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Curvature-mediated Endocytosis
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Ultrafast endocytosis at mouse hippocampal synapses. From Watanabe et al. Nature 504, 242-247 (2014),

central process for interaction of cells with their environment
recent reports demonstrate that this process can happen ultrafast (ms)

at these time scales hydrodynamics are important, they may limit the speed
and influence distribution of membrane molecules and cargo
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But how to model a membrane with

curvature-inducing molecules in flow
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e Locally inextensible diffuse interface model
e Including curvature-inducing membrane molecules

e Numerical results

e Summary
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Biomembranes
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Biomembranes in flow

@ interface is a lipid bilayer

@ lipids counteract bending = bending stiffness force ‘;—E

b
ElN = / §(H — Hy)2ds (Helfrich energy)
r

@ lipids resist any compression/extension = inextensibility:

Vp-v=0 onT
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global area constraint

Numerical simulation of endocytosi

Define Q = Q1 UT U Qo.
@ inextensibility can be enforced globally instead of locally.

@ the globally constrained model reads

SE[l
p(Oru+u-Vu) —vAu+ Vp = 61[" ]5[‘ + AglobalHn(SF in Q
V-u=0 in
8tF ZU|F

where the global Lagrange multiplier Agjoha) is obtained by requiring

d/dF /HundFO
dt

@ leads to conserved membrane area, but can not prevent local membrane
stretching/compression
E __ 1 2 2

@ 4 =—b(ArH+ $H (H> - H3))n

@ Inertia can be important in large/constricted blood vessels
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local inextensibility constraint

@ With local inextensibility constraints, the model reads:

AN
p(Otu+u-Vu) —vAu+ Vp = 5£}5F+V~(6FP/\) in Q
V-u=0 in Q
8,51“ :u‘p

@ where the Lagrange multiplier force takes the form of a surface tension

V- ((SFP)\) = 5FVF>\ — (Srn)\H

and is obtained by requiring
P:Vu=Vr -u=0

with the surface projection
v
P=I-n®n; n= —(b
[Vl

John Lowe
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local inextensibility constraint

Numeri

@ With local inextensibility constraints, the model reads:
SE[T]

p(Otu+u-Vu) —vAu+ Vp = T or + V- (rPXN) in Q
V-u=0 in Q
8,51“ :u‘p

@ where the Lagrange multiplier force takes the form of a surface tension
V- (0rPA) =6rVrA — drn\H
and is obtained by requiring
P:Vu=Vr -u=0

with the surface projection
Vo

P=I—-nQ®n; n=
[Vl

But how to discretize the inextensible Navier-Stokes system (1),(2),(3) ?

John Lowengrub, Dept Math/BME/
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Diffuse interface model

@ Introduce a phase field ¢ to
represent the fluid domains

@ fixed interface thickness € 1

X
Diffuse interface approximation of the bending energy [Du et al. Nonlin. 2005]:
b 1, 2
Elg] = o | €Ag— —(¢" —1)(¢+ Ho) ) dQ.
Q 2¢ €

Interface given by
I' = {z|¢(z) = 0}

Matched asymptotic expansion shows formal convergence

E[¢] — E[I for e - 0

Numerical simulation of endocytosi Jc v 1b, Dept Math/BME/C



Diffuse interface model

The diffuse interface Navier-Stokes equation with global constraints (model A)

[Du& Wang, JCP, 2006]
SE[g]

d¢
V.-u=0 in Q

Advected diffuse Willmore-flow equation to advect the interface

p(0tu+u-Vu) —vAu+Vp=—-=Vo— )‘globalfv¢ Avolume V@ in O

[
8t¢> +u- Vd) =-n (6¢ )\globalf - )‘volume)
[ - 1 =
o (A(bf) - ?2<3¢2 +2Ho¢ — l)bf)

1
J=eAd =~ (&% = 1)(¢ + Ho)
where the global Lagrange multipliers Aglobal, Avolume are obtained by requiring
d d 1
—V(¢) = */ 5((15 +1)dQ = 0 (volume constraint)

;i.A(d)) ;lt / —|Vo|? + ! —(¢?2-1)2%d0 = o. (global area constraint)
4e

John Lowengrub, Dept Math/BME/
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Diffuse interface model

The diffuse interface Navier-Stokes equation with global constraints (model A)

[Du& Wang, JCP, 2006]
SE[g]

d¢
V.-u=0 in Q

Advected diffuse Willmore-flow equation to advect the interface

p(0tu+u-Vu) —vAu+Vp=—-=Vo— )‘globalfv¢ Avolume V@ in O

[
8t¢> +u- Vd) =-n (6¢ )\globalf - )‘volume)
[ - 1 =
o (A(bf) - ?2<3¢2 +2Ho¢ — l)bf)

1
J=eAd =~ (&% = 1)(¢ + Ho)
where the global Lagrange multipliers Aglobal, Avolume are obtained by requiring
d d 1
—V(¢) = */ 5((15 +1)dQ = 0 (volume constraint)

;i.A(d)) ;lt / —|Vo|? + ! —(¢?2-1)2%d0 = o. (global area constraint)
4e

@ membrane surface area is conserved, but local membrane
stretching/compression still allowed

John Lowengrub, Dept Math/BME/
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e Locally inextensible diffuse interface model
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Local inextensibility

Diffuse interface model

Adding a local constraint, the diffuse interface model becomes (model B)
[ Aland et al. (2014), J. Comput. Phys., in review. arXiv:1311.6558 ]

oF
P(atu +u- Vll) —vAu+Vp= 5(5)] Vo— )\globalfv¢ Avolume V@
V- (|[Vé|PA) in Q
V-u=0 in Q
eV - (¢? inQ (4)

Advected diffuse Willmore-flow equation to advect the interface
oF
d¢

(A(bf) ~ L (362 1 200 - 1>bf)

Otp+u- V¢>—fn(

6B
36

f = A6 = <(8 ~ (0 + Ho)

)\globalf - )‘Volume)

Numeri
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Local inextensibility

Diffuse interface model

Adding a local constraint, the diffuse interface model becomes (model B)
[ Aland et al. (2014), J. Comput. Phys., in review. arXiv:1311.6558 ]

oE
p(atu +u- Vll) —vAu+Vp= §(£5¢] Vo— )\globalfvd) Avolume V@
V- (IVe[PA) in Q
V-u=0 in Q
eV - (¢2VN) inQ (4)

Advected diffuse Willmore-flow equation to advect the interface
oF
d¢

(A(bf) — L3902 + 2006 - 1>bf)

Otp+u- V¢>—fn(

6B
36

f = A6 = <(8 ~ (0 + Ho)

)\globalf - )‘Volume)

@ matched asymptotic analysis shows convergence of (4) to inextensibility
constraint P: Vu=0onT and V- (|[V¢|P\) = V- (rPA) for e =+ 0

Numeri
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ocal inextensibility

Correction of cumulated errors: Relaxation

Over time small errors in inextensibility may accumulate and lead to local
membrane stretching

The following mechanism corrects accumulated errors and drives the system back
to the relaxed state

@ introduce a variable ¢ to measure local stretching of the interface, initially
¢(x,0) = 1, evolved by

Oic+v-Ve+cVr-v = 0 on T, (5)

@ locations where ¢ deviates from 1 represent regions of compression (¢ > 1)
and stretching (c < 1)

@ Hookes law gives strength of relaxation proportional to amount of local
stretching:
P:Vu=((c—1)/c onT

@ or in diffuse domain form:
—1
AV - (2VN) + [Vo[P : Vu=C"~|V¢| inQ (6)
c

= Model C

Numerical simulation of endocytosi Jc v 1b, Dept Math/BME/C



Local inextensibility

Correction of cumulated errors: Relaxation

Numeri

To stabilize the interfacial advection equation
otc+v-Ve+cVp-v = 0 on I,
we add some small diffusion along the interface
otc+v-Ve+cVp-v—drArc = 0 on I (7

To discretize the equation it is extended off I' using the diffuse domain approach
[Ratz& Voigt, Comm.Math.Sci., (2006)]

0:(|Vole) + V - (|[Vo|ve) —drV(|[Ve|Ve) = 0 onT.

Additionally diffusion in normal direction can be added to extend ¢ constant in
normal direction off I'

0:t(|Vole) + V - (|V|ve) — drV(|IVe|Ve) —dnyV(|[Vénn-Ve) = 0 onT.

@ matched asymptotic expansion shows convergence to (7) for ¢ — 0

@ conservation of ¢ along the interface is ensured: fn |Vé|c = const., even on
the discrete level

1 simulation of endoc; s John Lowengrub, Dept Math/BME/



Local inextensibility

o0

[e]

Governing Equations

Model A: standard model, only global inextensibility

Navier-Stokes equation to obtain the velocity
SElg]
d¢

globalfvd) - Avolumevqﬁ

p(Otu+u-Vu) —vAu+Vp=—=-V¢

V-u=0

Advected diffuse Willmore-flow equation to advect the interface
oF
o¢

(A(bf) (36" +2Hos — 1)13f)

Orp+u- Vfb‘-ﬁ(

SE
36

f = A6 = <(8 = 1)(&+ Ho)

Aglobalf - /\volumc)

Numeri
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Local inextensibility

oe

[e]

Governing Equations

Model B: with instantaneous local inextensibility

Navier-Stokes equation to obtain the velocity
SElg]
d¢

globalfvd) - >\volumev¢_"v : (‘VO‘P)‘)

p(Otu+u-Vu) —vAu+Vp=—=-V¢

V-u=0
2V - (¢2°VA) 4 |[Vo|P : Vu =0

Advected diffuse Willmore-flow equation to advect the interface
oF
o¢

— (A7) - 566+ 21100 - i )

Orp+u- Vfb——n(

SE
36

f = A6 = <(8 = 1)(&+ Ho)

Aglobalf - /\volumc)

Numeri
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Local inextensibility

(ee]

Governing Equations

Model C: with instantaneous local inextensibility and relaxation

Navier-Stokes equation to obtain the velocity
dE[g)
de

globalfvd) - >\volumev¢_"v : (‘VO‘P)‘)

p(Otu+u-Vu) —vAu+Vp=—-V¢

V-u=0
-1
2V - (¢2VA) + V[P : Vu =¢ = |Vg|
C

Advected diffuse Willmore-flow equation to advect the interface
oF
o¢

(A(bf) (36" +2Hos — 1)13f)

Orp+u- Vfb——n(

SE
36

1
[ = Ao = —(¢* = 1)(¢+ Ho)
An advection equation for the stretching measure c on the interface

O (|[Volc) + V- ([Voluc) —drV - ([Vd|Ve) —dnV - ([Vdn®n - Ve) =0

Aglobalf - /\volumc)

Numeri
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Local inextensibility
@00

Numerical treatment

C++ FEM library AMDIiS

adaptive mesh

2D implementation

P2 elements except for P1 for
pressure

@ direct solver: UMFPACK

semi-implicit time discretization

@ linearization by first order
Taylor expansion

@ remove stiffness due to bending
forces using monolithic, implicit
solvers (energy-stable-like)

Numeric imulation of endocytosis



Local inextensibility
(o] o}

Test scenario

We use a vesicle in shear flow to validate the model and investigate the influence
of local inextensibility.

@ Experimental results: Flow strength determines behavior: Tank treading
(steady shape); Tumbling (non-steady rotating); Trembling (non-steady,
non-rotating)

imulation of endocytosis B v rub, Dept Math/BME/C



Local inextensibility
ooe

Test scenario

Numerical simulation of a vesicle in shear flow
@ Re=1/200
@ Be=20

@ Hp=0
"]

viscosity ratio: 10

Nume 3 Dept Matl



Local inextensibility
o0

Convergence I

Ey = / e 11— ¢H2Vr v = / IV - v| (instantaneous stretching),
Q r
107
-6-model B
quadratic
- linear

10 0.06 0.03 0.015

Figure: Convergence study showing super-linear decrease of the
instantaneous stretching Ey as a function of the interface thickness e for
model B.
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Local inexte ity
oce

Convergence II

E. = / e 1 = ¢H)2|(c = 1)/c| = / [(c—1)/¢| (accumulated stretching).
Q r

107 107
-6-model B -6-model C
quadratic quadratic
- - linear - - linear
107 107

0.06 0.03 0.015
€

Figure: Convergence study showing super-linear decrease of E. for
decreasing ¢, for models B (left) and C (right).
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Local inextensibility

Model Comparison I

Model comparison of the time evolution of a vesicle in shear flow
model A model B model C

@ different time evolutions, although the vesicle shapes look identical

@ inextensibility in models B and C delays tumbling significantly

Numeric imulation of endocytosis Jc b, Dept Math/BME/ChEMS UCI



Local inextensibility

Model Comparison II

model A model B model C
—— _
//" ,,,,,,,,,,,
\ , \
y ) |
{ {
, \ _
...... — —
.............. - ~— —
1.000 1.000 1.000
- — | — - o
0.7446 1504 0.9502 1.038 0.9950 1.019

Figure: The value of ¢ along the vesicle interfaces for the different models
at time t = 1.

@ model A shows strong compression at the tips, stretching at the sides
@ model B suppresses local stretching/compression significantly

@ model C shows no local stretching/compression

Numeric imulation of endocytosis Jc b, Dept Math/BME/ChEMS UCI



Local inextensibility

Model Comparison III

E. = / e M1 = ¢ (c—1)/c| = / [(c—1)/¢| (accumulated stretching).
Q r

w

—model A

25 model B

= model C
2
w- 1.5
1
0.5]

o
0 2 4 6 8

time

Figure: Comparison of accumulated stretching E. for Models A (red), B
(green) and C (blue)

Numerical simulation of endoc Jc b, Dept Math/BME/C



Local inextensibility
(]

Effect of inertia

2
—model A 1.5 —model A
model B model B
1 ® model C ® model C
1
Q o Q
© 0 g =)
c =
@ @
0.5]
-1 ' 1 \\HA_‘.—.—--II-—-— —r 2 3
% 2 4 6 g8 % 2 4 6 8
time time

Figure: Model comparison of the inclination angle for Re = 1/200 (left).
and Re =1 (right).

@ Inertia suppresses tumbling.
(see also Salac & Miksis (2012); Laadhari et al. (2012); Kim & Lai (2012),..).

Numerical simulation of endoc Jc b, Dept Math/BME/C



Local inextensibility
L]

Interactions

Consider 2 vesicles in extensional flow

model A
7 1 ' I
. , AP ~
N / v
/ \ [ \
= === - == —
A \/ | ‘ g
z = || N~ ./‘ ‘\
X | |
model B / model C
"/ \\ { /F\\\ - "/ “ {//;\ \ |- | "/ /7 W ‘]’/,—\ \ —
L \_JI\_/ ’ U
I I ,
Ivi c
Jrinin ?\\\\M 04 H\[\]"\B\ mJ"%u ‘T‘.‘() ‘H
0

14 0.2 2
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e Including curvature-inducing membrane molecules

Dept Mz



Membrane molecules
[ Jelele]e}

Bending energy including membrane molecules and flow

@ Let I's C I" be the molecule-covered part of the membrane.

The total bending energy is

1 1
E= [ Zbs(H— Hy)?* dA+ /7bmH2 dA + Pludz,  (8)
Ty 2 T 2 Q1UQ9

molecule bending membrane bending kinetic energy

where bs and by, are bending moduli of molecule and clean membrane,
respectively.

@ Introduce species concentration s(z,t) to keep track of I's, where s = 1
denotes complete coverage. Hence,

E = /F %b(s) (H — Ho(s))? + Polynomial(s) dA 9)

@ Inextensibility and pure advection of s allow to drop the last term

@ Different choices for b(s) and H(s) possible

b(s) = (bs — bm) - s+ bm Ho(s)=Ho-s
b(s) = groa s Ho(s) = Ho 5.5

Numerical simulation of endoc s John Lowengrub, Dept Math/BME/



Membrane molecules
[¢] lele]e}

Energy variation

@ Vary the energy by taking the time derivative

b
dE = /b(s) (H — Ho(s)) (deH +n-VH u-n) + % (H — Ho(s))> Hu - n
r
oF
+ —dis dA + pdiu - u dx
0Os QLU0
where
oOFE 1
oo = SV — Ho()? = b(s)(H — Ho())Hy ()
@ Assume the following balance laws for momentum and mass conservation:
p(Btu+u-Vu)— V. (vD)+Vp=0 in Q1 UQ (Navier-Stokes

)
V-u=0 inQ;UQ2 (incompressibility)
Vr-u=0 onT (inextensibility)
Ot;s+u-Vs=0 onTl (species advection)
where D = Vu + VuZ.
@ Additionally assume the jump conditions for velocity and flow stress tensor
[-pL +vD]? -n =F + VpA — Hn)\

@ where F is yet unspecified interface force

Numerical simulation of endoc s John Lowengrub, Dept Math/BME/



Membrane molecules
[e]e] le]e}

Energy variation

@ plugging in balance laws and jump conditions into the energy time
derivative, eventually leads to

o / — Ar (b(s)(H — Ho(s))) u-n — b(s)(H — Ho(s))|[Vrn|*u-n

L o)
2

7/ Y'D? dz
QU0 2

@ 24 law of thermodynamics requires the surface intergral to vanish, hence
the choice

F =Ar (b(s)(H — Ho(s))) n+ b(s)(H — Ho(s))[|Vrn|*n
( )

E
(H — Ho(s))? Hu~n—%Vs~u+u~FdA
s

(H — Ho(s))? Hn + aa—Evs
S

gives decreasing energy

_/ Y\D|? da
QU0 2

Numerical simulation of endoc s John Lowengrub, Dept Math/BME/



Membrane molecules
[e]ele] o}

sharp interface model

@ We obtain the sharp interface model

p(Btu+u-Vu) - V. (@D)+Vp=0 in Q; UQ> (Navier-Stokes)
V-u=0 in Q1 UQ (incompressibility)

Vr-u=0 onTl (inextensibility)

Os+u-Vs=0 onT (species advection)

OI'=n-ur (interface advection)

[-pI+vD] -n=VrA— Hn\+ Arp (b(s)(H — Ho(s)))n (jump condition)

+b(s)(H — Ho(s))[[Vrnl*n

_Ys)

(H — Ho(s))*Hn + 9B,
2 0s

Numerical simulation of endoc s John Lowengrub, Dept Math/BME/



Membrane molecules
[e]e]e]e] }

Diffuse energy variation

@ start with the energy

2
B o= [ b (a0 2@ - 1)@+ VEt()) + ol do

@ and assume similar balance laws

p(Oru+u-Vu) — V- (@wD)+Vp=V-(|Vo|P)) +F (10)
V.-u=0 (11)

£V - (¢2VA) + |[Vo|P : Vu =0 (12)
Ots+u-Vs=0 inQ (13)
Otp+u-Vo=—vg inQ (14)

where F is yet unspecified interface force, g is an unspecified source

@ plug in balance laws into the energy time derivative to obtain F and g

Numerical simulation of endoc s John Lowengrub, Dept Math/BME/



Menr e molecules
o

Diffuse interface model for molecule-covered membrane

A locally inextensible Navier-Stokes equation to obtain the velocity

[ [
p(0tu+u-Vu) —vAu+ Vp :%qu +V- (|V¢\P>\)+g

V-u=0

Vs

2V - (¢2VA) + |Vo|P : Vu :c%\w\

A diffuse Willmore-flow equation to advect the interface

o
Oup+u- Vo= —ny
oF _ _ L iag2 -
55— (A(bf) 5 (3¢% +2Hog l)bf)

f = A6 = <(8 = 1)(&+ Ho)
Instead of pure advection, we use an interfacial Cahn-Hilliard equation for the
molecule concentration
9c(IVels) + V- (IVélus) —drV - (|Ve|Vp) —dnV - (IVEn@n - Vi) =0
|Vo|u + eV - (|Vo|Vs) — e 1| V|(4s® — 652 + 25) =0
An interfacial advection equation for the stretching measure ¢
Ot(|[Volc) + V- ([Véluc) —drV - ([Vd|Ve) —dnV - ([Vdn®n - V) =0

Numerical simulation of endc Jo o rub, Dept Math/BME/ChEMS UCI



Membrane molecules
(]

Numerical treatment

C++ FEM library AMDIS
adaptive mesh

axisymmetric implementation

P2 elements except for P1 for
pressure

@ direct solver: UMFPACK
@ semi-implicit time discretization

@ linearization by first order
Taylor expansion

@ non-stiff, implicit
implementation

Numeric imulation of endocytosis Jc b, Dept Math/BME/ChEMS UCI



e Numerical results




Clathrin-mediated endocytosis

Numerical results
L]

Clathrin

@ prototype of a curvature-inducing
molecule

@ b. = 12bm,
@ Hp = (14nm)~!
Test setup

@ initially flat membrane with circular
clathrin-covered region

- 2>

@ axisymmetric equations
@ free stress BC for velocity

@ membrane pinned at the outer
boundary at 90° angle

T-pinned

Numeric imulation of endocytosis

b, Dept Math/BME/ChEMS UCI



Numerical results
L Je]

Clathrin-mediated endocytosis: first results

radius of clathrin region: 20nm
@ spontaneous curvature of clathrin induces budding
@ no neck

Numerical simulation of endocytosi Jc v 1b, Dept Math/BME/C



Numerical results
o] ]

Clathrin-mediated endocytosis: first results

radius of clathrin region: 20nm
@ spontaneous curvature of clathrin induces budding
@ no neck

Numerical simulation of endocytosi Jc v 1b, Dept Math/BME/C



Numerical results
L Je]

Clathrin-mediated endocytosis: larger clathrin region

radius of clathrin region: 30nm
@ spontaneous curvature of clathrin induces budding and forms a neck

Numerical simulation of endoc s John Lowengrub, Dept Math/BME/



Numerical results
oe

Clathrin-mediated endocytosis: larger clathrin region

radius of clathrin region: 30nm
@ spontaneous curvature of clathrin induces budding and forms a neck

Numerical simulation of endoc s John Lowengrub, Dept Math/BME/
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Varying the clathrin region size: stationary state

stationary shapes for various clathrin radii
20nm 30nm 40nm 50nm 60nm

— g—)&,\)c/\gc/\DQ/

vesicle diameter at budding [nm] neck radius [nm]
80 45
70 :
60 =
50 — 35 \
40 = ’«L\
P
30 3
20
10 25
no neck spherical shape mushroom shape i spherical shape i i
0
2
20 30 40 50 60 20 30 40 50 60
radius of clathrin region [nm] radius of clathrin region [nm]
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Varying the clathrin region size: dynamics

time to bud [us]

3.8
3.6 /G
= /a’
3.2

3 ﬁﬂ/-—

2.8 /ﬁ'

2.4
2.2

spherical shape mushroom shape

34 39 44 49 54 59 64 69 74
vesicle diameter [nm]

@ there is a critical (fastest) time for budding

Numerical simulation of endoc B b, Dept Math/BME/C
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Inextensibility model

Theoretical results

@ a local Lagrange multiplier was introduced to satisfy membrane
inextensibility in diffuse interface methods (model B)

@ convergence to sharp inextensibility condition was shown numerically for
e—0

@ asymptotic analysis shows convergence to Vi -u =0 for ¢ — 0

@ a relaxation mechanism was proposed to drive the membrane back locally to
an unstretched state (model C)

Numerical results
@ the effectiveness of the approach was shown in shear flow scenario

@ it was found that the treatment of the inextensibility constraint can crucially
influence the vesicle dynamics

@ local inextensibility inhibits multiple vesicles from close contact

Aland et al.; Diffuse interface models for locally inextensible vesicles;
arXiv:1311.6558

Numeric imulation of endocytosis Jc b, Dept Math/BME/ChEMS UCI
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Inextensibility model: outlook

Outlook

@ include thermal fluctuations

@ apply the model to other nm-scale cell contexts, e.g. receptor-ligand binding
at cell-cell interfaces

Numerical simulation of endoc Jc b, Dept Math/BME/C
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Endocytosis model

Theoretical results

@ a diffuse and sharp interface model were derived for concentration-dependent
bending stiffness and spont. curvature

@ derivation is in agreement with the 2% law of thermodynamics

@ a modified diffuse interface equation is used to advect the molecule
concentration on the membrane

@ an axisymmetric implementation was used to show the effectiveness of the
approach

Numerical results:

@ hydrodynamics allow a very fast building of a neck (in a few us)

@ flow inhibits the tightening of the neck at a certain point

@ there is a critical (smallest) neck radius and a critical (fastest) budding time
Outlook

@ include attachment of bulk molecules to the membrane

@ explore the dependency of the arrival rate of membrane molecules on flow

@ explore intermediate dynamic shapes of the membrane and its influence on
soluble molecules and cargo

Numeric imulation of endocytosis Jc b, Dept Math/BME/ChEMS UCI
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Endocytosis model

Theoretical results

@ a diffuse and sharp interface model were derived for concentration-dependent
bending stiffness and spont. curvature

@ derivation is in agreement with the 2% law of thermodynamics

@ a modified diffuse interface equation is used to advect the molecule
concentration on the membrane

@ an axisymmetric implementation was used to show the effectiveness of the
approach

Numerical results:

@ hydrodynamics allow a very fast building of a neck (in a few us)

@ flow inhibits the tightening of the neck at a certain point

@ there is a critical (smallest) neck radius and a critical (fastest) budding time
Outlook

@ include attachment of bulk molecules to the membrane

@ explore the dependency of the arrival rate of membrane molecules on flow

@ explore intermediate dynamic shapes of the membrane and its influence on
soluble molecules and cargo

Thank you!

Numeric imulation of endocytosis Jc b, Dept Math/BME/ChEMS UCI
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