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What is kiiking?

Height record (Bastian Kurtz):

http://www.youtube.com/watch?v=3Z3hmtt1ldQ

Speed record (Manuel Helster):

http://www.youtube.com/watch?v=SIUO6ILSkW0

Skateboarding:

http://www.youtube.com/watch?v=r1S7zwU0uCA
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Model 1

Key is to get energy into the system by standing up and sitting

down at the right times.

Treat as a simple pendulum with lengths L1 and L2 where

• L1 is standing up

• L2 is sitting down

so L1 < L2.
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We want to work outwards from the equilibrium point.
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Recall the equation of motion (while L is constant)

Lẍ+ g sinx = 0

where x is the angle from the downwards vertical.

x

There is a first integral

E = 1
2L

2ẋ2 + gL(1− cosx) = constant on trajectories

which is the energy per unit mass. Note E = 0 at the
equilibrium point x = 0, ẋ = 0.
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Suppose we stand/sit, ie change from Li to Lj (i = 1 and j = 2

or vice versa) at an angle x. Then x is constant across the

transition but

L2
i ẋi = L2

j ẋj

by angular momentum.

Then using this to eliminate ẋ terms,

Ej − Ei =
[
(L2

i − L2
j )Ei − g(1− cosx)(L3

i − L3
j )

]
/L2

j .

6



With

∆E = Ej − Ei =
[
(L2

i − L2
j )Ei − g(1− cosx)(L3

i − L3
j )

]
/L2

j

suppose we stand up from L2 to L1 < L2, so i = 2, j = 1. We

maximise ∆E when x = 0. Conversely minimise ∆E when x is

as close to π as possible.

• Stand up at the lowest point

• Sit down at the highest point
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Round-trip energy budget

While doing less than whole rotations, easily find that a half

cycle

stand at x = 0 → sit at x = xmax → return to x = 0

takes the initial energy E0 to (L2/L1)
3E0. Pretty efficient. Eg

start at rest at an angle of 10◦, so E0 ≈ 0.015gL2, and L2/L1 =

1.2. We need to get to E = 2gL2 which takes 6 of these cycles.

When doing 360◦ rotations we find

∆E = 2g(L3
2 − L3

1)/L
2
2

so we switch from multiplicative to additive.
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Energy in the phase plane

To compare swings of different lengths on the same phase plane

we scale time with
√
L/g in each phase and use

e = 1
2ẋ

2 +1− cosx

and note that this does not change if we stand/sit when ẋ = 0.

The budgets are

∆e = (L2/L1)
3e

and

∆e = 2
(
(L2/L1)

3 − 1
)
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Limits on world records

Drag mostly from air resistance. Model resistive force per unit

mass as

F = −1
2Cdρa(Lẋ)

2A/M

for drag coefficient Cd, air density ρa and cross-section A; here

M is kiiker’s mass.

Energy loss from drag is balanced against input from stand-

ing/sitting.
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With E = 1
2(Lẋ)

2 + gL(1− cosx) we have dE/dt = L|ẋ|F so

dE/dx = LF

= −
1

2
LCdρa(Lẋ)

2A/M

= −δ(Lẋ)2 where δ =
1

2
LCdρaA/M

= −2δ (E − gL(1− cosx)) .

So the crucial parameter is δ.

With SI values Cd ≈ 1.3, ρa ≈ 1.2, A ≈ 1 and M ≈ 80, δ ≈ L/100

is small. So the change in E over a half cycle 0 < θ < π is

approximately

−2δ(E0 − gL)× π.
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Height record: To just get to 360◦ needs E0 = 2gL before
drag losses. The gain is approximately

[
(L2/L1)

3 − 1
]
E0. So

the drag-induced limit on the height record should be[
(L2/L1)

3 − 1
]
× 2gL ≈ 2δπ(2gL− gL)

where L could be L1 or L2. With L2 = L1 + ∆L, this gives,
roughly,

∆L/L ≈ πδ/3 ≈ L/100 (δ ≈ L/100, π ≈ 3 . . .)

so we predict

L2
max ≈ 100∆L (in metres2).

Suppose ∆L is 0.4m; then Lmax ≈ 6.3 m which is a little more
than both Bastian’s German record and the current world record
of 7.02 m (remember this is from pivot to feet but L is to the
centre of mass).
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Speed record: Here we know L and we balance drag losses

against the fixed energy input per lap to find E0 (and hence the

initial speed). The drag loss is roughly

−2δ(E0 − gL)× 2π.

and the energy input is

∆E = 2g(L3
2 − L3

1)/L
2
2 ≈ 6g∆L.

So

E0 = 1
2L

2ẋ20 ≈ gL+6g∆L/4πδ

Take L = 2.5 m and then

1
2ẋ

2
0 ≈ g/L+6g∆L/4πδL2 ≈ 30

so ẋ ≈ 7.7 rad/sec which is quite a bit faster than the current

record 30 ∗ ×2π/60 = 4.2 rad/sec.
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g-forces

What is the rotational acceleration at the lowest point?

For a 360◦ swing that just makes it (height record),

1
2L

2ẋ2max = 2gL

so the peak acceleration is Lẋ2max = 4g independently of L.

For the speed record, we use E = 1
2L

2ẋ2 + gL(1 − cosx) so
Lẋ2max = 2E/L. A reasonable estimate at current record speeds
gives accelerations of 5g so the kiiker has to lift 6 times body
weight.

I think air drag limits the height record (stand sideways, wear
lycra) but strength limits the speed record (take steroids).
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Model 2: L(x, ẋ)

Natural to try L = L(x, y) where y = ẋ (NB not L = L(t)).
Assume L(x, y) is smooth.

Equation of motion is

1

L

d

dt

(
L2dx

dt

)
+ g sinx = 0

which is

(L+2ẋLẋ) ẍ+2Lxẋ
2 + g sinx = 0,

or the system

ẋ = y

ẏ = −
g sinx+2y2Lx

L+2yLy
.
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Linearised analysis for small x, y

The equilibrium (0,0) is a centre (orbits are closed for the Hamil-

tonian system when L is constant). Expand L

L(x, y) ∼ L0+xL0x+ yL0y+
1
2

(
x2L0xx +2xyL0xy + y2L0yy

)
+ · · ·

Is there a standard classification of centres?

At quadratic order we’ll get

ẋ = y, ẏ ∼ −gx/L0 + (g/L0)
(
2xyL0y/L0 − 2y2L0x

)
which seems unlikely to leave (0,0) easily. So take

L0x = 0, L0y = 0

and look at cubic order. We get (algebra)
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ẋ = y, (L0/g)ẏ = −x+ α1x
3 + α2x

2y + α3xy
2 + α4y

3,

where

α1 =
1

6
+

L0xx

2L0
, α2 =

3L0xy

L0
, α3 =

5L0yy

2L0
−
2L0xx

g
, α4 = −

2L0xy

g
.

So (
x− α1x

3
)
ẋ+

(
(L0/g)y − α4y

3
)
ẏ = α2x

2y2 + α3xy
3,

Small-amplitude kiiking joy if the RHS is positive definite so we
take

α2 =
3L0xy

L0
> 0, α3 =

5L0yy

2L0
−

2L0xx

g
= 0,

for example L = L0 +positive constant× xẋ.

This is sufficient but not (?) necessary. Hm. Let’s move on.
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Small length changes

Consider small length changes (ε = ∆L/L � 1). Write

L(x, ẋ) = L0(1 + ε`(x, ẋ))

and assume 0 ≤ ` ≤ 1. Also scale time with
√
L0/g. Equation of

motion now

(1+ ε`+2εẋ`y) ẍ+2ε`xẋ
2 + sinx = 0.

Energy is

E = 1
2(1 + ε`)2ẋ2 + (1+ ε`)(1− cosx)

and up to O(ε),

dE/dt = ε (ẋ`x − sinx`y) (1− cosx− ẋ2)
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We can expand x(t) ∼ x0+ εx1+ · · · , E ∼ E0+ εE1+ · · · and with

an O(ε2) error this is

dE1
dt

=
(
E0 −

3

2
ẋ0

2
)
d`

dt

where the d /dt are along the unperturbed trajectory. We want

to maximise this over a trajectory. The first term integrates to

zero and the second is linear in ` so solution is bang-bang. The

factor 3 above agrees with (L2/L1)
3 amplification earlier.
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Multiple scales

The discussion above suggests a multiple scale approach, be-
cause for small length changes the equation is of the form

ẍ+ εf(x, ẋ) + sinx = 0,

but what to do about the nonlinearity in sinx? Standard method
is to put τ = εt and then d /dt 7→ ∂ /∂t + ε∂ /∂τ . Leading order
term in a regular expansion contains an undetermined ’amplitude’
which is found by eliminating secular terms at O(ε) by requiring
RHS to be orthogonal to solution of a suitable homogeneous
problem.

Here we expand x(t, τ) ∼ x0 + εx1 + · · · and so

x0tt + sinx0 = 0, x1tt + x1 cosx0 = −f(x0, x0t)− 2x0tτ .

Difficulty: we can’t solve ẍ1 + x1 cosx0 = 0.
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Consider

ẍ+ εf(x, ẋ) + g(x) = 0,

written as

ẋ = y, ẏ = −g(x)− εf(x, y).

Suppose g(x) = G′(x) and (0,0) is a centre when ε = 0 (Hamil-

tonian system) with closed orbits

1
2y

2 +G(x) = constant.

Perturb in ε: x ∼ x0 + εx1 + · · · , y ∼ y0 + εy1 + · · · . Then

ẋ0 = y0, ẏ0 = −g(x0).

Orbits starting at (0, η) are closed with period T (η).
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At O(ε),

ẋ1 = y1, ẏ1 = −x1g
′(x0)− f(x0, y0).

Thus
d

dt
(y0y1 + x1g(x0)) = −y0f(x0, y0),

which is an energy-change equation. For an orbit starting at
(0, η) and returning to x = 0,

[y1]
T (η)
0 = −

1

η

∫ T (η)

0
y0(t; η)f

(
x0(t; η), y0(t; η)

)
dt.
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Iterate this:

ηn+1 − ηn = −
ε

ηn

∫ T (ηn)

0
y0(t; ηn)f

(
x0(t; ηn), y0(t; ηn)

)
dt.

Now think of η as a function of the multiple scales ‘long’ time

τ = εt: η = η(τ). Then

ηn+1 − ηn = η
(
τ + εT (η)

)
∼ εT (η)dη/dτ.

So, the equation for the ’amplitude’ parameter η is

dη

dτ
= −

1

T (η)

∫ T (η)

0

y0(t; η)

η
f
(
x0(t; η), y0(t; η)

)
dt.

and this gives the approximate solution (x0(t; η(τ)), y0(t; η(τ)).
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Recall the trivial example

ẍ+ εẋ+ x = 0, x(0) = 0, ẋ(0) = η

for which the solutions are combos of

exp
(
−ε/2± i(1− ε2/4)

1
2

)
t

Multiple scales gives solutions A(τ)e±it where dA/dτ = −1
2A. In

our notation

x0(t) = η sin t, y0(t) = η cos t, T (η) = 2π.

So

dη

dτ
= −

1

2π

∫ 2π

0

η2

η
cos2 tdt = −1

2η

as expected.
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