Kiiking and other pumping sports

Sam Howison

Mathematical Institute, Oxford University

Joint with Colin Please.

Russell Caflisch Birthday meeting 2014

What is kiiking?

Height record (Bastian Kurtz): http://www.youtube.com/watch?v=3Z3hmtt1ldQ

Speed record (Manuel Helster): http://www.youtube.com/watch?v=SIUO6ILSkW0

Skateboarding: http://www.youtube.com/watch?v=r1S7zwU0uCA

Model 1

Key is to get energy into the system by standing up and sitting down at the right times.

Treat as a simple pendulum with lengths L_1 and L_2 where

- L_1 is standing up
- L_2 is sitting down

so $L_1 < L_2$.

We want to work outwards from the equilibrium point.

Recall the equation of motion (while L is constant)

 $L\ddot{x} + g\sin x = 0$

where x is the angle from the downwards vertical.

There is a first integral

 $E = \frac{1}{2}L^2\dot{x}^2 + gL(1 - \cos x) = \text{constant on trajectories}$ which is the energy per unit mass. Note E = 0 at the equilibrium point x = 0, $\dot{x} = 0$. Suppose we stand/sit, ie change from L_i to L_j (i = 1 and j = 2 or vice versa) at an angle x. Then x is constant across the transition but

$$L_i^2 \dot{x}_i = L_j^2 \dot{x}_j$$

by angular momentum.

Then using this to eliminate \dot{x} terms,

$$E_j - E_i = \left[(L_i^2 - L_j^2) E_i - g(1 - \cos x) (L_i^3 - L_j^3) \right] / L_j^2$$

With

$$\Delta E = E_j - E_i = \left[(L_i^2 - L_j^2) E_i - g(1 - \cos x) (L_i^3 - L_j^3) \right] / L_j^2$$

suppose we stand up from L_2 to $L_1 < L_2$, so i = 2, j = 1. We maximise ΔE when x = 0. Conversely minimise ΔE when x is as close to π as possible.

- Stand up at the lowest point
- Sit down at the highest point

Round-trip energy budget

While doing less than whole rotations, easily find that a half cycle

stand at $x = 0 \rightarrow \text{sit}$ at $x = x_{max} \rightarrow \text{return}$ to x = 0

takes the initial energy E_0 to $(L_2/L_1)^3 E_0$. Pretty efficient. Eg start at rest at an angle of 10° , so $E_0 \approx 0.015gL_2$, and $L_2/L_1 = 1.2$. We need to get to $E = 2gL_2$ which takes 6 of these cycles.

When doing 360° rotations we find

$$\Delta E = 2g(L_2^3 - L_1^3)/L_2^2$$

so we switch from multiplicative to additive.

Energy in the phase plane

To compare swings of different lengths on the same phase plane we scale time with $\sqrt{L/g}$ in each phase and use

$$e = \frac{1}{2}\dot{x}^2 + 1 - \cos x$$

and note that this does not change if we stand/sit when $\dot{x} = 0$.

The budgets are

$$\Delta e = (L_2/L_1)^3 e$$

and

$$\Delta e = 2\left((L_2/L_1)^3 - 1\right)$$

Limits on world records

Drag mostly from air resistance. Model resistive force per unit mass as

$$F = -\frac{1}{2}C_d\rho_a (L\dot{x})^2 A/M$$

for drag coefficient C_d , air density ρ_a and cross-section A; here M is kilker's mass.

Energy loss from drag is balanced against input from standing/sitting.

With
$$E = \frac{1}{2}(L\dot{x})^2 + gL(1 - \cos x)$$
 we have $dE/dt = L|\dot{x}|F$ so
 $dE/dx = LF$
 $= -\frac{1}{2}LC_d\rho_a(L\dot{x})^2A/M$
 $= -\delta(L\dot{x})^2$ where $\delta = \frac{1}{2}LC_d\rho_aA/M$
 $= -2\delta\left(E - gL(1 - \cos x)\right)$.

So the crucial parameter is δ .

With SI values $C_d \approx 1.3$, $\rho_a \approx 1.2$, $A \approx 1$ and $M \approx 80$, $\delta \approx L/100$ is small. So the change in E over a half cycle $0 < \theta < \pi$ is approximately

$$-2\delta(E_0-gL)\times\pi.$$

Height record: To just get to 360° needs $E_0 = 2gL$ before drag losses. The gain is approximately $\left[(L_2/L_1)^3 - 1 \right] E_0$. So the drag-induced limit on the height record should be

$$\left[(L_2/L_1)^3 - 1 \right] \times 2gL \approx 2\delta\pi (2gL - gL)$$

where L could be L_1 or L_2 . With $L_2 = L_1 + \Delta L$, this gives, roughly,

$$\Delta L/L \approx \pi \delta/3 \approx L/100 \quad (\delta \approx L/100, \pi \approx 3...)$$

so we predict

 $L_{max}^2 \approx 100 \Delta L$ (in metres²).

Suppose ΔL is 0.4m; then $L_{max} \approx 6.3$ m which is a little more than both Bastian's German record and the current world record of 7.02 m (remember this is from pivot to feet but L is to the centre of mass).

Speed record: Here we know L and we balance drag losses against the fixed energy input per lap to find E_0 (and hence the initial speed). The drag loss is roughly

$$-2\delta(E_0-gL)\times 2\pi.$$

and the energy input is

$$\Delta E = 2g(L_2^3 - L_1^3)/L_2^2 \approx 6g\Delta L.$$

So

$$E_0 = \frac{1}{2}L^2 \dot{x}_0^2 \approx gL + 6g\Delta L/4\pi\delta$$

Take L = 2.5 m and then

$$\frac{1}{2}\dot{x}_0^2 \approx g/L + 6g\Delta L/4\pi\delta L^2 \approx 30$$

so $\dot{x} \approx 7.7$ rad/sec which is quite a bit faster than the current record $30 * \times 2\pi/60 = 4.2$ rad/sec.

g-forces

What is the rotational acceleration at the lowest point?

For a 360° swing that just makes it (height record),

$$\frac{1}{2}L^2 \dot{x}_{max}^2 = 2gL$$

so the peak acceleration is $L\dot{x}_{max}^2 = 4g$ independently of L.

For the speed record, we use $E = \frac{1}{2}L^2\dot{x}^2 + gL(1 - \cos x)$ so $L\dot{x}_{max}^2 = 2E/L$. A reasonable estimate at current record speeds gives accelerations of 5g so the kilker has to lift 6 times body weight.

I think air drag limits the height record (stand sideways, wear lycra) but strength limits the speed record (take steroids).

Model 2:
$$L(x, \dot{x})$$

Natural to try L = L(x, y) where $y = \dot{x}$ (NB not L = L(t)). Assume L(x, y) is smooth.

Equation of motion is

$$\frac{1}{L}\frac{\mathrm{d}}{\mathrm{d}t}\left(L^2\frac{\mathrm{d}x}{\mathrm{d}t}\right) + g\sin x = 0$$

which is

$$(L + 2\dot{x}L_{\dot{x}})\ddot{x} + 2L_x\dot{x}^2 + g\sin x = 0,$$

or the system

$$\dot{x} = y$$
$$\dot{y} = -\frac{g\sin x + 2y^2 L_x}{L + 2y L_y}.$$

16

Linearised analysis for small x, y

The equilibrium (0,0) is a centre (orbits are closed for the Hamiltonian system when L is constant). Expand L

 $L(x,y) \sim L_0 + xL_{0x} + yL_{0y} + \frac{1}{2} \left(x^2 L_{0xx} + 2xyL_{0xy} + y^2 L_{0yy} \right) + \cdots$ Is there a standard classification of centres?

At quadratic order we'll get

$$\dot{x} = y, \quad \dot{y} \sim -gx/L_0 + (g/L_0) \left(2xyL_{0y}/L_0 - 2y^2L_{0x}\right)$$

which seems unlikely to leave (0,0) easily. So take

$$L_{0x} = 0, \quad L_{0y} = 0$$

and look at cubic order. We get (algebra)

$$\dot{x} = y, \quad (L_0/g)\dot{y} = -x + \alpha_1 x^3 + \alpha_2 x^2 y + \alpha_3 x y^2 + \alpha_4 y^3,$$

where

$$\alpha_1 = \frac{1}{6} + \frac{L_{0xx}}{2L_0}, \quad \alpha_2 = \frac{3L_{0xy}}{L_0}, \quad \alpha_3 = \frac{5L_{0yy}}{2L_0} - \frac{2L_{0xx}}{g}, \quad \alpha_4 = -\frac{2L_{0xy}}{g}.$$
 So

$$(x - \alpha_1 x^3) \dot{x} + ((L_0/g)y - \alpha_4 y^3) \dot{y} = \alpha_2 x^2 y^2 + \alpha_3 x y^3$$

Small-amplitude kiiking joy if the RHS is positive definite so we take

$$\alpha_2 = \frac{3L_{0xy}}{L_0} > 0, \quad \alpha_3 = \frac{5L_{0yy}}{2L_0} - \frac{2L_{0xx}}{g} = 0,$$

for example $L = L_0 + \text{positive constant} \times x\dot{x}$.

This is sufficient but not (?) necessary. Hm. Let's move on.

Small length changes

Consider small length changes ($\epsilon = \Delta L/L \ll 1$). Write

$$L(x, \dot{x}) = L_0(1 + \epsilon \ell(x, \dot{x}))$$

and assume $0 \le \ell \le 1$. Also scale time with $\sqrt{L_0/g}$. Equation of motion now

$$(1 + \epsilon \ell + 2\epsilon \dot{x}\ell_y) \ddot{x} + 2\epsilon \ell_x \dot{x}^2 + \sin x = 0.$$

Energy is

$$\mathcal{E} = \frac{1}{2}(1 + \epsilon \ell)^2 \dot{x}^2 + (1 + \epsilon \ell)(1 - \cos x)$$

and up to $O(\epsilon)$,

$$d\mathcal{E}/dt = \epsilon \left(\dot{x}\ell_x - \sin x\ell_y \right) \left(1 - \cos x - \dot{x}^2 \right)$$

We can expand $x(t) \sim x_0 + \epsilon x_1 + \cdots$, $\mathcal{E} \sim \mathcal{E}_0 + \epsilon \mathcal{E}_1 + \cdots$ and with an $O(\epsilon^2)$ error this is

$$\frac{\mathrm{d}\mathcal{E}_1}{\mathrm{d}t} = \left(\mathcal{E}_0 - \frac{3}{2}\dot{x_0}^2\right)\frac{\mathrm{d}\ell}{\mathrm{d}t}$$

where the d/dt are along the unperturbed trajectory. We want to maximise this over a trajectory. The first term integrates to zero and the second is linear in ℓ so solution is bang-bang. The factor 3 above agrees with $(L_2/L_1)^3$ amplification earlier.

Multiple scales

The discussion above suggests a multiple scale approach, because for small length changes the equation is of the form

 $\ddot{x} + \epsilon f(x, \dot{x}) + \sin x = 0,$

but what to do about the nonlinearity in $\sin x$? Standard method is to put $\tau = \epsilon t$ and then d /dt $\mapsto \partial /\partial t + \epsilon \partial /\partial \tau$. Leading order term in a regular expansion contains an undetermined 'amplitude' which is found by eliminating secular terms at $O(\epsilon)$ by requiring RHS to be orthogonal to solution of a suitable homogeneous problem.

Here we expand $x(t,\tau) \sim x_0 + \epsilon x_1 + \cdots$ and so

 $x_{0tt} + \sin x_0 = 0$, $x_{1tt} + x_1 \cos x_0 = -f(x_0, x_{0t}) - 2x_{0t\tau}$. Difficulty: we can't solve $\ddot{x_1} + x_1 \cos x_0 = 0$. Consider

$$\ddot{x} + \epsilon f(x, \dot{x}) + g(x) = 0,$$

written as

$$\dot{x} = y, \quad \dot{y} = -g(x) - \epsilon f(x, y).$$

Suppose g(x) = G'(x) and (0,0) is a centre when $\epsilon = 0$ (Hamiltonian system) with closed orbits

$$\frac{1}{2}y^2 + G(x) = \text{constant.}$$

Perturb in ϵ : $x \sim x_0 + \epsilon x_1 + \cdots$, $y \sim y_0 + \epsilon y_1 + \cdots$. Then

$$\dot{x}_0 = y_0, \quad \dot{y}_0 = -g(x_0).$$

Orbits starting at $(0, \eta)$ are closed with period $T(\eta)$.

At $O(\epsilon)$,

$$\dot{x}_1 = y_1, \quad \dot{y}_1 = -x_1 g'(x_0) - f(x_0, y_0).$$

Thus

$$\frac{\mathrm{d}}{\mathrm{d}t}(y_0y_1 + x_1g(x_0)) = -y_0f(x_0, y_0),$$

which is an energy-change equation. For an orbit starting at $(0,\eta)$ and returning to x = 0,

$$[y_1]_0^{T(\eta)} = -\frac{1}{\eta} \int_0^{T(\eta)} y_0(t;\eta) f(x_0(t;\eta), y_0(t;\eta)) \, \mathrm{d}t.$$

Iterate this:

$$\eta_{n+1} - \eta_n = -\frac{\epsilon}{\eta_n} \int_0^{T(\eta_n)} y_0(t;\eta_n) f\left(x_0(t;\eta_n), y_0(t;\eta_n)\right) \mathrm{d}t.$$

Now think of η as a function of the multiple scales 'long' time $\tau = \epsilon t$: $\eta = \eta(\tau)$. Then

$$\eta_{n+1} - \eta_n = \eta \left(\tau + \epsilon T(\eta) \right)$$

~ $\epsilon T(\eta) d\eta / d\tau.$

So, the equation for the 'amplitude' parameter η is

$$\frac{\mathrm{d}\eta}{\mathrm{d}\tau} = -\frac{1}{T(\eta)} \int_0^{T(\eta)} \frac{y_0(t;\eta)}{\eta} f\left(x_0(t;\eta), y_0(t;\eta)\right) \mathrm{d}t.$$

and this gives the approximate solution $(x_0(t; \eta(\tau)), y_0(t; \eta(\tau)))$.

Recall the trivial example

$$\ddot{x} + \epsilon \dot{x} + x = 0, \quad x(0) = 0, \quad \dot{x}(0) = \eta$$

for which the solutions are combos of

$$\exp\left(-\epsilon/2\pm i(1-\epsilon^2/4)^{\frac{1}{2}}\right)t$$

Multiple scales gives solutions $A(\tau)e^{\pm it}$ where $dA/d\tau = -\frac{1}{2}A$. In our notation

$$x_0(t) = \eta \sin t, \quad y_0(t) = \eta \cos t, \quad T(\eta) = 2\pi.$$

So

$$\frac{d\eta}{d\tau} = -\frac{1}{2\pi} \int_0^{2\pi} \frac{\eta^2}{\eta} \cos^2 t \, dt = -\frac{1}{2}\eta$$

as expected.