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® 20 Years of fMRI - What kind of Insights?

- Characterization of specialized brain areas and (intrinsic) networks
- Mental chronometry, effective connectivity, causality

¢ Translation of Insights into Clinical Applications
- Real-time fMRI neurofeedback for Parkinson and Depression
- Real-time fMRI Brain Reading for Communication BCI

e Levels of Description in Cognitive Neuroimaging
- What is the appropriate level of organization to understand
perception and cognition?

e Cracking the Feature Code At Columnar Level?
- Mapping columnar-level features using ultra-high field fMRI
- Towards new content-rich columnar-level BCls
- Towards laminar-level MVPA and effective connectivity

e Summary and Conclusions
- Integration: Multi-modal columnar-level neural network models
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Current Resolution of fMRI:
Specialized Areas and Networks
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<-4 Resting State - Whole Brain Functional Networks @ 7T

De Martino et
al. (2011),
Neuroimage,
57, 1031.
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Formisano & Goebel (2003), Current Opinion in Neurobiology, 13, 174-184. 6
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The mental clock task - Single-subject BLM results

auditory stimulation NENEENEEENEEEEEE button press

&
Formisano, Esposito, DiSalle

& Goebel (2004), Magnetic Reso-
nance Imaging, 22, 1493-1504.
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Sack AT, Kadosh RC, Schuhmann T, Moerel M, Walsh V, Goebel R (2009).
Optimizing Functional Accuracy of TMS in Cognitive Studies: A Comparison
of Methods. Journal of Cognitive Neuroscience, 21, 207-221.
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Hypotheses - inspired by fMRI mental chronometry:

» Can we use single pulse TMS to directly test a temporal
involvement of right PPC in late stage (spatial comparison) of
mental imagery task?

» Can we demonstrate the hypothesized compensatory
mechanism assumed to take place in the right PPC?

Experiment:
* Use rTMS to “lesion” left PPC (control with sham)

+ Use tpTMS over right PPC to test critical time points
within a trial

Reference:

« Sack,A, Camprodon, JA, Pascual-Leone, A & Goebel, R (2005).
The dynamics of interhemispheric compensatory processes in
mental imagery”, Science, 308, 702-704.

Left PPC: (D)
canreo: IR

me

Left PPC

| e
» Time

—8 Triple-pulse TMS @D Early activity - image generation
—8 Repetitive TMS D Late activity - spatial comparison
—8 Sham TMS | Triplets of TMS pulses (one per trial)

tpTMS: 20 time windows from 0 to 5700 ms in steps of 300 ms; rTMS: 1 Hz for 600 s
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Behavioral
22 | Impairments
following
1 .", ‘ right parietal
A ‘{ ' tpTMS

Sack,A, Camprodon, JA, Pascual-
Leone, A & Goebel, R (2005).
R - e Science, 308, 702-704.
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= Task + TMS < Task 33

= Task + TMS > Task q(FDR) < 0.01

Contrast: Task with TMS - Task without TMS:

* Increased BOLD Response During (additional) TMS in the Auditory Cortex

* Reduced BOLD Response During TMS (blue) in the SPL and MFG

« Significant Interaction Between Task (ANGLE vs COLOR) and TMS in the IPS

Sack, Kohler, Bestmann, Linden. Dechent, Goebel, Baudewia (2007) Cerebral Cortex, 17, 2841-52.
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<-4 Combining iEEG and fMRI in Cortex-Aligned Group Space

iEEG (gamma band-40-70 hz) fMRI (main effects)

a) Film > baseline (aligned) (a) Film > baseline (not aligned)
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Esposito, Singer, Podlipsky, Fried, Hendler, Goebel (2013). Cortex-based inter-subject analysis of iEEG and
fMRI data sets: Application to sustained task-related BOLD and gamma responses, Neuroimage, 66, 457-468.

<-4 Multi-Modal Challenge: Concurrent TMS - fMRI - EEG
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Peters, Reithler, Schuhmann, De Graaf, Uludag, Goebel, Sack (2013). On the feasibility of concurrent
human TMS-EEG-fMRI measurements, Journal of Neurophysiology, 109, 1214-1227.
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<-4 Multi-Modal Challenge: Concurrent TMS - fMRI - EEG

TMS during oddball task
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human TMS-EEG-fMRI measurements, Journal of Neurophysiology, 109, 1214-1227.
<-4 Multi-Modal Brain Imaging Framework in BrainVoyager
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<-4 Towards Clinical Real-Time fMRI Applications

BrainVoyager 3.5

Goebel (2012). BrainVoyager: Past, present, future. Neuroimage.

Related background work:

* Multivariate searchlight mapping (Kriegeskorte, Goebel, Bandettini, PNAS, 2006)
* Real-time fMRI-based Neurofeedback and BCls (Goebel et al., Imaging in Medicine, 2010)
* Feature-Level Classifiers (Formisano, DeMartino, Bonte, Goebel, Science, 2008)

During functional runs, the following computations are
repeatedly performed in real-time fMRI within the time
window of one time point (brain volume):

» Reading of EPI slices into working memory

» 3D motion correction (with sinc interpolation if GPGPU available)
» 3D spatial smoothing

 Incremental statistical analysis (RLS GLM)

» Nonlinear drift removal via design matrix

* Incremental event-related averaging

» Real-time ICA (Esposito et al 2003, Neuroimage, 20, 2209)

* Real-time SVM Classifier (LaConte et al., 2007; Sorger et al., 2010)

» Thresholding, clustering and color-coding of resulting statistical maps

* Visualization of the maps on EPI images, intra- or extra-session
3D data and rendered cortical surfaces

» Handles more than million voxels @ 7 Tesla
Friday, March 8, 13
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<4 Real-time fMRI Data Analysis @ 7 Tesla
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<4 Real-time fMRI Data Analysis @ 7 Tesla
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<4 Real-time fMRI Data Analysis @ 7 Tesla
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3T: ca. 30 x [64 x 64] = 122,800 voxels per time point
7T: ca. 50 x [192 x 192] = 1.843,200 voxels (multi-band sequence)
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The beta values and inverted X’X matrix can be updated
incrementally using only information of the new time point with the
following recursive equations:

(yt+1 - Xt+1bt)
1+x,,(XX,)'x,,,

t+1

bt+1 = bt + (X;Xt)_lxﬁl

_ (X;Xt)_l Xt+lx;+1 (X;Xt)_l
1 + X;+1 (X;Xt )_1 Xt+1

(X, Xt+1)_1 = (X;Xt)_l

t+1

Note: Since the X’X-' term is the same for all voxels, it can be
precomputed before solving for b for individual voxels.

-> Incremental algorithms provide constant calculation time per
data point (volume), i.e. they avoid the risk of conventional
approaches to lag behind the incoming data; the calculation time
of conventional algorithms (e.g. standard GLM) increases with
growing data sets.

<-4 Applications Of Real-Time fMRI Data Analysis

Online “brain reading” for neurofeedback and communication BCI

? T brain activity derived signal I § §
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Collaboration with David Linden (Cardiff), Nikolaus Weiskopf (London)
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~ Real-Time fMRI Neurofeedback

over localized brain regions -> Feedback is content-specific.

» Subjects can learn to influence own brain activity from one or multiple
circumscribed brain regions.

* Real-time fMRI enables monitoring changes in the BOLD response online.
* The high spatial resolution of fMRI offers the possibility to investigate the control

<4 fMRI Neurofeedback as a Therapeutic Tool

Technical setup and data flow of fMRI-based
neurofeedback training study

MRI scanner ‘ Stimulation Real-time data
l PC analysis PC

7 .- uil

Screen LCD projector

Image reconstruction system Scanner console
PC
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Neurofeedback therapy for patients with depression

» patients with recurrent depressive episodes after unsuccessful
conventional therapy

* neurofeedback therapy
- learning to up-regulate brain activation within the emotion network
(amygdala, prefrontal cortex efc.)
- 4 sessions (within 4 weeks)
- one session = 3 runs (1h)

Run designs

20s resting 20s regulating time

Linden, D.E.J., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subramanian L., Sorger, B., Healy, D., Goebel, R. (2012) Real-
time Self-regulation of Emotion Networks in Patients with Depression. PLOS One, 7, €38115.

Neurofeedback therapy for patients with depression

Effect of the neurofeedback training on the reached brain activation level
within the emotion network (group results)
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Linden, D.E.J., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subramanian L., Sorger, B., Healy, D., Goebel, R. (2012) Real-
time Self-regulation of Emotion Networks in Patients with Depression. PLOS One, 7, €38115.
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Neurofeedback therapy for patients with depression

Behavioral effects of neurofeedback training after 4 sessions (HRSD score)

group results
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-> First clinical trial study in UK

Linden, D.E.J., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subramanian L., Sorger, B., Healy, D., Goebel, R. (2012) Real-
time Self-regulation of Emotion Networks in Patients with Depression. PLOS One, 7, €38115.

Neurofeedback therapy for Parkinson patients
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Figure 5.  The functienal improvement was apparent from the increase in finger-tapping
frequency. Mean number of finger taps i shown for all sessions, with ermor bars showing the 0.
Patientsin the experimental group were able 1o increase the sumber of inger taps from session
1to session 3 (the final assessment) (p << 0.05).

Subramanian, Hindle, Johnston, Roberts, Husain, Goebel, Linden (2011) The Journal of Neuroscience, 31, 16309-16317.
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Towards Neurofeedback Therapy

Further application possibilities

» Chronic pain [deCharms et al., 2005]

* Tinnitus [Haller et al., 2009]

* Depression [Linden, Sorger, Goebel ef al.,, 2012)

*  Movement disorders in Parkinson’s disease [Linden, Goebel et al., JNS, 2011]

* Movement disorders in Stroke patients [Luehrs, Goebel, collab. with Heidi Johansen-Berg, Oxford]
» Attention-Deficit/Hyperactivity Disorder (ADHD) [Zilverstand, collab. with Jan Buitelaar, Nijmegen]
» Schizophrenia - feedback of connectivity measures [basic research: Zilverstand, Goebel et al)
* Autism

* Psychopathy, antisocial behavior (Birbaumer group)

* Anxiety disorders, e.g., spider phobia (Zilverstand, Sorger, Arntz, Goebel)

* Personality disorders

* Nicotine/drug dependence

Needed
— more neuroscience research to define brain states correlating with the desirable
mental states
— extensive clinical trials with appropriate control groups and careful evaluation
( ‘follow-up’ studies, cost-benefit analyses)

Online Decoding of Mental States
A Communication BCI for Patients with
Severe Motor Impairments

“Shall | compare
thee to a summer’s
day? You are more

lovely and ..."”

“What is your name?”
o TR o

fMRI response

Participant encodes
Visual display letters by performing
guides —> mental tasks while
letter encoding MR images are being
obtained

Letter decoding
from brain
activation
in real-time

Sorger, B., Reithler, J., Dahmen, B. & Goebel, R. (2012). A Real-time fMRI-based Spelling Device Immediately
Enabling Robust Motor-independent Communication. Current Biology, 22, 1333-1338.
Research Highlight in Nature, 487, 8.
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A Communication Brain Computer Interface & . _
A
A novel multi-dimensional coding technique
Variation of:
a) 3 (simple) mental paradigms
(eg I I )
Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338. 35
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A Communication Brain Computer Interface

A novel multi-dimensional coding technique

Variation of:

a) 3 (simple) mental paradigms
(e.g. : : )

b) performance onset (0s, 10s, 20s)

Time (scans|

Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338.

A Communication Brain Computer Interface

A novel multi-dimensional coding technique

Variation of:

a) 3 (simple) mental paradigms
(e.g. : : )

b) performance offset (0s, 10s, 20s)

C) performance duration (10s, 20s, 30s)

Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338.
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TIMING

Onset delay 0s
Duration 20s
molor imagery

(<)
ROIls

mental calculation

MENTAL TASK

inner speech

@ ROIs

10s

Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338.

Easy-to-use instructive display

* Subject selects letter

* Row of letter determines task

* Task performed when letter is highlighted
- BOLD shape

Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338.
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Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338.

Communication BCI - Automatic Decoder
Sorger et al (2012). Current Biology, in press.
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From fMRI to fNIRS

Communication BCI

Towards a Mobile Hemodynamic
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*Transfer previously gained knowledge with real-
time fMRI to build advanced fNIRS BCI system

*Bootstrap placement of optodes by fMRI scan

*Goal: Affordable Communication BCI at patient
bedside (Project in EU “DECODER” grant)

*First measurements using same paradigms as in
fMRI BCI are very promising
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fNIRS Communication BCI

Comparison with fMRI / Learning from fMRI
e Advantages: Mobile, reduced costs as compared to fMRI

e Disadvantages: Limited brain coverage and low spatial
resolution prevent selection of “deep” ROls.

e Does not provide good signals in all subjects -> Multi-
modal approach: Use fMRI to optimally place optodes

Neuronavigated optode placement

fMRI fNIRS

Sensory iNPput ce— — Behavior

= What are elementary mental/neural functional components?
Understand representations and processes in “modules of the mind”
and how they are embedded in areas and networks of the brain.

~ How do basic components interact and unfold over time?
Understand communication between brain regions, i.e. direction of
information flow (anatomical and effective connectivity).

Friday, March 8, 13

49

50



Sensory iNput ce—

v

=~ What are elementary mental/neural functional components?
Understand representations and processes in “modules of the mind”
and how they are embedded in areas and networks of the brain.

How do basic components interact and unfold over time?
Understand communication between brain regions, i.e. direction of
information flow (anatomical and effective connectivity).

Current Resolution of fMRI Relates to

Answers important questions such as:

* Which areas contribute to reading?

* Is the fusiform face area (FFA) more active when
presenting happy vs neutral faces?

» Can activity fluctuations in resting state networks be used
to characterize brain states as biomarkers for diseases?

Friday, March 8, 13
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[How Does the Brain Perform Cognitive Functions?}

Questions such as:
* How is a specific face a’| Crmmplen futer cols (C3)

identified? o/ 6 6\0 e s e e 29

* How is reading possible, ity
e.g. how does the brain — ~5,3
p

. Camphes composte cels (C2)
13 ”f)
recognizes letter “a™ v \@ "
.. ) 600 Composte feature ool (S2)
In principle, we can provide ?\_ .
answers to such questions oXoXol0. (@) 00 Compexcets il
e.g. with neural network S AN e,
models but we do not know T f HEISILEMZIL ces s s
\_“ » s
. ~. \ /
the features and connections R, W

used by the brain! . Grainger 2008, TICS

This leads to the following challenging goals for brain research:

» Reveal what features are coded within specialized brain areas!
» Reveal how features are connected within and across areas!
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Factorial Design: Two Classifiers

Recursive Feature Elimination

Level 1

Correctness = 0.65
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The Searchlight MVPA Approach
Detecting distributed feature content
within specialized areas using
locally multivariate mapping

Kriegeskorte, Goebel, Bandettini (2006). Information-based functional brain
mapping. PNAS, 103, 3863-3868.

Kriegeskorte, Formisano, Sorger, Goebel (2007). Individual faces elicit distinct
response patterns in human anterior temporal cortex. PNAS, 104, 20600-20605.

Fusiform face region (FFA):
pattern effects

(f
3 !
\7
‘»rﬁ

*fMRI signal
\

o > e

Subject DP, right hemisphere, 7T slow event-related experiment, MANCOVA test
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Anterior inferotemporal face-exemplar region
(subject TS, Talairach: 33, -8, -33)

L
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«0.004
1.2e-5
Prewhitened, fisherAtestB: double-sided test and info estimate

«0.003 «0.0035

*6.3e-5

From MVPA to Direct Feature Mapping

e Multivariate pattern analysis (as well as the adaptation
paradigm) provide indirect information about coded features
within specialized brain areas.

* While one can learn something about spatial distribution of
decoded information by inspecting voxel weights (when using
linear kernels), classifiers are mainly treated as “black boxes”.

e Is it possible to directly map the features within specialized
brain areas? This would:

* help link neuroimaging closer to (animal) electrophysiology

* offer the potential to unravel unknown feature codes in human
cortex

* could provide compositionality, i.e. understanding entity
representations of new stimuli from patterns with known features

* offer the potential to gain insight in putative differences in feature
coding in disorders (e.g. dyslexia)
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Possibilities of Ultra-High Fields for Cognitive
Neuroscience: Only “more of the same’?

What many cognitive neuroscientists expect from 7T* ()MRI
(in analogy to the move from 1.5 to 3 Tesla):

e Higher sensitivity to detect specific response profiles of
specialized areas

e |mproved diffusion-weighted imaging data and analysis to
visualize connections between areas (connectome)

e |mproved effective connectivity between areas

fMRI

Ultra-high field MRI — New possibilities
Bridging the gap between the micro- and macro view of the brain
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When a Quantitative Improvement of Resolution
Turns into a Qualitative Change

* Individual neurons code Specialized brain area

features but they are too small
to be detected with high-
resolution human fMRI.

+ If neurons would be distributed
randomly, ultra-high field
imaging would provide only
quantitative improvement.

* If neurons cluster into
functional units, we might be
able to reveal fine-grained
“neuron-like” representations.

+ There is indeed substantial
evidence that the (whole?) cortex
is organized in vertically
extending columns that contain DOWWW
neurons with rather similar Whitelgray matter boundary
response profiles. column size: 0.7 - 2 mm

Unraveling Feature Coding:
Towards Columnar-Level fMRI

Weber et al., 2008

European Research Council (ERC) Advanced Investigators Grant:
“Cracking the columnar-level code in the visual hierarchy:
Ultra high-field functional MRI, neuro-cognitive modelling and
high-resolution brain-computer interfaces”
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Lending
Maastricht University « Leany "
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Brains Unlimited 21
Lending
% Maastricht University o Larminf!

July 12 2012: 7T (June 14 2012: 7T Arrived)

May 29 2012: 3T Arrived May 2013: 9.4T

Brains Unlimited
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<-4 First Images from Maastricht 7T

- o v .

MF 1.71

TR 503.0
TE 25.0

TA 07:25
BW 30.0
M/ND

Al

™A

[ First Retinotopic Data at Maastricht 7T Scanner ]

Polar angle mapping

Using parallel imaging
and multi-band MR
pulse sequence

1.1 mm isotropic GRAPPA2 MB 2 0.8 mm isotropic GRAPPA2 MB 3
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Frequency [KHz]

1 8 5 3
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32
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Characteristic
frequency [KHz]

Sormaboed BOLD revporme

° .
3 5 .81 2 3
Freauencv [KH21

f

b
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Formisano, Kim, Di Salle, van de Moortele, Ugurbil, Goebel (2003), Neuron, 40, 859-869.

Low
0.5 KHz

Single Subject

Frequency

Tones Natural Sounds Natural Sounds

DeMartino, Moerel, van de Moortele, Ugurbil, Goebel, Yacoub, Formisano (2013). Spatial organization of
frequency preference and selectivity in the human inferior colliculus. Nature Communications, 4, 1386.
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Investigation of Columnar-Level Organization in
Humans Using fMRI at Ultra-High Magnetic Fields

High-resolution fMRI provides the unique opportunity to investigate these basic
computational units in the human brain.

Columns have been imaged non-invasively in the human primary visual cortex (VI)
lying within selected subjects flat calcarine sulci.

Single thick slices with high in plane resolution (0.5 mm) were prescribed to
anatomically identified calcarine sulcus due to limitations of inner-volume SE-EPI.

Yacoub, Harel, Ugurbil (2008) Proc Natl Acad Sci USA, 105, 10607-10612.

[High-Resqution fMRI Reveals Orientation Columns in V1}

Human - fMRI (SE, 7T) Monkey - Optical Imaging

\

A seminal paper: Yacoub, Harel, Ugurbil (2008) Proc Natl/ Acad Sci USA, 105, 10607-10612.

Mapping of the (larger) ocular dominance columns had already been reported earlier (e.g. Cheng et
al., 2001; Goodyear and Menon, 2001; Yacoub et al., 2007) but this was the first study revealing
detailed maps of the much smaller orientation columns!
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Columnar-Level Features At Different
Relative Cortical Depth Levels

+ The classical model of a cortical column assumes a nearly perfect vertical
penetration through the cortex.

It has been, however, shown that in areas of monkey IT cortex columns do
show strong irregularities across different layers (e.g. Keiji Tanaka, 2011)

+ To reveal how feature codes eventually change across cortical laminae, it is
important to map the topography of features within specialized areas at
different relative cortical depth levels.

+  We developed two methods to sample topographic information at different
cortical depth levels: 1) based on reconstructed cortex meshes (see also
Polimeni et al., 2010), and 2) with a novel regular-grid sampling technique.

“Ideal” columnar organization

NN 0%0 0060 Pial surface
DOOE o(wo 0000
OO DDDD DD

9

*
00000000
SOSSBBBEGHE

White/gray matter boundary

00
ioio
$0l0

00

000,
000,
0*00
OO
S

S

-

Whole-Cortex Mesh-Based Sampling At Multiple Cortical Depth Levels }

&

* 10 meshes (left hemisphere)
at different relative cortical
depth levels:

0.05 (dark red)
0.15 (light red)

0.85 (light blue)
0.95 (dark blue).

* Each high-resolution mesh
(1.2 million triangles with
0.5 mm edge length)
samples high-resolution
(whole-brain) map data at
specific depth level.

See also Polimeni et al. (2010) for a similar approach
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Whole-Cortex Mesh-Based Sampling At Multiple Cortical Depth Levels
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De Martino et al., in preparation
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Limitations of GRASE - Brain Coverage

SAG COR TRA COREGISTRATION
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De Martino et al., in preparation
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Experimental procedures

Stimuli used: MR-acquisition: 7 Tesla Siemens MRI
Custom RF-cail

GE-EPI:
Voxelsize: 1.45 x |.45 x |.5 mm3
FOV: 128 x 128 x 60 mm?3

POy Oty 10 Doving Sols 18 s
L

0

3D GRASE (via inner volume selection)
Voxelsize: 0.8 x 0.8 x 0.8 mm?
FOV:25.6 x 204.8 x 9.6 mm?

meas

;
:

Mapping Motion Direction-Selectivity
in Human Area MT

Functional identification of hMT vs hMST based on
ipsilateral response profile: No response to motion in left visual field
(following logic of Huk, Dougherty, Heeger, 2002)
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Mapping Columnar Organization of Motion Area hMT+/V5

All 8 presented motion directions were grouped into 4 opposing axis of motion
directions to increase the size of the underlying columns.

Model of columnar organization of macaque MT (Albright et al., 1984)

Tuning for Axis-of-Motion in Human Area MT

_— N
1%
=
¥
'\

o o ;’-.
£

Average voxel tuning curves

. ;— e & - L (b 3
A W W W W Tuning curves computed
Y o using cross validation
28 '
) i i
, )
: i5 s5 !
- V ! L] .)'
' 4 1 : \/ i
. 4
' '
- - 2 L - w (b
wr I W W et I I

Zimmermann, Goebel, De Martino, Adriani, Van de Moortele, Feinberg, Chaimov, Shmuel, Ugurbil, Yacoub (2012). PLoS One, 6(12), €28716.
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Mapping Axis-of-Motion Columns at Different Cortical
Depth Levels using High-Resolution Grid Sampling

Zimmermann, Goebel, De Martino, Adriani, Van de Moortele, Feinberg, Chaimov, Shmuel, Ugurbil, Yacoub (2012). PLoS One, 6(12), e28716.

Mapping Axis-of-Motion Columns at Different Cortical
Depth Levels using High-Resolution Grid Sampling

w
b
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Zimmermann, Goebel, De Martino, Adriani, Van de Moortele, Feinberg, Chaimov, Shmuel, Ugurbil, Yacoub (2012). PLoS One, 6(12), e28716.
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[ The Considered Mid-Level Visual Areas ]

V5/hMT — Motion
EBA — Bodies
LOC — Objects

— Colors
FFA — Faces
PPA — Places

VWFA —Words

Suggested Research Strategy = The Real Challenge:

“Crack” the columnar-level code in as many brain areas as possible

Columnar-level features in LOC

Distributed coding of shapes Goal: Unraveling columnar-level feature representations in
across columns in monkey IT mid-level and higher-level areas of the visual hierarchy,
(e.g. Tanaka, 1996) auditory system and multi-modal regions (STS)

In V1/ V5 features were known! It is a much more challenging task to map features that are
hitherto unknown. Cracking the columnar-level code involves not only high-end technology
(7T+, GRASE) but also smart experimentation! Areas that will be analyzed include: LOC, letter
area, VWFA, OFA, FFA, and invariance transformation across areas of the ventral stream
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*|Investigation of attention and imagery effects at columnar and laminar level

* 7T+ real-time fMRI: Use distributed columnar-level patterns of activity as the
basis for more precise feedback information (within-category information)
and to develop columnar-level BCls (e.g. direct letter imagery)

*First experiment:

1. Dots appear static on screen

2. Subject imagines specific direction of motion
for about 10 seconds

3. Motion direction is decoded in real-time using
classifier operating at columnar-level feature
representations

4. Decoded stimulus direction is used to show
corresponding motion direction to subject

(does not work at 3T using SVM classifier; might
work at columnar axis-of-motion resolution)

Context Decoding in V1 - Top-Down
Feedback to Non-Stimulated Area?

100

60 |

Percentage Correct
~J
o
) |
e

50 -

40

33
1 20 40 60
Number of Verlices

Smith & Muckli (2010)

(SEM)
n=6

TRAIN TEST

s LDA Average
LDA Single Block

m— SYM Average

m—— SYM Single Block
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Generalization

100" Train Control
90 Test Occluded

80

Percentage Correct

] 20 40 60
Number ol Vertces

Smith & Muckli (2010)

Context Decoding in V1 - Cross-Condition

TRAIN TEST

s LDA Average
LDA Single Block

s SYM Average

m—— SVM Single Block

Generalization

100

Train Occluded
90+ Test Contr
8 a0
S
s 20
(@)]
8
S 60} ,
(&)
)
a 50
40
33 . A .
i 20 40 60
Number of Vertices

Smith & Muckli (2010)

(SEM)
n=6

Context Decoding in V1 - Cross-Condition

TRAIN TEST

s LDA Average
LDA Single Block

s SYM Average

m—— SVM Single Block
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Layer-Specific MVPC Performance @ 7 T

= Forward-S2 (AS)

= Backward-S2(AS)

4 5 6

Collaboration with Lars Muckli, Essa Yacoub, Federico De Martino, Jan Zimmermann

[ Modeling Multi-Modal Neuroimaging Data

GLM / ICA

Effective Connectivity: GCM EEG / MEG
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Modeling Multi-Modal Neuroimaging
Data At Columnar-Level Feature
Representations

Columnar Network Models (CNM)

[ Neuronal Elements

1E;(1) > P
T/»,f “' ) = —(E;(t)- E*) - (g:(t) — ) Ei(t) — EY) + ni(t)
{
[ Z w;; - o;(t — 7; l] (E;(t) — ET)
Jowy, >0
- [ Z [w;;] - 0j(t — 73; 'l] (E(t)— E™)
1Ot s : " =i
To - : ) _ —(0,(t) —O") +e(E;(t) - E”) 0<c<]
L}

dgi(t) 0 A
T,— = —(q;(1)—¢q" )+ 7,bo,(1)
Wi \*CD T 9 : s

{ SE -0, ifE >0,

‘(1) =
%) 0 sonst.

“Burst oscillator” units (Goebel, 1993) MacGregor spiking neuron model

“one unit -> one cortical column” (leaky integrator with dynamic threshold)
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{ Common Brain Space for Networks and Imaging Data}

Measured Neuroimaging Data Large-Scale Neural Network Model
‘n!l!' O ErT
.‘ ! & p— e ) E—
4
Hk N
W
\‘.\ Corrical Colavme Unirs (CCUs)
K N
HiRes Functional MRI Anatomical MR!

Ncmolk 8rain Links (NBLs)

Voxel Time Courses (Measured) Unit Time Courses (Simulation)

Analysis:

Univariare GLM

Multi-voxel pattern analyris
Effective conmectivity analysis

Analysis:

Univariate GLM

Muiti-voxel pottern analysis
Effective connectivity analyss

Common Brain Space (CBS)

{Network-Brain Links (NBLs) - Linking Units to Voxels}

Cortex Mesh
(el hemisphere, inflated)

Cortex Mesh
eft hemisphere, foldod

Spatial hypotheses are expressed via NBLs at different resolutions:

e at level of brain areas (diffuse connections of ~ 1cm spread)

* at level of topological (e.g. retinotopic) mapping (~ 2mm resolution)
e at columnar-level (~ 0.5mm resolution required)
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Common Brain Space for Networks and Imaging Data

[Towards Large-Scale Columnar-Level Neural Networksj

EREMR A MR ORISRy
..... Leteer Calls { v € )

[imvariant Object-Cenered Feature Cells (distributed code)
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P p— [OBRG -Centered Complex Cellz)
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Letter recognition model and mesh with fMRI activity in common brain space (CBS).
The activity shown is from the fMRI scan of a subject reading letter strings.

ABCOEIGHIJKLMNOPQRETUVINXYZ ASCODEFCHIRKLMNOPQRSTUVWIYZ ABCOEFCHIJXKAMNOPORSTUVXYZ
L] - -
) - = o= oW g - ..- =1 -- LE 1 B
Attention Layer | | Attention Layer | | Attention Layer |

Results of invariant processing in the model when “reading” the constant
input string “CBS” letter-by-letter following spatial attention shifts.
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Towards Large-Scale Columnar-Level Neural Networks

Upcoming years:

Combined imaging and modeling at level of columnar feature
representations and different layers in order to obtain a deeper
understanding how cognitive phenomena arise as emergent
properties from massively parallel distributed brain processes.
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Modeling software “Neurolator 3D” will be freely available for download.

— =

* Specialized functional brain areas and networks are routinely localized
and further characterized with functional MRI at 3 Tesla.

® Multi-modal brain imaging and TMS allows to test precise temporal
hypotheses about time course of cognitive sub-components within trial.

® Clinical applications of fMRI neurofeedback are emerging
(e.g. treatment of pain, Parkinson, depression, anxiety disorders).

* fMRI Communication BCl: Allows transmission of distinct information
units, i.e. letters at a single trial level without extensive pre-training.

® Recent experiments show that it is possible to map known columnar-level
representations in specialized brain areas (V1, hMT) using 7 Tesla fMRI.

* It remains a challenge to crack the functional code for areas where the
“alphabet of features” is hitherto unknown. This challenge requires a
combination of ultra high-field fMRI, (neuronal network) modeling and
adaptive stimulation paradigms.

* If the ultra-high field code cracking approach is successful, it will likely
provide groundbreaking contributions to (cognitive) neuroscience.

' Summaryand Conclusions
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