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OUTLINE

Mobile real-time EEG Imaging

Fig. 1. Handheld brain scanner components. Emotiv EPOC wireless EEG headset (1),

Why real-time imaging?
- . Emotiv Receiver module with USE connector (2), USH connector and adapter (3+41),
C u rre nt I m p I e m e ntatl O n and Nokia N900 mobile phone. The total cost of the system is less than USD1000,

Sparse mean field method ”Variational Garrote”
vs Lasso/ARD

Temporal smoothness Markov prior

Where do we want to go with
mobile solutions?

Fig. 3. A user interacting with a 3D model of the brain using the handheld brain

scanner device with touch-based interaction.

A. Stopczynski, J.E. Larsen, C. Stahlhut, M.K. Petersen, L.K. Hansen.

[
C m bl A Smartphone Interface for a Wireless EEG Headset with Real-Time 3D Reconstruction.
Conter o tegred. In Proc. Affective Computing and Intelligent Interaction. Springer Lecture Notes in Computer Science 6975: 317-318 (2011).


http://www.youtube.com/watch?v=i_66KAOzXhU�

Mobilizing personal state decoding

More naturalistic conditions for brain
imaging experiments

Long time observations in the wild:
24/7 monitoring - "quantified self”

(a) An earplug with electrodes (b) An earplug with electrodes
ERA, ERB and ERH visible. and connector (opposite view
of Figure 1(a)). Electrode ERE
. . - is visible.
EEG real time 3D imaging for |
bio-feedback

(c) Right ear with earplug. (d) Side view of test subject
showing the recording setup.

Fig. 1. View of a right ear earplug and the Ear-EEG recording setup.

P. Kidmose et al.

Recordings.

LY 3 IEEE EMBS (2012)
Nustration of hypo @

HypoSafe implantable device
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http://www.hyposafe.com/index.php�

EEG imaging

Linear ill-posed

S Data acquisition
: 4 Sensor positions

iInverse problem Preprocessing 3D source localization
ol . * Segmentation (create mesh)
* Downsampling
X NXT el « Co-registration
- * Artefact detection (continuous/epochs) == -
Y - K X T * Bad channels [ trials ST
A - K X N = Eye, muscles .

* Baseline correction

: . ; * Inverse estimation
* Averaging / multiway analysis

N >> K l l

Need priors to
- *~ w _ Inverse problem _ -
solve! S —— -

-

C. Stahlhut: Functional Brain Imaging by EEG: A Window to the Human Mind. PhD-Thesis (2011), DTU Informatics



Intermezzo

Multimodal integration by letting one
modality act as prior for the other

Here:

The EEG forward model is inaccurate...but
useful as prior”
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Reconstruction of the forward model

Uncertainties involved in the estimation of the forward model
— Tissue segmentation
— Tissue conductivities
— Electrode locations

Estimated

A
-
AA o

Prior
A AA*
ay
Previous work:
— (Lew et al.,2007; Plis et al., 2007)
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Experiments: EEG face-evoked response

SOFOMORE Model

Figure 4.2: Graphical representation of the SOFOMORE model. The
blue box including the sources s; and observations m; indicates expansion over
time t. At the lowest level in the hierarchical structure we also find the forward
model A with fixed prior mean A®. The middle layer includes e precision
parameter for the sources with a seperate precision parameter (Inverse variance)
assigned to each dipole. 3 is the inverse variance of the noise contribution and
=~ mcludes a precision parameter to each column in A. At the top level we have
the hyperhyperparameters controlling the hyperparameters in the middle layer.

. C. Stahlhut, M. Mgrup, O. Winther, L.K. Hansen.
C m bl Simultaneous EEG Source and Forward Model Reconstruction (SOFOMORE) using a Hierarchical Bayesian Approach.
Center for ntegrated Journal of Signal Processing Systems, 65(3):431-444 (2011).

molecular brain imaging.



Effect of wrong forward model

256 most active dipoles 256 most active dipoles 256 most active dipoles
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VE: 98.11% a

VE: 99.12% VE: 99.34%

(a) MN (b) ARD (c) SOFOMORE

Figure 9 Estimated activity at f = 170 ms after stimulus. Tissue
conductivities brain:skull:scalp = 0.33:0.0041:0.33 S/m are used.
Activity in the left and right occipital region is estimated by MN
with the primary activity located in the right occipital region.
Moreover, right frontal activity is reconstructed. The ARD leads

C mbi Lars Kai Hansen

e IMM, Technical University of Denmark

molecular brain imaging.

to quite scattered activity with two dominating dipoles located
in the left and right temporal lope. SOFOMORE reconstructs
activity both in the left and right visual cortex with dominating
activity in the left region.
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Why 3D real-time imaging?

Enable on-line visual quality
control

Neurofeed applications can be
based on activity in specific
brain structures /networks

Context priors may relate to 3D
location (from meta analysis)

Evidence that BCI /decoding
can be improved by 3D
representation

C mbi Lars Kai Hansen

o intepiated IMM, Technical University of Denmark
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Fig. 3. Distribufion ofmemony and pain brain activations in the posterior cingulate cortex shown on a sagittal plot ¥ i fe AP axiz with posterior a2 negative.
The blue outline follows that of fie Talsirach stlas, The gray outline is an isocurvature ina probability velume for posterior cingulate coriex based on modeling
of coprdinates from the Brede datshase, Groen sguares ame associated with “memoeny™ aticles and red triangles with “pain”™ anticles.

Finn Arup Nielsen, Daniela Balslev, Lars Kai Hansen, "Mining the Posterior Cingulate:
Segregation between memory and pain components”. Neurolmage, 27(3):520-532,
(2005)

Trujillo-Barreto, Nelson J., Eduardo Aubert-Vazquez, and Pedro A. Valdés-Sosa.
"Bayesian model averaging in EEG/MEG imaging.” Neurolmage 21, no. 4 (2004):
1300-13109.



Source representation can improve decoding

Besserve et al. (2011)

. reconstructing the underlying cortical network dynamics significantly outperforms a usual electrode level
approach in terms of information transfer and also reduces redundancy between coherence and power
features, supporting a decrease of volume conduction effects. Additionally, the classifier coefficients
reflect the most informative features of network activity, showing an important contribution of localized
motor and sensory brain areas, and of coherence between areas up to 6 cm distance.

Ahn et al. (2012)

... source imaging may enable noise filtering, and in so doing, make some invisible discriminative information
in the sensor space visible in the source space.

a Influence of variable selection b Influence of dipole number
12 R 50
E univariate ranking [ e W 500 1000 sooo [l 10000
Y mulliveriale ranking |
= = = SYM with all variables | 40
- = AROM classifie =
E a8 i ) I f. %
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Fig. 6. Effect of redudng the number of sources or variables, for power +coherence quantification at the source level a) Average ITR as a function of the number of variables for two
variable ranking techniques: univariate ranking with a Student's t-test and multivariate ranking with the coeffident of a SVM classifier. The ITR values using a sparse number of
variables with the AROM classifier (see text) and all variables with an SVM are plotted for comparison. b) Influence of the number of cortical dipoles used in the forward model on the
ITR: percentage improvement of ITR with respect to electrode level quantification, for each type of couples of tasks { motor, non-motor and mixed couples).

Congedo, Marco, Fabien Lotte, and Anatole Lécuyer. "Classification of movement intention by spatially filtered electromagnetic
inverse solutions." Physics in Medicine and Biology 51, no. 8 (2006): 1971

M Besserve, J Martinerie, L Garnero "Improving quantification of functional networks with eeg inverse problem:

Evidence from a decoding point of view." Neurolmage 55.4 (2011): 1536-1547.

Minkyu Ahn, Jun Hee Hong, Sung Chan Jun: "Feasibility of approaches combining sensor and source features in brain—computer
interface." Journal of Neuroscience Methods 204 (2012): 168-178.



Smartphone Brain Scanner

Based on the Emotiv wireless transmission mechanism and
either the EPOC head set or modified EasyCaps (thanks to

Stefan Debener, Oldenburg)

First version ran on a Nokia platform

Version 2.0 works in generic Android platforms (Tested in
Galaxy Note, Nexus 7,...)

https://github.com/SmartphoneBrainScanner

Jniversity of Denmark
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SBS functions current

Ex plo Global observatory

on digital society

Real time system

— Bayesian minimum norm 3D reconstruction with a
variety of forward models (N=1024).

— Adaptive SNR model (B,a) estimated every 10 sec.

— Update speed — 40 fps (Emotiv sample rate 128Hz,
blocks of 8 samples)

— Selected frequency band option

— Spatial averaging in "named” AAL regions
Mobile experiment set-ups, so far...

— Common spatial pattern- BCI

— Stimulus presentation options: image,text, audio
— Neuro-feedback

[ ] -
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3D imaging to go ...
by source reconstruction on smartphones
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Fig. 5: The 3D brain visualization application running on a (a) (b)
Nexus 7 tablet. Blue color indicates cortical activity in the : . :
8-12 Hz band o Fig. 4: Benchmark of 3D reconstruction performed on different

devices. Time in ms needed for (a) model update and (b) time
of the 3D reconstruction.

IMM, Technical University of Denmark



Do we get meaningful 3D reconstructions?

x10 RIGHT IMAGINED FINGER TAPPING
. [—PrecentraiLaal]  Imagined finger tapping
ENAA — Precentral R aal |

Left or right cued (at t=0)

Signal collected from an
AAL region

Alpha Power

Time [S]

. . Meier, Jeffrey D., Tyson N. Aflalo, Sabine Kastner, and Michael SA Graziano.
C m bl Lars Kai Hansen "Complex organization of human primary motor cortex: a high-resolution fMRI
e o egted IMM, Technical University of Denmark study." Journal of neurophysiology 100, no. 4 (2008): 1800-1812.



Intermezzo 1l: A pseudo-inverse ’Iin trouble...”
exact results for an orthogonal (i.i.d. N(O,1)) A

N = 1024
N o - |/ ¢ EXPERIMENT {
_ o |l o THEORETICAL
Yie = E A nXnt + Ei . 4 P : ;
n=1 ;
g3t
=
<<
2 N 2 =E8
[I%ol[* > y=0 2
Al
S}
Q
K = N — 1 — VNN 1)y —Z o ooy T2
m=N-—-1—+/N(N — 500 1000 1500 2000
o [I%o[* K

( (1= &) |[xo]|* + 52502 K <N -1,
G(K) = ¢ o0 N—-1<K<N+1,
L %Jz E{ = i?\"r ‘|_ 1

C b Hansen, L. K. Stochastic linear learning: Exact test and training error averages. Neural Networks 6(3), 393—-396 (1993).
m_ Barber, D., D. Saad, and P. Sollich. Finite-size effects and optimal test set size in linear perceptrons. J Phys A 28 1325-34 (1995).
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Why sparse reconstruction?

Neuro-physiological
Evidence that brain "modes” are dipolar (Delorme et al., 2012)

Brain modules are specialized (From functional localization
hypothesis -> networks of interacting modules — sparse networks)

Modeling

Imaging problem is severely ill-posed (Pascual-Marqui et al. 2002)
Sparsity promoting priors can improve unigueness of solutions
Sparsity may be in a basis set (Haufe et al. 2011).

A Delorme, J. Palmer, J. Onton, R. Oostenveld, S. Makeig. Independent EEG sources are dipolar. PloSone, 7 (2) e30135, 2012.
RD Pascual-Marqui, M. Esslen, K. Kochi, D. Lehmann, et al., Functional imaging with low-resolution brain electromagnetic
tomography (loreta): a review,” Methods and findings in experimental and clinical pharmacology, 24(C):91-95, 2002.

S. Haufe, R. Tomioka,T. Dickhaus, C. Sannelli, B Blankertz, G, Nolte, KR Muller. Large-scale EEG/MEG source localization with
Cﬁ] spatial flexibility. Neurolmage, 54(2), 851-859. (2011)



Sparsity promoting priors N
rﬂc.t — Z 4’4I:~11-‘Y11._t + Ek,t-

n=1

Direct search for sparse solutions (X)
Feature selection /pruning, active sets
Automatic relevance determination,
Spike and slab,

Variational Garrote

Convex relaxations
[I1X]], and other regularizers,
Least angle regression, homotopy, path methods

=
—
=

L4 -
‘ m bl Lars Kai Hansen
Center for integrated
molecular brain imaging

IMM, Technical University of Denmark

i



Variational Garrote (Kappen, 2011)

|"|,'|'

Fﬁci — E AIL‘,]‘IXTL_f + Ek._t-
n=1
N

Ff{',t — E Ak,nsnixn,t + Eki
n=1

Introduce binary indicators for the support of the solution
- Inspired (name..) by Breiman’s "non-negative garrote”
- Similar to spike and slap, or Bernoulli-Gauss priors
- Variational inference

EEG: Potential separation of time scales (s variables are smooth in time)

L. Breiman. “Better subset regression using the nonnegative garrote”. Technometrics, 37(4):373-384, 1995.
HJ Kappen. "The variational garrote." arXiv preprint arXiv:1109.0486, 2011.

[
C mbl M Titsias, M Lazaro-Gredilla. “Spike and Slab Variational Inference for Multi-Task and Multiple Kernel Learning”.
Conter for et Advances in Neural Information Processing Systems 24, 2339-2347, 2011.



Multiple Measurement Vectors (MMV) %

N

M-SBL (Wipf & Rao, 2007) models repeated measurement, hence, a source is present
or absent for the whole time frame. Each source has a Tikhonov ||X]], regularizer with
estimated strength (ARD, SBL “Sparse Bayesian Learning”)

T-MSBL (Zhang & Rao, 2011) also assumes a block-structure so that each source is a
block. Temporal correlations are modeled in the blocks and ARD control parameter
identifies active sources (blocks) . Extensive simulations show state of the art
performance.

Yet, to compare to Ziniel et al. (2010), who use approximate BP to model both
smoothness in both amplitude and support with spike and slab prior.

Zhilin Zhang, B.D. Rao. "Sparse Signal Recovery with Temporally Correlated Source Vectors Using Sparse Bayesian Learning”. IEEE
Journal of Selected Topics in Signal Processing, 5(5):912-926, 2011.

D. P. Wipf, B.D. Rao. “An empirical Bayesian strategy for solving the simultaneous
sparse approximation problem,” /EEE Trans. on Signal Processing, 55(7):3704-3716, 2007.

J. Ziniel, LC. Potter, P. Schniter. “Tracking and smoothing of time varying sparse signals via approximate belief propagation,” in Proc.
Of the 44th Asilomar Conference on Signals, Systems and Computers, 808—-812 (2010).



N
Variational inference
Yie =Y AknSniXni + Er

n=1

The likelihood function 1s given by

p(Y|X,A.8.T)=> p(Y[X.A.S 3)p(S|T)
S

_, p(Y,S|X,A,5.T)
logp(Y[X,A,5.T) = q(S) log
¥ )= als) R

S
| q(S)
T ; 1(S) log p(S|Y,.X,3,T)

log })(Y‘X, A, s, F) = —F(X, .,3._ | I M) KL(q||p)

_ S 1oy P SIXCALB.T)
;Q( M) log J(SIM

[

Y.S|X,A, BT )
Zq(S)ngP( SIX, A ) logp(Y|X,A,_,3,I‘)
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Variational inference w./ fully factored q(S)

F(X,3,T,M) =

—> " q(S|M) [log p(Y[S.X, A, 3,T) +log p(S|T) — log q(S|M)]
S

q9(S) = | [ My Sne + (1 — M, ) (1 =S, )]

KT 3 15} i
F(X,3,T,M) =~ ——logo—+ % (Yiu— ) ApnMniXny)?

+Y M (1= Ma ) X0, > A7,
n.t k

— (logp(SIT))y + > M, log My, ; + (1 — M, ;)log(1 — M, ;)
Cfmbi = S

IMM, Technical University of Denmark




Variational inference w./ fully factored q(S)

HJ Kappen. "The variational garrote." arXiv preprint arXiv:1109.0486, 2011.

VG: factorized prior p(v) =7 +1e_,\
N, T N.,T
p(S) = 1 »(Sns) = 1] @()Sn+1=p())(1=5n1))
n,t=1 n.t=1

Streaming prior, first order Markov chain

p(511~t|5n._t—1) = FSn_g N

N.,T
P(S _P(Sn 1 H n,t|Sn~t—1)
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Temporally smooth, sparse prior

N.,T
p(S) =p(Sn1) || P(Sn.tlSni-1)
n,t=2
Stationary distribution

Sparsity

Temporal smoothness

L4 -
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Update rules for smooth, sparse prior

B-ATY/k x'=ATA/K

X = Xt_lBt

BK

2

with g1 = log (75222 ) , gy = log (F22r22 ).

- (ZY&—ZJHH_JMBM) /KT
k.t n,t

X = Xn,n't — X?Lnf J'?I"ffﬂ,,i: + (]- — ﬂfﬂ,ﬁ)x{;,n&n,n’

P"fn,t — (gl + g; (ﬂfn,t—l—l + J'?I"jrﬂ.,t—l) + I—X-g,t.}:n,ﬂ)
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Evaluation

Single time shot:
VG direct space Vs. VG dual Vs. ARD Vs
Lasso, L1 convex relaxation

Temporal case: Vs. Multiple Measurement Vectors (MMV)
When A almost orthogonal (A~N(0,1))
When A is an EEG head model ("Emocap”)

[ ] -
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Single time shot /7 EEG head model from SPM
(N=8196, K=128)

Normalized MSE

—B—\VVG—dual

v VG-KV

——LASSO

—o—8SBM

—e— Test errror using Weio

Two split cross-val: test(10), train(118)
Within train K-fold cross val to determine y

Lars Kai Hansen
IMM, Technical University of Denmark
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Single time shot

(a) VG-dual (b) VG-KV (d) SBM (e) True

Figure 4.5: Sources estimated in the context of a 3D cortex structure are com-
pared with the "true’ distribution. The algorithms are optimized
through ten-fold cross-validation with respect to one parameter:
for the VGs the sparsity level ~, for LASSO the regularization
parameter A, and for SBM the precision of the noise 5. The so-
lutions for the VGs correspond to v including a threshold on the
activation m set to 0.5. For LASSO and SBM the solution pre-
sented are w with a treshold on the weights set to 10710, Heavy
or thin arrows indicate sources with magnitudes larger or less than
0.5, respectively. Black arrows indicate true sources and red false
sources. View is from the back of the left hemisphere. No sources

[ - . H = o] L. e . .- .
m l Lars Kai Hansen are found in th‘e‘ right hemisphere for the v (‘lh. only lm? _st_rl?ngth
] ) ) sources for LASSO and one low strength for SBM. Note individual
e IMM, Technical University of Denmark color maps are used.

molecular brain imaging.



Temporal simulation, A orthogonal
(N=200, K=30, T=100)

X0 (1:10) SNR=13dB X0 (1:10) SNR=13dB

50

100

SOURCE
SOURCE

150

200
20 40 60 80 100 20 40 60 80 100

TIME TIME

Active sources n=1:10
Sine wave time function in X

o -
( m bl Lars Kai Hansen -.
Center for integrated
molecular brain imaging

IMM, Technical University of Denmark

=
=
=

I



Temporal simulation, A orthogonal

(N=200, K=30, T=100)

X0 (1:10) SNR=13dB

SOURCE

20 40 60 80 100
TIME
TMSBL

SOURCE

20 40 60 80 100

C mb TIME

IMM, Technical University of Denmark
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Temporal simulation, A is an EEG forward
model (n=1028, k=14, T=100)

— *
I\Iactive_3’ S. XO

ATA

Mean Acc 0.9992+ 0.9906* 0.9888+
0.0004 0.0072 0.0292

100 repetitions

L4 -
m bl Lars Kai Hansen .
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All dressed up — where to go?

Low cost equipment == Large scale social neuroscience...

Sensible DTU experiment tracking a unique population of 135
students with smartphones

Neuro-feedback in near-natural conditions (CF. Jensen et al, "Training
your brain on a tablet”)

C mbi Lars Kai Hansen

e IMM, Technical University of Denmark
olecular brain imagin;

molecular brain imaging
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Conclusion

Sparse source reconstruction may provide us with real-
time 3D EEG imaging

Separation of time scales using ”"spike and slab” like
representation

Variational inference allows kernel trick like dual
formulation with linear scaling pr update

Promising results on realistic, coherent forward model

[ ] -
‘ m bl Lars Kai Hansen
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Detecting networks with relational models

Hypothesis: Networks variability in fMRI resting state fluctuations separates a
group of MS patients from normal group (Ntot =72, 40MS + 32HC)

Infinite Relational Model
(IRM)
i anZ " =~  Heepoulflslz p'" =)

{72}

Pairwise Mutual Information (MI) o 2
between 2x2x2 voxel groups i RM B g
i, ) E| (K]
fl[.jl—rf jlu, ”"]nrhf[ ] E Ip._‘-.ﬂ
2 g # E ’ ~ .
Top 100'000 £ f g ,#5@‘“&
-] w | ) 1
Ml links E Componenis
> " Funclional units defined by | [ Communication beiween
g coherent Groups of Voxels (Z) the functional units (p™')

5039 Voxel groups

fg&a

Basic measure: Mutual information between time series (can detect similarity by modulation)

The Bayesian non-parametric Infinite Relational Model (IRM) provides functional network segregation
(communities) and a summary of the intra- and inter-community communication patterns

M Mgrup, KH Madsen, AM Dogonowski, H Siebner, LK Hansen. Infinite relational modeling of functional connectivity in resting state

fMRI. NIPS 23 (2010).



Denoising by kernel PCA helps fMRI1 decoding...

A

(A)NPAIRS (w. Stephen Strother)

w &_

. g Comparison of resampling z-
o 3 8 score = z-kPCA — z-Raw
Nt c
(@] e | i=]

2 L] =] :‘é‘o
b o E8 (B) FDR corrected:
o ° yellow: consensus,
o A raw
o | e denoised blue: onIy kPCA,
16 32 50 75 125 © ok 085 050 055 .
#PCs reproducibility red: onIy raw

PM Rasmussen, TJ Abrahamsen, KH Madsen, LK Hansen: Nonlinear denoising and analysis of neuroimages with
kernel principal component analysis and pre-imageestimation, Neurolmage 60(3):1807-1818 (2012).

C mbi Lars Kai Hansen -.

o intepiated IMM, Technical University of Denmark
lar in;

5

i

=
=



Variance inflation in ill-posed (kernel) factor models

Renormalized test data

Training data
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C mbi T.J. Abrahamsen and L.K. Hansen. A Cure for Variance Inflation in High Dimensional Kernel Principal Component
e Analysis. Journal of Machine Learning Research 12:2027-2044 (2011).
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