Kiiking and other pumping sports

Sam Howison

Mathematical Institute, Oxford University

Joint with Colin Please.

Russell Caflisch Birthday meeting 2014

What is kiiking?

Height record (Bastian Kurtz):
http://www.youtube.com/watch?v=3Z3hmtt1IdQ

Speed record (Manuel Helster):
http://www.youtube.com/watch?v=SIUO6ILSkW0

Skateboarding:
http://www.youtube.com/watch?v=r1S7zwU0uCA

Model 1

Key is to get energy into the system by standing up and sitting down at the right times.

Treat as a simple pendulum with lengths L_{1} and L_{2} where

- L_{1} is standing up
- L_{2} is sitting down
so $L_{1}<L_{2}$.

We want to work outwards from the equilibrium point.

Recall the equation of motion (while L is constant)

$$
L \ddot{x}+g \sin x=0
$$

where x is the angle from the downwards vertical.

There is a first integral

$$
E=\frac{1}{2} L^{2} \dot{x}^{2}+g L(1-\cos x)=\text { constant on trajectories }
$$

which is the energy per unit mass. Note $E=0$ at the equilibrium point $x=0, \dot{x}=0$.

Suppose we stand/sit, ie change from L_{i} to $L_{j}(i=1$ and $j=2$ or vice versa) at an angle x. Then x is constant across the transition but

$$
L_{i}^{2} \dot{x}_{i}=L_{j}^{2} \dot{x}_{j}
$$

by angular momentum.

Then using this to eliminate \dot{x} terms,

$$
E_{j}-E_{i}=\left[\left(L_{i}^{2}-L_{j}^{2}\right) E_{i}-g(1-\cos x)\left(L_{i}^{3}-L_{j}^{3}\right)\right] / L_{j}^{2}
$$

With

$$
\Delta E=E_{j}-E_{i}=\left[\left(L_{i}^{2}-L_{j}^{2}\right) E_{i}-g(1-\cos x)\left(L_{i}^{3}-L_{j}^{3}\right)\right] / L_{j}^{2}
$$

suppose we stand up from L_{2} to $L_{1}<L_{2}$, so $i=2, j=1$. We maximise ΔE when $x=0$. Conversely minimise ΔE when x is as close to π as possible.

- Stand up at the lowest point
- Sit down at the highest point

Round-trip energy budget

While doing less than whole rotations, easily find that a half cycle

$$
\text { stand at } x=0 \rightarrow \text { sit at } x=x_{\max } \rightarrow \text { return to } x=0
$$

takes the initial energy E_{0} to $\left(L_{2} / L_{1}\right)^{3} E_{0}$. Pretty efficient. Eg start at rest at an angle of 10°, so $E_{0} \approx 0.015 g L_{2}$, and $L_{2} / L_{1}=$ 1.2. We need to get to $E=2 g L_{2}$ which takes 6 of these cycles.

When doing 360° rotations we find

$$
\Delta E=2 g\left(L_{2}^{3}-L_{1}^{3}\right) / L_{2}^{2}
$$

so we switch from multiplicative to additive.

Energy in the phase plane

To compare swings of different lengths on the same phase plane we scale time with $\sqrt{L / g}$ in each phase and use

$$
e=\frac{1}{2} \dot{x}^{2}+1-\cos x
$$

and note that this does not change if we stand/sit when $\dot{x}=0$.

The budgets are

$$
\Delta e=\left(L_{2} / L_{1}\right)^{3} e
$$

and

$$
\Delta e=2\left(\left(L_{2} / L_{1}\right)^{3}-1\right)
$$

Limits on world records

Drag mostly from air resistance. Model resistive force per unit mass as

$$
F=-\frac{1}{2} C_{d} \rho_{a}(L \dot{x})^{2} A / M
$$

for drag coefficient C_{d}, air density ρ_{a} and cross-section A; here M is kiiker's mass.

Energy loss from drag is balanced against input from standing/sitting.

With $E=\frac{1}{2}(L \dot{x})^{2}+g L(1-\cos x)$ we have $\mathrm{d} E / \mathrm{d} t=L|\dot{x}| F$ so

$$
\begin{aligned}
\mathrm{d} E / \mathrm{d} x & =L F \\
& =-\frac{1}{2} L C_{d} \rho_{a}(L \dot{x})^{2} A / M \\
& =-\delta(L \dot{x})^{2} \quad \text { where } \delta=\frac{1}{2} L C_{d} \rho_{a} A / M \\
& =-2 \delta(E-g L(1-\cos x))
\end{aligned}
$$

So the crucial parameter is δ.

With SI values $C_{d} \approx 1.3, \rho_{a} \approx 1.2, A \approx 1$ and $M \approx 80, \delta \approx L / 100$ is small. So the change in E over a half cycle $0<\theta<\pi$ is approximately

$$
-2 \delta\left(E_{0}-g L\right) \times \pi
$$

Height record: To just get to 360° needs $E_{0}=2 g L$ before drag losses. The gain is approximately $\left[\left(L_{2} / L_{1}\right)^{3}-1\right] E_{0}$. So the drag-induced limit on the height record should be

$$
\left[\left(L_{2} / L_{1}\right)^{3}-1\right] \times 2 g L \approx 2 \delta \pi(2 g L-g L)
$$

where L could be L_{1} or L_{2}. With $L_{2}=L_{1}+\Delta L$, this gives, roughly,

$$
\Delta L / L \approx \pi \delta / 3 \approx L / 100 \quad(\delta \approx L / 100, \pi \approx 3 \ldots)
$$

so we predict

$$
L_{\max }^{2} \approx 100 \Delta L \quad\left(\text { in } \text { metres }^{2}\right) .
$$

Suppose ΔL is 0.4 m ; then $L_{\max } \approx 6.3 \mathrm{~m}$ which is a little more than both Bastian's German record and the current world record of 7.02 m (remember this is from pivot to feet but L is to the centre of mass).

Speed record: Here we know L and we balance drag losses against the fixed energy input per lap to find E_{0} (and hence the initial speed). The drag loss is roughly

$$
-2 \delta\left(E_{0}-g L\right) \times 2 \pi
$$

and the energy input is

$$
\Delta E=2 g\left(L_{2}^{3}-L_{1}^{3}\right) / L_{2}^{2} \approx 6 g \Delta L
$$

So

$$
E_{0}=\frac{1}{2} L^{2} \dot{x}_{0}^{2} \approx g L+6 g \Delta L / 4 \pi \delta
$$

Take $L=2.5 \mathrm{~m}$ and then

$$
\frac{1}{2} \dot{x}_{0}^{2} \approx g / L+6 g \Delta L / 4 \pi \delta L^{2} \approx 30
$$

so $\dot{x} \approx 7.7 \mathrm{rad} / \mathrm{sec}$ which is quite a bit faster than the current record $30 * \times 2 \pi / 60=4.2 \mathrm{rad} / \mathrm{sec}$.

g-forces

What is the rotational acceleration at the lowest point?

For a 360° swing that just makes it (height record),

$$
\frac{1}{2} L^{2} \dot{x}_{\max }^{2}=2 g L
$$

so the peak acceleration is $L \dot{x}_{\max }^{2}=4 g$ independently of L.
For the speed record, we use $E=\frac{1}{2} L^{2} \dot{x}^{2}+g L(1-\cos x)$ so $L \dot{x}_{\text {max }}^{2}=2 E / L$. A reasonable estimate at current record speeds gives accelerations of $5 g$ so the kiiker has to lift 6 times body weight.

I think air drag limits the height record (stand sideways, wear lycra) but strength limits the speed record (take steroids).

Model 2: $L(x, \dot{x})$

Natural to try $L=L(x, y)$ where $y=\dot{x}($ NB $\operatorname{not} L=L(t))$. Assume $L(x, y)$ is smooth.

Equation of motion is

$$
\frac{1}{L} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(L^{2} \frac{\mathrm{~d} x}{\mathrm{~d} t}\right)+g \sin x=0
$$

which is

$$
\left(L+2 \dot{x} L_{\dot{x}}\right) \ddot{x}+2 L_{x} \dot{x}^{2}+g \sin x=0
$$

or the system

$$
\begin{aligned}
\dot{x} & =y \\
\dot{y} & =-\frac{g \sin x+2 y^{2} L_{x}}{L+2 y L_{y}} .
\end{aligned}
$$

Linearised analysis for small x, y

The equilibrium $(0,0)$ is a centre (orbits are closed for the Hamiltonian system when L is constant). Expand L

$$
L(x, y) \sim L_{0}+x L_{0 x}+y L_{0 y}+\frac{1}{2}\left(x^{2} L_{0 x x}+2 x y L_{0 x y}+y^{2} L_{0 y y}\right)+\cdots
$$

Is there a standard classification of centres?

At quadratic order we'll get

$$
\dot{x}=y, \quad \dot{y} \sim-g x / L_{0}+\left(g / L_{0}\right)\left(2 x y L_{0 y} / L_{0}-2 y^{2} L_{0 x}\right)
$$

which seems unlikely to leave $(0,0)$ easily. So take

$$
L_{0 x}=0, \quad L_{0 y}=0
$$

and look at cubic order. We get (algebra)

$$
\dot{x}=y, \quad\left(L_{0} / g\right) \dot{y}=-x+\alpha_{1} x^{3}+\alpha_{2} x^{2} y+\alpha_{3} x y^{2}+\alpha_{4} y^{3}
$$

where
$\alpha_{1}=\frac{1}{6}+\frac{L_{0 x x}}{2 L_{0}}, \quad \alpha_{2}=\frac{3 L_{0 x y}}{L_{0}}, \quad \alpha_{3}=\frac{5 L_{0 y y}}{2 L_{0}}-\frac{2 L_{0 x x}}{g}, \quad \alpha_{4}=-\frac{2 L_{0 x y}}{g}$.
So

$$
\left(x-\alpha_{1} x^{3}\right) \dot{x}+\left(\left(L_{0} / g\right) y-\alpha_{4} y^{3}\right) \dot{y}=\alpha_{2} x^{2} y^{2}+\alpha_{3} x y^{3}
$$

Small-amplitude kiiking joy if the RHS is positive definite so we take

$$
\alpha_{2}=\frac{3 L_{0 x y}}{L_{0}}>0, \quad \alpha_{3}=\frac{5 L_{0 y y}}{2 L_{0}}-\frac{2 L_{0 x x}}{g}=0
$$

for example $L=L_{0}+$ positive constant $\times x \dot{x}$.
This is sufficient but not (?) necessary. Hm. Let's move on.

Small length changes

Consider small length changes ($\epsilon=\Delta L / L \ll 1$). Write

$$
L(x, \dot{x})=L_{0}(1+\epsilon \ell(x, \dot{x}))
$$

and assume $0 \leq \ell \leq 1$. Also scale time with $\sqrt{L_{0} / g}$. Equation of motion now

$$
\left(1+\epsilon \ell+2 \epsilon \dot{x} \ell_{y}\right) \ddot{x}+2 \epsilon \ell_{x} \dot{x}^{2}+\sin x=0
$$

Energy is

$$
\mathcal{E}=\frac{1}{2}(1+\epsilon \ell)^{2} \dot{x}^{2}+(1+\epsilon \ell)(1-\cos x)
$$

and up to $O(\epsilon)$,

$$
\mathrm{d} \mathcal{E} / \mathrm{d} t=\epsilon\left(\dot{x} \ell_{x}-\sin x \ell_{y}\right)\left(1-\cos x-\dot{x}^{2}\right)
$$

We can expand $x(t) \sim x_{0}+\epsilon x_{1}+\cdots, \mathcal{E} \sim \mathcal{E}_{0}+\epsilon \mathcal{E}_{1}+\cdots$ and with an $O\left(\epsilon^{2}\right)$ error this is

$$
\frac{\mathrm{d} \mathcal{E}_{1}}{\mathrm{~d} t}=\left(\mathcal{E}_{0}-\frac{3}{2} \dot{x_{0}}{ }^{2}\right) \frac{\mathrm{d} \ell}{\mathrm{~d} t}
$$

where the $\mathrm{d} / \mathrm{d} t$ are along the unperturbed trajectory. We want to maximise this over a trajectory. The first term integrates to zero and the second is linear in ℓ so solution is bang-bang. The factor 3 above agrees with $\left(L_{2} / L_{1}\right)^{3}$ amplification earlier.

Multiple scales

The discussion above suggests a multiple scale approach, because for small length changes the equation is of the form

$$
\ddot{x}+\epsilon f(x, \dot{x})+\sin x=0,
$$

but what to do about the nonlinearity in $\sin x$? Standard method is to put $\tau=\epsilon t$ and then $\mathrm{d} / \mathrm{d} t \mapsto \partial / \partial t+\epsilon \partial / \partial \tau$. Leading order term in a regular expansion contains an undetermined 'amplitude' which is found by eliminating secular terms at $O(\epsilon)$ by requiring RHS to be orthogonal to solution of a suitable homogeneous problem.

Here we expand $x(t, \tau) \sim x_{0}+\epsilon x_{1}+\cdots$ and so

$$
x_{0 t t}+\sin x_{0}=0, \quad x_{1 t t}+x_{1} \cos x_{0}=-f\left(x_{0}, x_{0 t}\right)-2 x_{0 t \tau}
$$

Difficulty: we can't solve $\ddot{x_{1}}+x_{1} \cos x_{0}=0$.

Consider

$$
\ddot{x}+\epsilon f(x, \dot{x})+g(x)=0,
$$

written as

$$
\dot{x}=y, \quad \dot{y}=-g(x)-\epsilon f(x, y) .
$$

Suppose $g(x)=G^{\prime}(x)$ and $(0,0)$ is a centre when $\epsilon=0$ (Hamiltonian system) with closed orbits

$$
\frac{1}{2} y^{2}+G(x)=\text { constant }
$$

Perturb in $\epsilon: x \sim x_{0}+\epsilon x_{1}+\cdots, y \sim y_{0}+\epsilon y_{1}+\cdots$. Then

$$
\dot{x}_{0}=y_{0}, \quad \dot{y}_{0}=-g\left(x_{0}\right)
$$

Orbits starting at $(0, \eta)$ are closed with period $T(\eta)$.

At $O(\epsilon)$,

$$
\dot{x}_{1}=y_{1}, \quad \dot{y}_{1}=-x_{1} g^{\prime}\left(x_{0}\right)-f\left(x_{0}, y_{0}\right) .
$$

Thus

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(y_{0} y_{1}+x_{1} g\left(x_{0}\right)\right)=-y_{0} f\left(x_{0}, y_{0}\right)
$$

which is an energy-change equation. For an orbit starting at ($0, \eta$) and returning to $x=0$,

$$
\left[y_{1}\right]_{0}^{T(\eta)}=-\frac{1}{\eta} \int_{0}^{T(\eta)} y_{0}(t ; \eta) f\left(x_{0}(t ; \eta), y_{0}(t ; \eta)\right) \mathrm{d} t .
$$

Iterate this:

$$
\eta_{n+1}-\eta_{n}=-\frac{\epsilon}{\eta_{n}} \int_{0}^{T\left(\eta_{n}\right)} y_{0}\left(t ; \eta_{n}\right) f\left(x_{0}\left(t ; \eta_{n}\right), y_{0}\left(t ; \eta_{n}\right)\right) \mathrm{d} t
$$

Now think of η as a function of the multiple scales 'long' time $\tau=\epsilon t: \eta=\eta(\tau)$. Then

$$
\begin{aligned}
\eta_{n+1}-\eta_{n} & =\eta(\tau+\epsilon T(\eta)) \\
& \sim \epsilon T(\eta) \mathrm{d} \eta / \mathrm{d} \tau
\end{aligned}
$$

So, the equation for the 'amplitude' parameter η is

$$
\frac{\mathrm{d} \eta}{\mathrm{~d} \tau}=-\frac{1}{T(\eta)} \int_{0}^{T(\eta)} \frac{y_{0}(t ; \eta)}{\eta} f\left(x_{0}(t ; \eta), y_{0}(t ; \eta)\right) \mathrm{d} t
$$

and this gives the approximate solution $\left(x_{0}(t ; \eta(\tau)), y_{0}(t ; \eta(\tau))\right.$.

Recall the trivial example

$$
\ddot{x}+\epsilon \dot{x}+x=0, \quad x(0)=0, \quad \dot{x}(0)=\eta
$$

for which the solutions are combos of

$$
\exp \left(-\epsilon / 2 \pm i\left(1-\epsilon^{2} / 4\right)^{\frac{1}{2}}\right) t
$$

Multiple scales gives solutions $A(\tau) \mathrm{e}^{ \pm \mathrm{i} t}$ where $\mathrm{d} A / \mathrm{d} \tau=-\frac{1}{2} A$. In our notation

$$
x_{0}(t)=\eta \sin t, \quad y_{0}(t)=\eta \cos t, \quad T(\eta)=2 \pi
$$

So

$$
\frac{\mathrm{d} \eta}{\mathrm{~d} \tau}=-\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\eta^{2}}{\eta} \cos ^{2} t \mathrm{~d} t=-\frac{1}{2} \eta
$$

as expected.

