative information is transfered between subjects.
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Algorithm

(1)

(2)

(3)

(4)

(2)

(&)

(1)

For each subiject i=1...n, t #1i*¥ compute

(1) vi_:fi} af EE?'aiﬂ. - EEE‘“ ]

the eigenvectors v, " ...V,

For each subject i select the [ eigenvectors
with largest absolute eigenvalues.

Aggregate the wvectors into a matriz P.

Apply PCA to reduce the dimensionality of the
non-stationary subspace Sp = span(P) to wv.

Compute the projection matrix Pl to the
orthogonal complement of Sp.

Make i¥s data inwvariant to the changes by pro-
jecting out non-stationarities X = (PH)TPLX.

e

Compute spatial filters from X using CSP.




Results

Two data sets with different stimulus cues in training and test
1. visual cue In training & auditory cue Iin test
2. letters in training & moving objects in test

The size of the non-stationary subspace is determined by CV in a leave-
one-subject-out manner on the other users.

Audio-Visual Data Set BC1 Competition 111 Overall
Subject Al A2 A3 Ad A5 Bl B2 B3 B4 B5 Mean Median  Std
CSP 79.5 800 658 59.2 942 | 66.1 964 582 88.8 Bl.0 76.9 79.8 14.0
ssCSP 87.1 808 675 658 933 | 670 946 582 893 857 78.9 83.3 13.1

ssCSP: stationary subspace CSP
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Interpretation

The most non-stationary

directions are very similar
between users.

Activity in occipital and
temporal areas is
penalized as these
regions are mainly
responsible for visual and
auditory processing.




Feature distribution becomes stationary
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Summary Part |

Novel “multi-modal” approach to reduce non-stationarities in data

In contrast to other multi-subject methods it does NOT transfer
discriminative information, thus is more robust if subject similarity Is
low.

Non-stationary information appears physiologically interpretable and
meaningful.

The idea of transfering stationary subspaces between subjects can be
applied to many other problems.

ﬂﬁ (\./ Samek, Meinecke & Miiller IEEE TBME in Press
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NIRS-EEG Brain Computer Interfaces

[Fazli et al. Neuroimage 2012]



Experimental Setup and Paradigm

EEG: 37 electrodes
NIRS 26 channels (frontal, parietal, occipital)

EEG-based cursor feedback (ISI = 15 s)

2 @ NIRS source
. NIRS detector
NIRS channel
@EEG electrode

Executed movement vs imagery movements

Imagery movements: EEG-feedback for left and right motor
imagery

Number of subjects: 14

Can a simultaneous measurement of NIRS and EEG during
Brain Computer Interfacing enhance the classification accuracy?

Are the results physiologically reliable?

Fazli et al. 2012




Temporal Dependency of Classification in Executed Movements

EEG HbO HbR

Fazli et al. 2012
EEG peaks earlier as compared to HbO and HbR

Physiological reliability: HRF shaped classification accuracies over time

Classification accuracy higher for EEG
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Temporal Dependency of Classification in Motor Imagery

motor imagery
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Physiological reliability: HRF shaped classification accuracies over time

Classification accuracy higher for EEG

Classification accuracy lower than in executed movements
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Combination of EEG and NIRS

12,5%

ﬁ#‘ﬁ

| EEGdaa-tanng | —- (DA —»

87.5%

[HbQ] data - training

test

[HbR] data - training

Pl S

Fazli et al. 2012

—>» (LDA) =
—3» (LDA) =P

LDA classifier estimated for EEG, HbO and HbR (individually)

Meta-classifier estimated for combination in each subject

All within cross-validation (8 chronological splits)

meta LDA
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Feature Combination

EEG + HbO [%]

Fazli et al. 2012

imagery movements imagery movements imagery movements
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NIRS-EEG combinations have higher classification accuracies for vast majority of subjects
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Feature Combination

EEG + HbO [%]

imagery movements
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Feature Combination
imagery movements imagery movements imagery movements
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Some subjects, which were not classifiable with EEG become classifiable by a meta-

classifier in combination with NIRS
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Mutual Information

EEG-

10 i ]
o . -
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EEG+

4

log p(left,right)
»
log p(left,right)

[HbO]

[5000 8000] ms [5000 8000] ms

NIRS features for all correct EEG trials (EEG+) and incorrect EEG trials (EEG-)

Pattern is similar although the significance drops

NIRS can complement the EEG with physiological meaningful information
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Discussion Part Il

Problems

« Different temporal properties of the measurement devices (e.g. EEG: 1000 Hz, NIRS:
max. 10 Hz)

 Temporal lag between parameters

» Different signal qualities

Ideas to Overcome the Temporal Lag
 NIRS as a measure of subjects’ attention to predict EEG-based performance
 NIRS as a localizer of the source of EEG signals

 NIRS as a ‘stop’, e.g. to discard a EEG-based classified trial when not confirmed by NIRS

™



Correlating apples and oranges

[Biessmann et al. Neuroimage 2012, Machine Learning 2010]



CCA: correlating apples and oranges

Given two (or more) multivariate variables

X eR"Y e R
CCA finds projections

W, E]RM,’wy c RN

that maximise the covariance between the variables

0 Cyy we | _ Cppw 0 W,
Cyqe 0 wy, - 0  Cyy Wy




KCCA: solving CCA on data kernels

Intuition behind the Kernel Trick:

The solution of CCA in kernel space is obtained by
solving the generalised eigenvalue problem

0 K, K, a, | | K2 0 o
K,K, 0 a, |~ 0 K2 || q

Yy

The solutions in the W, = Xay,

input space can be recovered by w, =Y,

No need to compute big covariance matrices!
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tkCCA: correlating apples and oranges over time

argmax Corr (Z wy (1) 2(t — 7). wgy(t))

Wy (T), Wy

-X‘Fl- _wiﬂ(Tl)-
X'r; Wy (TQ)

R NG )

argmax Corr (ﬂ};—)? : fw; Y)

’UJ;f: 1w'y
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Application: Neuro-Vascular Coupling

With Logothetis



Experimental Setup

> Simultaneous measurements of
> fMRI/ BOLD signal

Intracortical neural activity




Temporal Kernel CCA

Wy y(t)

,, — D s

argmax Corr Z wo (T) " 2(t — 7), w;y(t)

Wy (T),wy
- >
4
multivariate convolution of spatial weighting
the neurophysiological of voxels with
signal with frequency activation pattern.

dependent HRF



Results tkCCA: spatial dependencies and HRF
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Murayama et al., “Relationship between neural and haemodynamic signals during spontaneous
activity studied with temporal kernel CCA”, Magnetic Resonance Imaging, 2010



Finding nonlinear correlations
between NIRS &EEG

[Dahne, Biessmann et al. In Press]



Generative Model

Neural Activity

Mapping to sensor space:

< X(t) = Ags(t) + €z (1)
Aps(t) + e Ayos(t) + €, y(t) = Ay® (s(t)) + €y(1)

N\

o (s;(t)) := (hxps,) Zh T) ps, (t — T)

>0

EEG Signal Vascular Signal "Convolution of source band power
with hemodynamic response function (HRF)"
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Generative Model

Neural Activity

l%] Ags(t) + e \Ayczﬁs(t)+6y LM @(HAJQI%])

p T/

These steps do not commute!
Nonlinearity is applied on
source level.

EEG Signal Vascular Signal
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Approaches to multimodal data analysis

PCA/ICA

unimodal
unmixing

L

spectral
features

<

convolution

unimodal
unmixing

- order of processing steps in line with
generative model, i.e. first transformation into
source space, then computation of spectral
power

- modality-specific unmixing — does not take
Information from other modality into account
to guide the unmixing

- post-hoc matching of components, thus not
truly multimodal

d -
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Approaches to multimodal data analysis

PLS /CCA

é spectral

features

convolution
multimodal
unmixing

B y i |

\.

- multi-modal unmixing — optimizes the coupling between
components

- order of processing steps not in line with generative
model, i.e. nonlinearity is applied in sensor space instead
of source space, WRONG!

- resulting "EEG/MEG power patterns" cannot be subjected
to standard source localization techniques, because these
methods are designed to localize time-domain patterns, not
spectral-domain patterns

N &



Approaches to multimodal data analysis

PCA /ICA
EEGN\MEG fMRI/ NIRS
unimoda unimodal
unmixing unmixing
Z B

SN
spectral
features
convolution
—/
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EEG/ MEG fMRY¥/ NIRS
spectral
feature
convolutlon
multimodal
unmixing

mSPoC
EEG/MEG fMRI/NIRS
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Multimodal source power correlation analysis (mSPoC)

mSPoC objective function: mSPoC model:

Sz

X
y = Sy

~ T
Jobj(Wx, Wy, W, ) := Cov (h(ﬁsm), §y) :VV:T

po(e) = ((wx(®)")

tel,
norm constraints: T
w, C..(e)wy.
N T _
Iwxllc, = Wy Cawx =1
. T _
HW}T‘ Cy}r «— Wy nywy —_— 1 h(psm E Wf;-npsm e — n)
. T _
[W-llg = w.Bw,=1
Cf1(CxxyTXw)WyXM)WT)WX — Aws
Cyx Cyy : modality specific covariance matrices Ihwsllc,, hwel
1 (Cxxyr X () Wx X () Wx X () Wr) \w
- yy o y
B auto-correlation matrix of Ps.. Iwllc,, 1wy
1 (Coyr Xy W X ) Wx Xy Wy) AW

IwalZ, Wyl
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Multimodal analysis of simultaneously recorded EEG and NIRS

% @ NIRS source
NIRS detector
NIRS channel

@ EEG electrode

Fig. 1. Locations of EEG electrodes; sources, detectors and actual measurement channels
of NIRS. Note that electrodes and optodes might share a location.

Data from Fazli et al. 2012 — 96 trials of (left/right) hand gripping.
Comparison of mSPoC to convolutive CCA.




MmMSPoC vs CCA

Correlations between EEG and NIRS [HbR]

Correlations between EEG and NIRS [HbO]
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Fig. 5. Cross-validated correlations between EEG and NIRS (left HbR, right HbO) in the motor execution task for each subject. Results of mSPoC and CCA
are compared. Each point corresponds to the correlations obtained for the first set of wx, wy, and w, from a single subject by CCA (x-axis) and mSPoC
(y-axis).
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MmMSPoC vs CCA

temporal filter for EEG power (left hand movement)

EEG pattern (left hand movement) : .
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Fig. 7.

NIRS pattern (left hand movement) [HbR]
i
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MIRS pattern (right hand movement) [HbR]

Exemplary results for one subject (VPean) as derived by mSPoC. The scalp-plots on the left side show the EEG pattern that corresponds to the

obtained filter wy. In the middle plot we show the temporal filter for the EEG power of the component shown left. The rightmost scalp-plots depict the spatial
pattern that corresponds to the filter wy, i.e. the NIRS patterns. The top row shows the results for applying mSPoC to left hand movement trials, while in the

bottom row results for right hand movement trials are shown.
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Conclusion

— Information from multimodal measurements increases the understanding of
physiology in neuroscience

— Multimodal Imaging is of interest for numerous research questions and clinical
application

— The specific fusion of data depends on the research question and the used
Instruments

— Numerous algorithms have been developed to merge the data

FOR INFORMATION SEE:
www.bbci.de
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