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What is Parkinson’s Disease? 

• Tremor 

• Stiffness 

• Slow movement 

• Balance problems 

Adapted From: Principles and Practice of Movement Disorders, 5th Ed. Jankovic et al. 



Non-PD Subject 

PD Subject 

Prominent loss of dopaminergic cells in the 

Substantia Nigra 

Clinical symptoms don’t become evident until a majority of 

dopaminergic cells are lost!! 



•  California –1983 

•  Attempted to create MPPP, a 

drug similar to heroin 

•  In fact created MPTP, a potent 

neurotoxin which results in 

something similar to Parkinson’s 

when injected intravenously 

What causes Parkinson’s? 

 Environmental factors 



Is anything associated with NOT 
developing Parkinson’s Disease? 



• Probably some complex 

interaction between genetic 

susceptibility genes and 

environmental factors that 

we don’t yet fully understand 

What causes Parkinson’s? 



Early Sign:  Loss of Sense of 

Smell (anosmia) 

? 



Early Sign: Depression and Anxiety 



Early Sign: Sleep Disturbances 



Early Sign: Sleep Disturbances 

REM Sleep Behaviour Disorder -- RBD 



Early Sign: Masked Facies 

http://www.vigconic.com/vineuro/eng/user.php 

http://quizlet.com/10504538/examination-of-the-neck-head-flash-cards/ 



Early Sign: Small Handwriting 

(micrographia) 

http://wpgchap.blogspot.sg 



Early Sign: Stiffness / Neck 

Pain 

http://www.buzzle.com/articles/frozen-shoulder-treatment.html 



Early Sign: constipation 

• Risk of Parkinson’s disease increased if < 1 bowel 
movement / day at middle age 

• Lewy bodies are seen not just in the brain, but in the 
nervous system of gut 

• Surprising relationship between genetic risks for 
Parkinson’s disease and Crohn’s disease 

 

 
Lewy Body 



Early Sign: Tremor at rest 



Parkinson's tremor 

http://www.lloydtan-trust.com 



Early Sign: 

Decreased Arm 

Swing 



Techniques to probe brain function 

Patch Clamp 

Light Microscopy 

PET 

   Single unit 

Microlesions 
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Techniques to probe brain function 

Patch Clamp 

Light Microscopy 

Metabolic  

PET 

   Single unit 

Microlesions 
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Parkinson’s Disease: Clinical 
Effects of L-dopa treatment can 

be dramatic 



Haslinger et al.  Brain  2001 

• Areas that show 

decreased activation in 

Parkinson’s. 

Surprisingly subtle changes in activation due 

to L-dopa ! 

• Areas that show 

increased activation 

in Parkinson’s. 
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• Task activation manifests itself 

differently than changes in BOLD 

amplitude at discrete loci 

•Increased inter-subject variability 

•Increased movement artifact   

Why are traditional fMRI analyses so insensitive 

to medication effects in Parkinson’s ? 



Most motion correction algorithms INTRODUCE 
variability in the data 
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Why we don’t routinely register brains 
for our studies … 

Midbrain of 5 control subjects 
Standard Affine 



Measurement of Residual  
Anatomical Variability after Registration 

 Dice Similarity Coefficient (DSC) 

 DSC=1 Exact alignment 

 DSC=0 No overlap 
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Why we don’t routinely register brains 
for our studies … 

Midbrain of 5 control subjects 

Standard Affine Multi-structure LDDMM 
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Susceptibility Weighted Imaging (SWI): 

Correlation with Parkinson’s Disease Severity 



Determine measures in native 
(unwarped)space 
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Spatial effects of L-dopa medication on fMRI activation 
maps 
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Ng et al. IEEE Transactions 

on Medical Imaging, 

2009. 
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Examining the shape (“3D texture”) of fMRI activation 

For a 3D distribution, in our case a fMRI t-statistics within a specific ROI, the moments of order 

n=p+q+r are given by: 

 

                                        

where (x,y,z) are the spatial coordinates of each voxel and f(x,y,z) is the value of voxel with 

coordinates (x,y,z) within the ROI.  
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For invariance to size, we normalize as: 

2

011200

2

101020011101110

2

1100020020202003 2  J

0020202001  J
2

011

2

110

2

1010020200022000202002  J

For invariance to rotation, central moments can be combined in specific ways, for example : 

dxdydzzyxzzyyxx
rqp

pqr ),,()()()(  














To obtain invariance to position: 



t-maps 

Focusing Effect of L-dopa 

assessed by spatial variance 
PD subjects increase their area of 

activation compared to normal controls. 

This increased area normalizes after L-

dopa 1 

0 

Ng, Palmer, Abugharbieh & McKeown. Focusing Effects of L-dopa in Parkinsons 

Disease. Human Brain Mapping (2009). 



PET imaging of the dopamine 
system 

A J Stoessl, W R W Martin, M J McKeown, V Sossi 

(2011)  Advances in Imaging In Parkinson's Disease   

Lancet Neurology 10: 11. 987-1001  



3D Moment Invariants – application to 

PET imaging in Parkinson’s disease 
DTBZ 

Gonzalez et al. Neuroimage. 2013 

Mar;68:11-21. 

Putamen 



Areas of activation vs connectivity 

Late 19th Century two opposing view of 

normal brain function: 

1. Each cortical area was associated with a 

particular function (Gall) 

2. Normal function required the collaboration between 

different brain areas (Wernicke) “Any psychic process 

… could not be localized, but tested on the mutual 

interactions of these fundamental psychic elements 

mediated by means of the … association fibres” 
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L-dopa normalizes impaired connectivity 

PD Subjects Off Medication PD Subjects On Medication 

PD Off-med: grey lines (decreased cf controls) mostly decoupling from rest between homologous 

regions, black lines (increased cf controls) show increased cerebellar connectivity. 

S J Palmer, L Eigenraam, T Hoque, R G McCaig, A Troiano, M J McKeown (2009)  Levodopa-sensitive, dynamic changes in 

effective connectivity during simultaneous movements in Parkinson's disease.   Neuroscience 158: 2. 693-704 Jan  

- - 

Differences in connectivity patterns (based on an MAR model)  between PD 
and normal controls during performance of bimanual movements 
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Replicator Dynamics – one way to assess 

co-varying regions forming networks 

Based on theoretical biology 

• Have a number of species, w 

• Define a static ‘fitness’ matrix, 

C, which represents 

interaction between species 

• How does the population 

evolve over generations? 



Replicator Dynamics – one way to assess 

co-varying regions forming networks 

Let w(k) be a vector with the jth element being the probability that allele j 

remains in the gene pool during the kth generation and C be a ‘fitness’ matrix 

with each element reflecting the fitness of a genotype (a pairwise combination 

of alleles), w(k) can be estimated as follows : 

 

 

 

 

 

where .* represents element-wise multiplication.  
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The above equation is a local maximizer of the following optimization problem: 

  

 

 

This provides an elegant solution to the challenging problem of non-negative, 

sparse PCA.  



Group Replicator Dynamics 

• Let W(k) be a Nr × Ns matrix with wi(k) of each subject along the columns,  

• Wc(k) be the same as W(k) but with the subject mean removed from each row.  

 

To encourage networks comprising the same ROIs, the weight vector of each subject i, 

wi(k), is adjusted so that the group entropy is minimized:  

 

 

 

 

where λ governs the degree of group support. 

 

• This results in highly coherent networks that comprise the same ROIs across subjects 

but with subject-specific ROI weightings.  

 

 If we consider ROIs as nodes of a graph and elements of Ci as edge weights, we can 

remove only those edges present in the dominant network, which enables the same 

ROI to be in multiple networks.  
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Ng et al. IEEE Trans Med Imaging. 2012 Mar;31(3):576-85. 



Group Replicator Dynamics in 

Parkinson’s Disease 

Ng et al. IEEE Trans Med Imaging. 2012 Mar;31(3):576-85. 



Group Replicator Dynamics in 

Parkinson’s Disease 

Tremor-predominant 

Parkinson’s 

Akinetic Rigid 

Parkinson’s 

Ng et al. IEEE Trans Med Imaging. 2012 Mar;31(3):576-85. 
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Problems with Inferring Connectivity 

Problems of covariance vs. causality 
y1

y3

y2

b12

b32b13

A B 
? 

A B 
? 

A B 
? 

A B 
? 

C 

Thomas Bayes  



Issues Related to Bayesian Network 

Learning 

 Accuracy. 

 ♦ How many connections are actually true? 

 ♦ How many true connections can be detected? 

 

 Efficiency.                        

 ♦ Exploratory studies must search through a huge number of 

possible models to find one or a few that are best supported by data. 

  

 Generality (deal with the inter-subject variability issue). 

 ♦ Biomedical research usually involves a group of subjects.  

 

 

 

Error rate control : FDR  

Group Level PCfdr algorithm    



The PCfdr algorithm for Bayesian 

Network (BN) Learning  

 PC algorithm is a fast  BN 

learning method.  

 

? 

Estimate the p-value between  

 a and b given vertex set C , 

based on partial correlation 

coefficients.     

|a b C
p



If                is larger than the threshold, 

then remove the edge between a and 

b.  

|a b C
p



 False Discovery Rate 

(FDR) control procedure. 

 Given p-values of multiple-

hypothesis testing, it adaptively 

sets a threshold to control the 

FDR under user-specified level q. 

 

   
PCfdr algorithm : 

Combine PC 

algorithm with the 

FDR control .  

Li, J and Wang, ZJ. (2009). Controlling the false discovery rate of the 

association/causality structure learned with the PC algorithm. The Journal of 

Machine Learning Research, 10, 475-514. 



Extending the PCfdr algorithm to the group 

level by embedding the mixed effect model 

 

 

 

 Mixed effect model.  

 

 

 

 

? 

Estimate the p-value between  

 a and b given vertex set C at the 

group level 

i g i i
z z e   

Inter-subject 

variance 

Within-subject 

variance 

Unbalanced case: Restricted 

Maximum Likelihood (ReML) 

approach 

Balanced case: t-test 

A Liu, J Li, Z J Wang, M J McKeown (2012)  A Computationally-Efficient, 

Exploratory Approach to Brain Connectivity Incorporating False Discovery Rate 

Control, A Priori Knowledge and Group Inference   Computational and 

Mathematical Methods in Medicine (in press)    

group 
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subject 

level 
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Normal PD-Tremor PD-Rigid 

Altered connectivity in PD subtypes may 
represent a type  of compensation 

S J Palmer, J Li, Z J Wang, M J McKeown (2010)  Joint amplitude and connectivity 
compensatory mechanisms in Parkinson's disease.   Neuroscience 166: 4. 1110-1118 Apr 
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53 Xiaohui Chen, Z Jane Wang, Martin J McKeown (2010)  Asymptotic Analysis of Robust LASSOs in the Presence of Noise with 

Large Variance   IEEE Transactions on Information Theory 56: 10. 5131 - 5149 Oct  



Group robust LASSO for connectivity 
utilizing an SEM & AR(1) model 

Xiaohui Chen, Z Jane Wang,Martin J McKeown (2010)  fMRI Group Studies of 

Brain Connectivity via A Group Robust LASSO International Conference on 

Image Processing, September 26-29, Hong Kong.  

Try to predict  a given ROI’s time 

course under the assumptions of: 

1) Each subject within a given 

group has the same 

connectivity (but connection 

strengths can vary). 

2) Use current timepoint from all 

other ROIs and previous 

timepoint from all ROIs in 

model 
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Penalty 

Influence of similarity 

Loss 

Incorporating genetic/clinical information 
into network computations 

Liu et al, in preparation 

Genotype 
Similarity matrix 



Results 
Connectivity Patterns 

Genotype A Genotype B 

Density Global Effic Within 
hemis 

 Across hemis 

Density 
Gen A 
Gen B 
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Techniques to probe brain function 

Patch Clamp 

Light Microscopy 

Metabolic  

PET 

   Single unit 

Microlesions 
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Treatment of Parkinson’s Disease: 
SURGERY 

http://www.youtube.com/watch?v=FAfcXakF56Q 



Existing EEG Connectivity Measures 

Linear 

Nonlinear 

Bivariate 

Multivariate 

Directional 

Non-directional 

Coherence Linear Bivariate Non-directional 

Mutual Information Nonlinear Bivariate Non-directional 

Granger Causality Linear Bivariate Directional 

Multivariate AR-

based Measures 

Linear Multivariate Directional 

more robust to noise 

and computationally 

efficient 

more accurate as it accounts for all 

the covariance structure 

information from the full data set 

(Humans poor pattern recognizers 

in high dimensional states) 

more biologically 

meaningful as it 

models causal 

relationships 



Common Challenges in EEG  

 Connectivity Analysis (1) 
1) Poor “signal-to-noise” ratio 

 Only a small fraction of signal content is task-related 

 Noise include measurement noise, eye and movement and non-task-

related background brain activities   

  EEG pre-processing or correlate EEG with the task  

2) Poor spatial resolution  

• Exacerbated by volume conduction. 

• Electrical activity of a current source is propagated 

radially to the scalp and picked up by multiple 

sensors. 

• Leads to spurious correlations between sensor 

recordings. 

  Source extraction 

Spatial overlap 



Common Challenges in EEG  

 Connectivity Analysis (2) 
3) Numerical instability in mAR estimation 

 high EEG dimension + high mAR model order 

 e.g. consider a 10th-order mAR model with 20 channels  

  ~4000 parameters to be estimated      

  unstable when # samples << # parameters 

 Enforce sparsity 

4) Inter-subject variability in group pattern inference 

 

 

Pool-all-subjects Approach 

Structure:     the Same  

Parameters: the Same 

Individual-structure Approach 

Structure:     Different 

Parameters: Different 

Uniformity Diversity 

  Group analysis  

      methods 



Addressing Problems in the EEG: 

  Apply to normal and PD subjects to assess effects of disease and 

medication on motor-related brain connectivity 

Poor signal-to-

noise ratio 

Volume 

Conduction 

Numerical  

Instability 

Inter-subject 

Variability 

Data 

Fusion 
Source 

Extraction 
Sparsity 

Group 

Analysis 

Multiblock partial least square 

finds components from EEG and 

EEG that are maximally 

covarying 

 

Sparse mAR-based PDC 

1.sparse subject-level 

structure  

2.sparse group-level structure 

Generalized mAR Framework 

jointly models volume 

conduction and causal relations 

between brain sources 



Partial Directed Coherence 

Partial directed coherence (PDC) provides a frequency measure of 

directional, direct connectivity between multichannel signals based on 

an multivariate AR (mAR) model. 
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• Represent the relative strength of influence of signal j on signal i, 

discounting the effects of all other signals 
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Sparsity in Connectivity 

2. Sparsity on group-level structure using Group LASSO 

• gLASSO divides β into sub-vectors, one for each connection (element i, j at lag p)  

containing all subjects, and penalizes the sum of their L2 norms  

• each sub-vector is either all zero or all nonzero (but can have different values) 
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mAR coefficients 

Full LASSO Group LASSO 

1. Sparsity on subject-level structure using LASSO 

• penalizes L1 norm of β 

• favours a solution where most coefficients are zero 



Sparsity in Connectivity - Simulations 

• Regular mAR: The estimated PDC noticeably deviates from the true PDC. The 

deviation increases as the model order increases.  

• Sparse mAR: Regardless the choice of model order, the estimated PDC are very 

close to true PDC at all frequencies.  address the issue of order selection 

 

Simulated a 18-channel, 2nd order mAR model (648 coefficients) with 11 

non-zero coefficients.  Data length = 2000. 
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Sparsity in Connectivity – Real Data 

Predict PD Severity using PDC 
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PD Severity 

Predict PD Severity using  

Univariate Spectral Power 
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PD Severity 

G Tropini, J Chiang, Z J Wang, E Ty, MJ. McKeown (2011) Altered Directional Connectivity in Parkinson's Disease During 

Performance of a Visually Guided Task .Neuroimage 56: 4. 2144-2156  



Source-level Connectivity in the EEG  

• Volume conduction causes spurious correlations between sensors  

  analyze EEG connectivity in “source” domain.   

• An ill-conditioned inverse problem  has no unique solution. 

• Dipole Modeling:  

• Cons: computationally complex and sensitive to: assumed  

 number of active dipoles, head model used, etc. 

• Blind Source Separation: Independent Component Analysis (ICA)  

  observed signals are linear mixtures of mutually independent sources      

Cons: brain sources are temporally cross-correlated  which contradicts with the 

independence assumption of ICA 

 Propose a state-space mAR framework to allow joint modeling of volume 

conduction and causal relationships between sources 

G. Gómez-Herrero, M. Atienza, K. Egiazarian, and J. Cantero, “Measuring directional coupling between 

EEG sources,” Neuroimage, vol. 43, no. 3, pp. 497–508, 2008. 



GmAR Source Separation Framework  
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Mixing matrix modeling the effects of volume 

conduction. Columns of C represents the 

projection from sources to scalp electrodes. M-dimensional 

EEG data vector  

M-dimensional 

brain sources  

mAR coefficient matrix, which 

captures the causal relation-
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 Use a maximum likelihood method to estimate C, s(t) and Ap given x(t) 



GmAR Source Separation – Group Analysis  
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How to combine the extracted sources across subjects?   Clustering  

Group-level 

unmixing matrix 



GmAR-SS Application Parkinson’s EEG 

Chiang, Z J Wang, M J McKeown (2011)  A Generalized Multivariate Autoregressive (GmAR)-Based 

Approach for EEG Source Connectivity Analysis   IEEE Transactions on Signal Processing 60: 453-465.   
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How do we get people with Parkinson’s 
to exercise ? 

Courtesy of Dr. Bin Hu, University of Calgary 



Encouraging the “right type” of 
exercise 
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Mall walking 



EEG-EMG coherence 
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Note: 

1) Typically  only compare 

1 EEG channel and 1 

sEMG channel at once 

2) Must average over long 

duration of contraction 

to get significant 

coherence 



Cortico-muscular Interactivity 
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- “muscular” 
(brain) (muscle) 

Generation of 

motor command 
Execution of 

motor task 

 

EEG 

 

EEG - EMG  

Fusion 

EMG 

 

Identify source components from scalp (EEG 

signals) that are maximally correlated to 

muscle activity (EMG signals) 

“cortico”  

investigated sensor- 

and source- level 

connectivity 

 but may not be 

task-related 



Cortico-muscular Interactivity 
• Traditional approaches to studying motor control: 

• Look at rectified EMG signals  

• Identify active brain regions via EEG/MEG/LFP during sustained 
muscle contraction. 

• Corticomuscular (EEG/EMG) coupling is typically analyzed using 
coherence technique. 

•  Issues with coherence technique: 

• Only a small fraction of the EEG signal content is related to motor 
control  low coherence value. 

• Coherence replies on pairwise comparisons. However, the mapping 
between the brain and musculature is many-to-many, as opposed to 
one-to-one. 

 We propose the Partial Least Square (PLS) method – which aims at 
finding components in two datasets that are maximally covarying. 
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Experimental Setup 

Squeezing task: The subject was instructed to follow 

the target bar (yellow) as close as possible. The force 

exerted by the subject was shown by green bar.  



Multiblock PLS for EEG-EMG Fusion (2) 

• To address this, we introduce the idea of multiblock PLS (mbPLS) which is a 
two-level, multiple-block extension of the regular PLS. 

• groups data of each subject into individual “subject blocks”  

• aggregates subject-level decompositions to form “super blocks” at the 
second layer 

• extracts group-level components which exhibit high covariance between 
predictor block (EEG) and response block (EMG) . 

 allows for some individual variations across subjects, but also, at a 
second level, allows group inferences to be made. 
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• Inter-subject variability makes 
the standard approach of 
simply pooling data from 
different subjects problematic.  

EMG temporal 
pattern 

S 

uk 
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R 

EEG 
tk 

EEG temporal 
pattern 
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maximal covariance 

PLS 

maximal covariance 



Multiblock PLS for EEG-EMG Fusion (3) 
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Subject-level 

Patterns 

Subject EMG 
data 

Spatial distribution  
of the component 

can be easily extended to model 3-dimensional data 

(e.g., EEG spectrogram or time-varying PDC) 



Multi-subject EEG and EMG Coupling 
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EEG PDC as predictor and EMG amplitude as response 

Coherence between raw 

EEG and EMG of a 

typical normal subject 

95% confidence limit 

• exact frequency of maximal EEG-EMG coupling vary across subjects  

  combining coherence results across subject may be difficult  

• mbPLS model provides a systematic method to infer common patterns across 

subjects  allows robust group inference in the face of inter-subject variability 

J Chiang, Z J Wang, M J McKeown (2012)  A multiblock PLS model of cortico-cortical and corticomuscular interactions in 

Parkinson's disease   Neuroimage 63: 3. 1498-509 
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A Joint PLS-ICA framework 
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• PLS provides components that maximally co-vary between 

predictor (x) and response  (y) that are uncorrelated 

• ICA provides components in EEG and EMG that may have no 

relation to one another. 

 

 Propose: joint PLS-ICA framework 

Where G(.) is a non-linear function (e.g. log cosh (.) ) 

∝  + 𝛽 +  𝜃 = 1 



Combining EEG and Behavioural Data 

c/o Dr. Howard 

Poizner, UCSD 



Combining EEG and Behavioural Data 

Perturbation 

No Yes 

Aperture velocity 

EEG features: short-window band-limited pair-wise coherences 

Assume: time courses constant across subjects for a given task 

 

 



Combining EEG and Behavioural Data 

Perturbation 

No Yes 

Aperture 



Summary 

• 3D Moment Invariant descriptors of activation 
• Replicator Dynamics for network assessment 
• PCfdr method for Bayesian Network learning 
• Robust, group LASSO for fMRI connectivity 
• EEG source connectivity 
• Multiblock PLS  
• ICA-PLS method 
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3-way analysis 
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The proposed tridirectional method is actually a two-step modeling strategy: 

 

(1)Tri-LV Extraction: One super latent variable (supLV) t_g is designed to relate the subLVs. The optimization 

problem is formulated as below 

 

 

 

 

 

 

 

 

The solution can be derived by the method of Lagrange multipliers as below 

 

 

 

 

 


