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• 20 Years of fMRI - What kind of Insights?
- Characterization of specialized brain areas and (intrinsic) networks
- Mental chronometry, effective connectivity, causality

• Translation of Insights into Clinical Applications
- Real-time fMRI neurofeedback for Parkinson and Depression
- Real-time fMRI Brain Reading for Communication BCI 

• Levels of Description in Cognitive Neuroimaging
- What is the appropriate level of organization to understand
  perception and cognition?

• Cracking the Feature Code At Columnar Level?
- Mapping columnar-level features using ultra-high field fMRI
- Towards new content-rich columnar-level BCIs
- Towards laminar-level MVPA and effective connectivity

• Summary and Conclusions
- Integration: Multi-modal columnar-level neural network models

Overview
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Current Resolution of fMRI:
Specialized Areas and Networks

 Probabilistic Atlas of Specialized Functional Brain Areas
Frost, M. & Goebel, R. (2012), NeuroImage, 59, 1369 - 1381.
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 Resting State - Whole Brain Functional Networks @ 7T
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De Martino et 
al. (2011), 

Neuroimage, 
57, 1031.

 What is resolved in time-resolved fMRI ?

Formisano & Goebel (2003), Current Opinion in Neurobiology, 13, 174-184.

Neuronal vs cognitive timing

5

6
Friday, March 8, 13



 

RS

STSAC

RS
SMA

PPC

IPS

PPC

STS

 AC 

SMA

IPS

B

R                            L  

The mental clock task - Single-subject BLM results
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 Mental clock task – Cortex-based ICA analysis

Formisano, Esposito, DiSalle
& Goebel (2004), Magnetic Reso-
nance Imaging, 22, 1493-1504.
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 Mental clock task – Cognitive and neurobiological model

 Real-Time TMS Neuronavigation

Sack AT, Kadosh RC, Schuhmann T, Moerel M, Walsh V, Goebel R (2009). 
Optimizing Functional Accuracy of TMS in Cognitive Studies: A Comparison 
of Methods. Journal of Cognitive Neuroscience, 21, 207-221. 
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 Mental Clock Task - Cobmined rTMS  and tpTMS

Hypotheses - inspired by fMRI mental chronometry: 
• Can we use single pulse TMS to directly test a temporal 

involvement of right PPC in late stage (spatial comparison) of 
mental imagery task?

• Can we demonstrate the hypothesized compensatory 
mechanism assumed to take place in the right PPC?

Experiment: 
• Use rTMS to “lesion” left PPC (control with sham)
• Use tpTMS over right PPC to test critical time points

within a trial
Reference: 

• Sack,A, Camprodon, JA, Pascual-Leone, A & Goebel, R (2005). 
The dynamics of interhemispheric compensatory processes in 
mental imagery”, Science, 308, 702-704.

 Combined rTMS and tpTMS - Experimental design

tpTMS: 20 time windows from 0 to 5700 ms in steps of 300 ms; rTMS: 1 Hz for 600 s
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 Combined rTMS and tpTMS - Results
Behavioral 
Impairments
following
right parietal
tpTMS

       Sack,A, Camprodon, JA, Pascual-
Leone, A & Goebel, R (2005).
Science, 308, 702-704.

Contrast: Task with TMS - Task without TMS:
• Increased BOLD Response During (additional) TMS in the Auditory Cortex
• Reduced BOLD Response During TMS (blue) in the SPL and MFG 
• Significant Interaction Between Task (ANGLE vs COLOR) and TMS in the IPS  

 Simultaneous TMS - fMRI – Mapping Results

= Task + TMS < Task
= Task + TMS > Task

Sack, Kohler, Bestmann, Linden, Dechent, Goebel, Baudewig (2007) Cerebral Cortex, 17, 2841-52.
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 Combining iEEG and fMRI in Cortex-Aligned Group Space

Esposito, Singer, Podlipsky, Fried, Hendler, Goebel (2013). Cortex-based inter-subject analysis of iEEG and 
fMRI data sets: Application to sustained task-related BOLD and gamma responses, Neuroimage, 66, 457-468.

 Multi-Modal Challenge: Concurrent TMS - fMRI - EEG

dPMC

Precuneus

TMS pulse during 
resting state 

Peters, Reithler, Schuhmann, De Graaf, Uludag, Goebel, Sack (2013). On the feasibility of concurrent 
human TMS-EEG-fMRI measurements, Journal of Neurophysiology, 109, 1214-1227.
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 Multi-Modal Challenge: Concurrent TMS - fMRI - EEG

Peters, Reithler, Schuhmann, De Graaf, Uludag, Goebel, Sack (2013). On the feasibility of concurrent 
human TMS-EEG-fMRI measurements, Journal of Neurophysiology, 109, 1214-1227.

TMS during oddball task 

 Multi-Modal Brain Imaging Framework in BrainVoyager
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 Towards Clinical Real-Time fMRI Applications

Goebel (2012). BrainVoyager: Past, present, future. Neuroimage.

Related background work:
• Multivariate searchlight mapping (Kriegeskorte, Goebel, Bandettini, PNAS, 2006)
• Real-time fMRI-based Neurofeedback and BCIs (Goebel et al., Imaging in Medicine, 2010)
• Feature-Level Classifiers (Formisano, DeMartino, Bonte, Goebel, Science, 2008)

 Real-Time fMRI

• Reading of EPI slices into working memory
• 3D motion correction (with sinc interpolation if GPGPU available)
• 3D spatial smoothing
• Incremental statistical analysis (RLS GLM)
• Nonlinear drift removal via design matrix
• Incremental event-related averaging
• Real-time ICA (Esposito et al 2003, Neuroimage, 20, 2209)

• Real-time SVM Classifier (LaConte et al., 2007; Sorger et al., 2010)

• Thresholding, clustering and color-coding of resulting statistical maps
• Visualization of the maps on EPI images, intra- or extra-session

3D data and rendered cortical surfaces
• Handles more than million voxels @ 7 Tesla

During functional runs, the following computations are 
repeatedly performed in real-time fMRI within the time 
window of one time point (brain volume):
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 Real-time fMRI Data Analysis @ 7 Tesla

ROI time courses
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 Real-time fMRI Data Analysis @ 7 Tesla

Single voxel
time courses

 Real-time fMRI Data Analysis @ 7 Tesla

3T: ca. 30 x [64 x 64] = 122,800 voxels per time point
7T: ca. 50 x [192 x 192] = 1.843,200 voxels (multi-band sequence)

Activity follows
cortical folds
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 Incremental GLM: Recursive Least Squares
The beta values and inverted X’X matrix can be updated 
incrementally using only information of the new time point with the 
following recursive equations:

Note: Since the X’X-1 term is the same for all voxels, it can be 
precomputed before solving for b for individual voxels.

-> Incremental algorithms provide constant calculation time per 
data point (volume), i.e. they avoid the risk of conventional 
approaches to lag behind the incoming data; the calculation time 
of conventional algorithms (e.g. standard GLM) increases with 
growing data sets.

 Applications Of Real-Time fMRI Data Analysis

brain activity derived signal

decoder /
translator

optional: effect feedback

Analysis

BCINeurofeedback

Online “brain reading” for neurofeedback and communication BCI

Collaboration with David Linden (Cardiff), Nikolaus Weiskopf (London)
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 Real-Time fMRI Neurofeedback

• Real-time fMRI enables monitoring changes in the BOLD response online.
• The high spatial resolution of fMRI offers the possibility to investigate the control 

over localized brain regions -> Feedback is content-specific.
• Subjects can learn to influence own brain activity from one or multiple 

circumscribed brain regions.

 fMRI Neurofeedback as a Therapeutic Tool

Technical setup and data flow of fMRI-based 
neurofeedback training study

27

28
Friday, March 8, 13



Neurofeedback therapy for patients with depression

• patients with recurrent depressive episodes after unsuccessful 
conventional therapy

• neurofeedback therapy
- learning to up-regulate brain activation within the emotion network 

(amygdala, prefrontal cortex etc.)
- 4 sessions (within 4 weeks)
- one session = 3 runs (1h)

time20s resting 20s regulating

Run designs

Linden, D.E.J., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subramanian L., Sorger, B., Healy, D., Goebel, R. (2012) Real-
time Self-regulation of Emotion Networks in Patients with Depression. PLOS One, 7, e38115.

Neurofeedback therapy for patients with depression

Effect of the neurofeedback training on the reached brain activation level
within the emotion network (group results)

Linden, D.E.J., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subramanian L., Sorger, B., Healy, D., Goebel, R. (2012) Real-
time Self-regulation of Emotion Networks in Patients with Depression. PLOS One, 7, e38115.
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Neurofeedback therapy for patients with depression

Behavioral effects of neurofeedback training after 4 sessions (HRSD score)

single-subject results
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group results

-> First clinical trial study in UK

Linden, D.E.J., Habes, I., Johnston, S.J., Linden, S., Tatineni, R., Subramanian L., Sorger, B., Healy, D., Goebel, R. (2012) Real-
time Self-regulation of Emotion Networks in Patients with Depression. PLOS One, 7, e38115.

Neurofeedback therapy for Parkinson patients

Subramanian, Hindle, Johnston, Roberts, Husain, Goebel, Linden (2011) The Journal of Neuroscience, 31, 16309-16317.

SMA - Neurofeedback target region
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Towards Neurofeedback Therapy

Further application possibilities

• Chronic pain [deCharms et al., 2005]
• Tinnitus [Haller et al., 2009]
• Depression [Linden, Sorger, Goebel et al., 2012)
• Movement disorders in Parkinson’s disease [Linden, Goebel et al., JNS, 2011]
• Movement disorders in Stroke patients [Luehrs, Goebel, collab. with Heidi Johansen-Berg, Oxford]
• Attention-Deficit/Hyperactivity Disorder (ADHD) [Zilverstand, collab. with Jan Buitelaar, Nijmegen]
• Schizophrenia - feedback of connectivity measures [basic research: Zilverstand, Goebel et al) 
• Autism
• Psychopathy, antisocial behavior  (Birbaumer group)
• Anxiety disorders, e.g., spider phobia  (Zilverstand, Sorger, Arntz, Goebel)
• Personality disorders
• Nicotine/drug dependence

Needed
→ more neuroscience research to define brain states correlating with the  desirable 

mental states
→ extensive clinical trials with appropriate control groups and careful evaluation 

( ‘follow-up’ studies, cost-benefit analyses)

Sorger, B., Reithler, J., Dahmen, B. & Goebel, R. (2012). A Real-time fMRI-based Spelling Device Immediately 
Enabling Robust Motor-independent Communication. Current Biology, 22, 1333-1338.
Research Highlight in Nature, 487, 8.

Online Decoding of Mental States
A Communication BCI for Patients with 
Severe Motor Impairments
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 A Communication Brain Computer Interface

      Variation of:

a) 3 (simple) mental paradigms
(e.g. inner speech, mental calculation, mental music)

A novel multi-dimensional coding technique

Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338. 35
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      Variation of:

a) 3 (simple) mental paradigms 
(e.g. inner speech, mental calculation, mental music)

b) performance onset (0s, 10s, 20s)

 

A novel multi-dimensional coding technique

A Communication Brain Computer Interface

Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338.

A novel multi-dimensional coding technique

      Variation of:

a) 3 (simple) mental paradigms
(e.g. inner speech, mental calculation, mental music)

b) performance offset (0s, 10s, 20s)

c) performance duration (10s, 20s, 30s)

 A Communication Brain Computer Interface

Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338.
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 A Communication Brain Computer Interface

Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338.

Easy-to-use instructive display

• Subject selects letter
• Row of letter determines task
• Task performed when letter is highlighted
  ! BOLD shape

Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338.
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 A Communication Brain Computer Interface

Sorger, Reithler, Damen & Goebel (2012), Current Biology, 22, 1333-1338.

Communication BCI - Automatic Decoder
Sorger et al (2012). Current Biology, in press.
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 “BOLD” Conversations
Sorger et al (submitted)

From fMRI to fNIRS
Towards a Mobile Hemodynamic 
Communication BCI
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 Multi-Channel Functional Near-Infrared
Spectroscopy (fNIRS) (Part of DECODER EU Project)

•Transfer2previously2gained2knowledge2with2real=
/me2fMRI2to2build2advanced2fNIRS2BCI2system

•Bootstrap2placement2of2optodes2by2fMRI2scan

•Goal:2Affordable2Communica/on2BCI2at2pa/ent2

bedside2(Project2in2EU2“DECODER”2grant)
•First2measurements2using2same2paradigms2as2in2

fMRI2BCI2are2very2promising

Illustra/on2of2near2infrared

wavelengths2traveling2through

human2/ssue
Beer=Lambert2Law2allows2to

calculate2change2in2concentra/on

Like2fMRI,2fNIRS

measures2changes

2in2oxygenated2and2

deoxygenated2blood

 Functional Near-Infrared Spectroscopy (fNIRS)
GLM Analysis (Oxy-Hg Concentration)
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fNIRS Communication BCI
Comparison with fMRI / Learning from fMRI

•  Advantages: Mobile, reduced costs as compared to fMRI

•  Disadvantages: Limited brain coverage and low spatial
    resolution prevent selection of “deep” ROIs.

•  Does not provide good signals in all subjects -> Multi-
    modal approach: Use fMRI to optimally place optodes

fMRI fNIRS

Neuronavigated optode placement

 
Functional Organization of the Brain

Level I: Specialized Areas and Large-Scale Networks

Brain

What are elementary mental/neural functional components?
Understand representations and processes in “modules of the mind” 
and how they are embedded in areas and networks of the brain.

How do basic components interact and unfold over time?
Understand communication between brain regions, i.e. direction of 
information flow (anatomical and effective connectivity).

Sensory input Behavior
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Brain

What are elementary mental/neural functional components?
Understand representations and processes in “modules of the mind” 
and how they are embedded in areas and networks of the brain.

How do basic components interact and unfold over time?
Understand communication between brain regions, i.e. direction of 
information flow (anatomical and effective connectivity).

Sensory input Behavior

Functional Organization of the Brain
 Level II: Features Coded Within Specialized Areas

Current Resolution of fMRI Relates to 
Functional Organization Level I

Answers important questions such as:
• Which areas contribute to reading?
• Is the fusiform face area (FFA) more active when 

presenting happy vs neutral faces?
• Can activity fluctuations in resting state networks be used 

to characterize brain states as biomarkers for diseases?
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• Reveal what features are coded within specialized brain areas!
• Reveal how features are connected within and across areas!

Grainger 2008, TICS

How Does the Brain Perform Cognitive Functions? 
Questions such as:
• How is a specific face 

identified? 
• How is reading possible, 

e.g. how does the brain 
recognizes letter “a”?

In principle, we can provide 
answers to such questions 
e.g. with neural network 
models but we do not know
the features and connections 
used by the brain!

This leads to the following challenging goals for brain research:

 Example: Feature Decoding with MVPA
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 Factorial Design: Two Classifiers
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Kriegeskorte, Goebel, Bandettini (2006). Information-based functional brain 
mapping. PNAS, 103, 3863-3868.

Kriegeskorte, Formisano, Sorger, Goebel (2007). Individual faces elicit distinct
response patterns in human anterior temporal cortex. PNAS, 104, 20600-20605.

The Searchlight MVPA Approach
Detecting distributed feature content
within specialized areas using
locally multivariate mapping

Fusiform face region (FFA):
pattern effects

•run B

Subject DP, right hemisphere, 7T slow event-related experiment, MANCOVA test

•fM
R

I s
ig

na
l
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Anterior inferotemporal face-exemplar region
(subject TS, Talairach: 33, -8, -33)

•0.012

•0.003

•0.004
•1.2e-5

•0.0035

•6.3e-5

Prewhitened, fisherAtestB: double-sided test and info estimate

From MVPA to Direct Feature Mapping

• Multivariate pattern analysis (as well as the adaptation 
paradigm) provide indirect information about coded features 
within specialized brain areas.

• While one can learn something about spatial distribution of 
decoded information by inspecting voxel weights (when using 
linear kernels), classifiers are mainly treated as “black boxes”.

• Is it possible to directly map the features within specialized 
brain areas? This would:
★ help link neuroimaging closer to (animal) electrophysiology
★ offer the potential to unravel unknown feature codes in human 

cortex
★ could provide compositionality, i.e. understanding entity 

representations of new stimuli from patterns with known features
★ offer the potential to gain insight in putative differences in feature 

coding in disorders (e.g. dyslexia)
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Possibilities of Ultra-High Fields for Cognitive
Neuroscience: Only “more of the same”? 

• Higher sensitivity to detect specific response profiles of 
specialized areas

• Improved diffusion-weighted imaging data and analysis to 
visualize connections between areas (connectome)

• Improved effective connectivity between areas

What many cognitive neuroscientists expect from 7T+ (f)MRI
(in analogy to the move from 1.5 to 3 Tesla):

DTI Effective Connectivity

fMRI

Ultra-high field MRI – New possibilities
Bridging the gap between the micro- and macro view of the brain
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When a Quantitative Improvement of Resolution
Turns into a Qualitative Change  

• Individual neurons code 
features but they are too small 
to be detected with high-
resolution human fMRI.

• If neurons would be distributed 
randomly, ultra-high field 
imaging would provide only 
quantitative improvement.

• If neurons cluster into 
functional units, we might be 
able to reveal fine-grained 
“neuron-like” representations.

• There is indeed substantial 
evidence that the (whole?) cortex 
is organized in vertically 
extending columns that contain 
neurons with rather similar 
response profiles.

3T voxel size
7T voxel size

Specialized brain area

column size: 0.7 - 2 mm

Pial surface

White/gray matter boundary

Layers

Unraveling Feature Coding:
Towards Columnar-Level fMRI

European Research Council (ERC) Advanced Investigators Grant:
“Cracking the columnar-level code in the visual hierarchy:
  Ultra high-field functional MRI, neuro-cognitive modelling and
  high-resolution brain-computer interfaces”

Weber et al., 2008
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21Brains Unlimited 21

21Brains Unlimited 21

July 12 2012: 7T (June 14 2012: 7T Arrived)

May 29 2012: 3T Arrived May 2013: 9.4T
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 First Images from Maastricht 7T

First Retinotopic Data at Maastricht 7T Scanner

Polar angle mapping

Using parallel imaging
and multi-band MR
pulse sequence

1.12mm2isotropic22GRAPPA222MB22 0.82mm2isotropic2GRAPPA222MB23
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a
b

c
d

ef

fMRI of the Auditory Cortex at 7 Tesla
Results: Mirror-Symmetric Tonotopic Maps

Formisano, Kim, Di Salle, van de Moortele, Ugurbil, Goebel (2003), Neuron, 40, 859-869.

 Tonotopy in the Inferior Colliculus @ 7 T

DeMartino, Moerel, van de Moortele, Ugurbil, Goebel, Yacoub, Formisano (2013). Spatial organization of 
frequency preference and selectivity in the human inferior colliculus. Nature Communications, 4, 1386.
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High-resolution fMRI provides the unique opportunity to investigate these basic 
computational units in the human brain.

Columns have been imaged non-invasively in the human primary visual cortex (V1) 
lying within selected subjects flat calcarine sulci.

Single thick slices with high in plane resolution (0.5 mm) were prescribed to 
anatomically identified calcarine sulcus due to limitations of inner-volume SE-EPI.

3 cm

Yacoub, Harel, Ugurbil (2008) Proc Natl Acad Sci USA, 105, 10607-10612.

Investigation of Columnar-Level Organization in
Humans Using fMRI at Ultra-High Magnetic Fields  

Human - fMRI (SE, 7T) Monkey - Optical Imaging

Mapping of the (larger) ocular dominance columns had already been reported earlier (e.g. Cheng et 
al., 2001; Goodyear and Menon, 2001; Yacoub et al., 2007) but this was the first study revealing 
detailed maps of the much smaller orientation columns!

A seminal paper: Yacoub, Harel, Ugurbil (2008) Proc Natl Acad Sci USA, 105, 10607-10612.

High-Resolution fMRI Reveals Orientation Columns in V1
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• The classical model of a cortical column assumes a nearly perfect vertical 
penetration through the cortex.

• It has been, however, shown that in areas of monkey IT cortex columns do 
show strong irregularities across different layers (e.g. Keiji Tanaka, 2011)

• To reveal how feature codes eventually change across cortical laminae, it is 
important to map the topography of features within specialized areas at 
different relative cortical depth levels.

• We developed two methods to sample topographic information at different 
cortical depth levels: 1) based on reconstructed cortex meshes (see also 
Polimeni et al., 2010), and 2) with a novel regular-grid sampling technique.

Columnar-Level Features At Different
Relative Cortical Depth Levels 

“Ideal” columnar organization More realistic columnar organization
Pial surface

White/gray matter boundary

• 10 meshes (left hemisphere) 
at different relative cortical 
depth levels: 
0.05 (dark red)
0.15 (light red)
:
0.85 (light blue)
0.95 (dark blue).

• Each high-resolution mesh 
(1.2 million triangles with 
0.5 mm edge length) 
samples high-resolution 
(whole-brain) map data at 
specific depth level.

See also Polimeni et al. (2010) for a similar approach

Whole-Cortex Mesh-Based Sampling At Multiple Cortical Depth Levels
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Whole-Cortex Mesh-Based Sampling At Multiple Cortical Depth Levels

High-Resolution 2D Grid Sampling At Multiple Cortical Depth Levels
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High-Resolution 2D Grid Sampling At Multiple Cortical Depth Levels

• Precisely aligned functional data is 
sampled at each 2D grid point

• Sampled data can be directly visualized 
in 2D space using grids

• A 2D grid coordinate refers to the same 
vertical unit across levels (“column”)

• Distance, area and volume values can 
be easily calculated

9 depth grids

Why using GRASE and not standard GE EPI?
Layer responses in different visual areas

De2Mar/no2et2al.,2in2prepara/on

Response to target
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Limitations of GRASE - Brain Coverage

De2Mar/no2et2al.,2in2prepara/on

05/30/12
V5

V1/V2

V5

Flowfield
Stationary dots

V5

V1/V2

Functional Localizer:
Identifying V5/hMT+

Features within hMT?
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Experimental procedures

MR-acquisition:Stimuli used:

GE-EPI:
Voxelsize: 1.45 × 1.45 × 1.5 mm3

FOV: 128 × 128 × 60 mm3

3D GRASE (via inner volume selection)
Voxelsize: 0.8 × 0.8 × 0.8 mm3

FOV: 25.6 × 204.8 × 9.6 mm3

7 Tesla Siemens MRI
Custom RF-coil

Mapping Motion Direction-Selectivity
in Human Area MT

Functional identification of hMT vs hMST based on
ipsilateral response profile: No response to motion in left visual field

(following logic of Huk, Dougherty, Heeger, 2002)

LR
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  Mapping Columnar Organization of Motion Area hMT+/V5

Model of columnar organization of macaque MT (Albright et al., 1984)

All 8 presented motion directions were grouped into 4 opposing axis of motion 
directions to increase the size of the underlying columns.

Average voxel tuning curves

Tuning curves computed 
using�cross validation

Zimmermann, Goebel, De Martino, Adriani, Van de Moortele, Feinberg, Chaimov, Shmuel, Ugurbil, Yacoub (2012). PLoS One, 6(12), e28716.

Tuning for Axis-of-Motion in Human Area MT
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0.4 % relative depth 0.8 % relative depth

Mapping Axis-of-Motion Columns at Different Cortical 
Depth Levels using High-Resolution Grid Sampling

Zimmermann, Goebel, De Martino, Adriani, Van de Moortele, Feinberg, Chaimov, Shmuel, Ugurbil, Yacoub (2012). PLoS One, 6(12), e28716.
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Zimmermann, Goebel, De Martino, Adriani, Van de Moortele, Feinberg, Chaimov, Shmuel, Ugurbil, Yacoub (2012). PLoS One, 6(12), e28716.

Mapping Axis-of-Motion Columns at Different Cortical 
Depth Levels using High-Resolution Grid Sampling
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V5/hMT�– Motion
EBA  � – Bodies
LOC � – Objects
V4 � – Colors 
FFA  � – Faces
PPA  � – Places
VWFA � – Words 

RH LH

LH RH

The Considered Mid-Level Visual Areas

 Suggested Research Strategy = The Real Challenge:
“Crack” the columnar-level code in as many brain areas as possible

Distributed coding of shapes 
across columns in monkey IT 
(e.g. Tanaka, 1996)

In V1/ V5 features were known! It is a much more challenging task to map features that are 
hitherto unknown. Cracking the columnar-level code involves not only high-end technology 
(7T+, GRASE) but also smart experimentation! Areas that will be analyzed include: LOC, letter 
area, VWFA, OFA, FFA, and invariance transformation across areas of the ventral stream

Goal: Unraveling columnar-level feature representations in 
mid-level and higher-level areas of the visual hierarchy, 
auditory system and multi-modal regions (STS)

Columnar-level features in LOC
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 Columnar-Level BCI: Changing Direction of Motion in
Stimulus Based on Imagined Motion Direction

• Inves/ga/on2of2aZen/on2and2imagery2effects2at2columnar2and2laminar2level

•7T+2real=/me2fMRI:2Use2distributed2columnar=level2paZerns2of2ac/vity2as2the2

basis2for2more2precise2feedback2informa/on2(within=category2informa/on)2

and2to2develop2columnar=level2BCIs2(e.g.2direct2leZer2imagery)

•First2experiment:

1. Dots2appear2sta/c2on2screen

2. Subject2imagines2specific2direc/on2of2mo/on2

for2about2102seconds

3. Mo/on2direc/on2is2decoded2in2real=/me2using2

classifier2opera/ng2at2columnar=level2feature2

representa/ons

4. Decoded2s/mulus2direc/on2is2used2to2show2

corresponding2mo/on2direc/on2to2subject2

(does2not2work2at23T2using2SVM2classifier;2might

work2at2columnar2axis=of=mo/on2resolu/on)

(SEM) 
n=6

Smith&&&&Muckli&(2010)

Context Decoding in V1 - Top-Down 
Feedback to Non-Stimulated Area?
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(SEM) 
n=6

Smith&&&&Muckli&(2010)

Context Decoding in V1 - Cross-Condition 
Generalization

(SEM) 
n=6

Smith&&&&Muckli&(2010)

Context Decoding in V1 - Cross-Condition 
Generalization
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Layer-Specific MVPC Performance @ 7 T

Collaboration with Lars Muckli, Essa Yacoub, Federico De Martino, Jan Zimmermann

Modeling Multi-Modal Neuroimaging Data

DTI

EEG / MEG

TMS

Neural Network Models

GLM / ICA

Effective Connectivity: GCM
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Modeling Multi-Modal Neuroimaging
Data At Columnar-Level Feature 
Representations
Columnar Network Models (CNM)

Neuronal Elements

MacGregor spiking neuron model

(leaky integrator with dynamic threshold)

“Burst oscillator” units (Goebel, 1993)
“one unit -> one cortical column”
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Common Brain Space for Networks and Imaging Data

!

Network-Brain Links (NBLs) - Linking Units to Voxels

 Spatial hypotheses are expressed via NBLs at different resolutions:
• at level of brain areas (diffuse connections of ~ 1cm spread)
• at level of topological (e.g. retinotopic) mapping (~ 2mm resolution)
• at columnar-level (~ 0.5mm resolution required)
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Common Brain Space for Networks and Imaging Data

Towards Large-Scale Columnar-Level Neural Networks
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Towards Large-Scale Columnar-Level Neural Networks

Letter recognition model and mesh with fMRI activity in common brain space (CBS). 
The activity shown is from the fMRI scan of a subject reading letter strings. 

Towards Large-Scale Columnar-Level Neural Networks

Results of invariant processing in the model when “reading” the constant 
input string “CBS” letter-by-letter following spatial attention shifts.
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Towards Large-Scale Columnar-Level Neural Networks

Upcoming years:
Combined imaging and modeling at level of columnar feature 
representations and different layers in order to obtain a deeper 
understanding how cognitive phenomena arise as emergent 
properties from massively parallel distributed brain processes.

Modeling software “Neurolator 3D” will be freely available for download.

Peters, Reithler & Goebel (2012). Modeling invariant object processing based on tight integration 
of simulated and empirical data in a Common Brain Space. Frontiers in Computational 
Neuroscience, 6, 12.

van de Ven, V., Jans, B., Goebel, R., De Weerd, P. (2012). Early human visual cortex encodes 
surface brightness induced by dynamic context. Journal of Cognitive Neuroscience, 24, 367-377.

Peters, Jans, Van de Ven, De Weerd & Goebel (2010). Dynamic brightness induction in V1: 
Analyzing Simulated and Empirically Acquired fMRI Data in a “Common Brain Space” 
Framework. Neuroimage, 52, 972-984.

Goebel & De Weerd (2009). Perceptual Filling-in: From Experimental Data to Neural Network 
Modeling. In: Gazzaniga (Ed). The Cognitive Neurosciences IV.

References

 Summary and Conclusions
• Specialized2func/onal2brain2areas2and2networks2are2rou/nely2localized2
and2further2characterized2with2func/onal2MRI2at232Tesla.

•Mul/=modal2brain2imaging2and2TMS2allows2to2test2precise2temporal2

hypotheses2about2/me2course2of2cogni/ve2sub=components2within2trial.

•Clinical'applica)ons'of'fMRI'neurofeedback'are'emerging
(e.g.'treatment'of'pain,'Parkinson,''depression,'anxiety'disorders).

• fMRI'Communica)on'BCI:'Allows'transmission'of'dis)nct'informa)on'
units,'i.e.'leDers'at'a'single'trial'level'without'extensive'preGtraining.

•Recent2experiments2show2that2it2is2possible2to2map2known2columnar=level2

representa/ons2in2specialized2brain2areas2(V1,2hMT)2using272Tesla2fMRI.

• It2remains2a2challenge2to2crack2the2func/onal2code2for2areas2where2the2

“alphabet2of2features”2is2hitherto2unknown.2This2challenge2requires2a2
combina/on2of2ultra2high=field2fMRI,2(neuronal2network)2modeling2and2

adap/ve2s/mula/on2paradigms.

• If2the2ultra=high2field2code2cracking2approach2is2successful,2it2will2likely2
provide2groundbreaking2contribu/ons2to2(cogni/ve)2neuroscience.
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