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Aviany technologically important devices are grown via epitaxy.
£Often, the dimension in the-y-plane is large (continuous), while an atomic height resolution is required.

AStrain leads to ordering
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Zuo et al., PRL 78 (1997) B.Litaet al.,APL74, (1999)

We want a model for epitaxial growth that is
efficient, has atomic (height) resolution, and
provides a natural framework to include strain.
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The Challenge for Including Strain in a Growth Model

Strain arises when the material that is deposited has a different lattice constant than the substrate. For example,
Ge is 4% bigger than Si.

Astrain calculations for a system of typical size in 2+1 dimensions are expensive (at least seconds, mayhe min

AA typicaltimestepin an atomistic simulation is of order #&econds (which is the inverse of a typical diffusion
constantD=10°).

ANeed of the order of 1 milliortimesteps(or more) to simulate 1second.

Possible solutions to this challenge

1) Donodot sol ve gl tnestdpinsgehdaselvaiondy lotallygnhagbaa ¢venateeentiynestep, and
do occasionagjlobal updates.

2) Develop a model where the simulatitimestepcan be taken much larger, but where still all the microscopic
dynamics are retained.

AWe have developed a level setethod.
ATypicaltimestepin the simulation is of order 1®seconds.
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Introduction

The levelset method for epitaxial growth

Our elastic model

Straininduced ordering in theubmonolayegrowth regime

Ordering of stacked quantum dots
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Inclusion of a steygdge barrier to model mound formation
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The Island Dynamics Model

Atomistic picture Island dynamics
(i.e., kinetic Monte Carlo)

Aldentify all possible processes for all atoms. ATreat Islands as continuum in the plane
AAssign a rate for each of these processes. AResolve individual atomic layer
ARun a kinetic Monte Carlo simulation. AEvolve island boundaries wilvelsetmethod

ATreat adatomsas a meatfield quantity (and solve
diffusion equation)
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The Level Set Method: Schematic

Level set functiom Surface morphology
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ALevel set function is continuous in plane, but has discrete height resolution

AAdatomsare treated in a mean field picture

AGoverning Equation: WE +v_ |/ =0



The Level Set Method: Formalisiri

Diffusionequation for W
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A typical level set simulation
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Variations of the Potential Energy Surface
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Ordering by Cleaved Edge Overgrowth

Grow AlAS/GaAs Cleaveandrotate Grow InAs Simulations
superlattice quantumdots
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Quantum dots grow on top of thé&lAs stripes
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Avariations of the PES between
AlAs andGaAssurface lead to
ordering

AWe can test this with simulations
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Include Strain: Calculate Elastic Field at EVengstep

AOur Model: Harmonic ballandspring model thaincludes

o—{—o Nearestneighbor springs E = k(Sg(X2 + SWZ)
>< Diagonal springs E=Kjiag(Si +2S, + Syy)2 tKiiag(S - 25 + Syy)2

AThis can be related to (and interpreted asyontinuumenergy density
E=a(S, +S, )+ 65, +&B.S,

AMinimize energy with respect to all displacemept<E [u] =0, to obtain strain at every lattice site.

AThe relevant microscopic parameters at every grid pairg thenvaried as a function of the locstrain (or local
displacement), according to the strain dependence calculated by DFT.
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DFT Results for Strain Dependence for Microscopic Parameters for Ag on Ag(

Adatom Diffusion Dimer Dissociation Edge Diffusion Detachment
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A DFT calculations where done with RAIMS code.

C. Ratsch, Phys. Rev. B 83, 153406 (2011
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Effect of Strain in the Simulation

Morphologies Adatomconcentration
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With increasingcompressive strainslands become more regulbecause
Agrowth of large islands slows dowand
Asmallislands are more likely to brealkp.
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