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What is Kkiiking?

Height record (Bastian Kurtz):
http://www.youtube.com/watch?v=3Z3hmtt11dQ

Speed record (Manuel Helster):
http://www.youtube.com/watch?v=SIUOG6ILSkWO

Skateboarding:
http://www.youtube.com/watch?v=r1S7zwUOuCA



Model 1

Key is to get energy into the system by standing up and sitting
down at the right times.

Treat as a simple pendulum with lengths L1 and L, where

e [, is standing up

e [ is sitting down

SO L1 < Lo.



We want to work outwards from the equilibrium point.



Recall the equation of motion (while L is constant)

Lx 4+ gsinx =20
where z is the angle from the downwards vertical.

There is a first integral

E = 3L?#% + gL(1 — cosz) = constant on trajectories

which is the energy per unit mass. Note £ = 0 at the
equilibrium point x = 0, x = 0.



Suppose we stand/sit, ie change from L; to L; (=1 and j =2
or vice versa) at an angle . Then x is constant across the

transition but
Liw; = L5,

1

by angular momentum.

Then using this to eliminate = terms,

Ej—E; = [(L% — L?)E; — g(1 — cosz)(L} — Lf)] JL?.



With

AE = Ej— E;=|(L7 — L?)E; — (1 — cosz) (L} — L3)| /L3

suppose we stand up from Lo, to L1 < Lo, sO 1 =2, 7 =1. We
maximise AE when z = 0. Conversely minimise AE when z is
as close to m as possible.

e Stand up at the lowest point

e Sit down at the highest point



Round-trip energy budget

While doing less than whole rotations, easily find that a half
cycle

stand at * = 0 — sit at £ = £maer — return to x =0

takes the initial energy Eg to (Lo/L1)3Ey. Pretty efficient. Eg
start at rest at an angle of 10°, so Fg ~ 0.015¢gL»>, and Lo/Lq =
1.2. We need to get to £ = 2gL> which takes 6 of these cycles.

When doing 360° rotations we find
AE =2g(L3 - L})/L5

sO we switch from multiplicative to additive.



Energy in the phase plane

To compare swings of different lengths on the same phase plane
we scale time with /L/g in each phase and use

ez%x’z—l—l—COSx

and note that this does not change if we stand/sit when = = 0.

The budgets are
Ae = (Ly/L1)%e
and

Ne =2 ((LQ/L1)3 _ 1)






Limits on world records

Drag mostly from air resistance. Model resistive force per unit
mass as

F = —3Cypa(Li)?A/M

for drag coefficient Cy4, air density p, and cross-section A; here
M is Kkiiker's mass.

Energy loss from drag is balanced against input from stand-
ing/sitting.
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With E = 3(Li)? 4 gL(1 — cosz) we have dE/dt = L|i|F so
dE/dx = LF
= LCuapa(Li)?A/M
= —§(Lz)? where § = %LCdpQA/M
= —2(F —gL(1—cosxz)).

So the crucial parameter is §.

With SI values Cy;~ 1.3, po~1.2, A1 and M =~ 80, § = LL/100
is small. So the change in E over a half cycle O < 6 < m is
approximately

—26(FEg — gL) x 7.
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Height record: To just get to 360° needs Eg = 2gL before
drag losses. The gain is approximately |:(L2/L1)3— 1} Ey. So
the drag-induced limit on the height record should be

[(LQ/L1)3 - 1] x 2gL =~ 26m(2gL — gL)

where L could be Lq or Lo. With Lo, = L1 + AL, this gives,
roughly,

AL/L~7nd/3~L/100 (d~L/100,7r~3...)
SO we predict

~ 100AL (in metres?).

Suppose AL is 0.4m; then Lpygar =~ 6.3 m which is a little more
than both Bastian's German record and the current world record
of 7.02 m (remember this is from pivot to feet but L is to the
centre of mass).

L2

max

13



Speed record: Here we know L and we balance drag losses
against the fixed energy input per lap to find Egy (and hence the
initial speed). The drag loss is roughly

—26(FEg — gL) x 2.
and the energy input is
AE =2g(L3 — L3})/L3 ~ 6gAL.
So
Eqg = 11232 ~ gL A 5
0 = 5L xf = gL + 6gAL/4x
Take L = 2.5 m and then

248 ~ g/L + 6gAL/4mSL? ~ 30
SO z ~ 7.7 rad/sec which is quite a bit faster than the current
record 30 x x27/60 = 4.2 rad/sec.
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g-forces
What is the rotational acceleration at the lowest point?

For a 360° swing that just makes it (height record),

SL%0%, 4, = 29L

max

so the peak acceleration is L&2,,.. = 4¢g independently of L.

For the speed record, we use E = %L%Q + gL(1 — cosz) so
Li2...=2E/L. A reasonable estimate at current record speeds

gives accelerations of 5g so the kiiker has to lift 6 times body
weight.

I think air drag limits the height record (stand sideways, wear
lycra) but strength limits the speed record (take steroids).
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Model 2: L(x,x)

Natural to try L = L(x,y) where y = = (NB not L = L(t)).
Assume L(xz,y) is smooth.

Equation of motion is
1 d ( 2d$

-9 (%" sinz =0
L dt dt>+g v

which is
(L+2%L;) %+ 2Lz3° 4+ gsinz = 0,
or the system
T =1y
g Sinx + 2y2Lx
L+ 2yL,

Yy =
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Linearised analysis for small =,y

The equilibrium (0,0) is a centre (orbits are closed for the Hamil-
tonian system when L is constant). Expand L

L(z,y) ~ Lo+ Loz +yLoy + 5 (2° Loga + 22y Lozy + y° Loyy ) + - -

Is there a standard classification of centres?

At quadratic order we'll get

i=y, §~—gz/Lo+ (9/Lo) (2zyLoy/Lo— 2y°Loy)
which seems unlikely to leave (0,0) easily. So take
Loz =0, Loy =0

and look at cubic order. We get (algebra)
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r=vy, (Lo/g)y=—-z-+ a1z> + axr?y + azzy? + azy>,
where

1 L 3L 5L 2L 2L
a1 = —+ O:ca:, an = Oxy’ az = Oyy O:ca:, aq = — Oxy.
6 ' 2L Lo 2L g g

So

(z — a12®) & + ((Lo/9)y — cay®) v = axz®y® + azwy®,
Small-amplitude kiiking joy if the RHS is positive definite so we
take

_ 3Logy

_ SLoyy 2Logy
ap = — = —

>0, a3z= = 0,
Lo 37 2L, g

for example L = Lg 4+ positive constant x xx.

This is sufficient but not (?) necessary. Hm. Let's move on.
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Small length changes

Consider small length changes (e = AL/L < 1). Write

L(z,&) = Lo(1 + el(z, &))

and assume 0 </ < 1. Also scale time with /Lg/g. Equation of
motion now

(1 4 el + 2eily) & + 2elyi® 4 sinz = 0.
Energy is

E=31+e)%i? 4+ (1 + ef)(1 — cosz)
and up to O(e),

d&/dt = € (ily — sinzly) (1 — cosz — i2)
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We can expand xz(t) ~xg+ex1+---, E~Ey+€€1+ - and with
an O(e2) error this is

dé1 3 .5\ dl
o = (60— 57%)
where the d /dt are along the unperturbed trajectory. We want
to maximise this over a trajectory. The first term integrates to
zero and the second is linear in £ so solution is bang-bang. The
factor 3 above agrees with (L,/L1)3 amplification earlier.
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Multiple scales

The discussion above suggests a multiple scale approach, be-
cause for small length changes the equation is of the form

%4 ef(z, @) +sine =0,

but what to do about the nonlinearity in sinx? Standard method
is to put 7 = et and then d /dt — 0 /Ot + €0 /OT. Leading order
term in a regular expansion contains an undetermined 'amplitude’
which is found by eliminating secular terms at O(e) by requiring
RHS to be orthogonal to solution of a suitable homogeneous
problem.

Here we expand x(t,7) ~ xg + ex1 + --- and so

row + Sinxzg =0, x14 + 21 COSxo = —f(T0,T0r) — 2T0¢1r-
Difficulty: we can't solve x7 4+ x1 cosxg = 0.
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Consider
T+ ef(z,z) + g(z) =0,
written as
r=vy, y=-—-g(x)—ef(z,vy).

Suppose g(z) = G'(z) and (0,0) is a centre when ¢ = 0 (Hamil-
tonian system) with closed orbits

%yQ + G(x) = constant.
Perturb ine: c~xg+e€x1+---, y~yo—+e€yy+---. Then
o = Yo, Yo = —9(xo)-

Orbits starting at (0,n) are closed with period T'(n).
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At O(e),
1 =y1, v1=—z14(x0)— f(z0,v0)-
Thus
% (yoy1 + z19(z0)) = —yof(z0,v0),

which is an energy-change equation. For an orbit starting at
(0,n) and returning to z = 0,

g™ = | " ot m f (w0t ), wo(tim)) .

SN
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Iterate this:

€ T'(nn) _ _ _
Mn4+1 — Tn = —n—n/o Yyo(t; nn)f(a?o(t, mn), yo(t; Un)) dt.

Now think of n as a function of the multiple scales ‘long’ time
T=¢€t: n=mn(7). Then

g1 — = n(7 4+ €T(n))
~ eT'(n)dn/dr.

So, the equation for the "amplitude’ parameter n is

dn L T yo(t;n) . .
ar = 70 Jo S f(mo(t:m), yo(tim) ) dt.

and this gives the approximate solution (xzq(t; n(7)),yo(t; n(r)).
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Recall the trivial example

t+er+z=0, z(0)=0, z(0)=n

for which the solutions are combos of
1
exp (—e/z (1 — 62/4)5) ¢

Multiple scales gives solutions A(r)e* where dA/dr = —%A. In
our notation

xo(t) =nsint, yo(t) =ncost, T(n) = 2.

So
d 1 27 M2
= = [T T cos?idt = -1y
dr 2mJ0 1

as expected.
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