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Multiscale Mathematics for Plasma Kinetics
Spanning Multiple Collisionality Regimes
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e A very high fraction of the universe is in the plasma state

e Plasma phenomena are complex and highly nonlinear, and
characterized by enormous ranges of time and space scales

e Plasmas exhibit a range of collisionality: when collisional mean-free-
paths are short, plasmas behave as fluids; and when collisional mean-

free paths are long, plasmas behave kinetically

e Coulomb collisions are a significant bottleneck in simulations, which
motivates the development of advanced algorithms
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Improving the Efficiency of Kinetic
Simulation of Plasmas-- Outline

Basic Monte Carlo algorithms for computing Coulomb collisions in
particle simulation of plasmas

- Binary collision methods

- Langevin collision methods (stochastic differential equations)

Fluid-kinetic methods using binary collisions methods

- Fluid-particle representation of velocity distribution function
- Collisions and thermalization/dethermalization

- Relative entropy and thermalization criterion

- Results for a test problem

Higher-order methods for Langevin collision methods (SDEs)
- Lowest order: Euler-Murayama

- Higher order: Milstein

- Higher order in multiple dimensions 3Levy areas

Multi-level Monte Carlo (MLMC) for Langevin methods (SDEs)
- Combining solutions for different time steps

- Using antithetic variables to remove the need for Levy areas
- Results for test problems

e Summary
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Basic Monte Carlo Algorithms for
Computing Coulomb Collisions

* Coulomb collisions are computed in many different ways:

— Binary: Takizuka & Abe '87, Nanbu "97, Dimits 09
Velocities of pairs of particles are scattered through a small random
angle with given variance in center of mass frame

Continuum representation: Abel ‘08, Xiong '08

Landau-Fokker-Planck PDE in velocity variables is solved

0.f+v-V . f+a-V f=C(f.f)=-V, Fd(f)f+ P D (f)f

Langevin equations (SDEs): Rognlien ‘80, Jonesv’96 Manheimer ‘97,
Lemons ‘09, Cohen ’06,’10

SDEs are solved for test particles with drag and diffusion determined
from moments of the field particles computed on a spatial grid

Av(t)=F,(v)dt +D(v)-dW(z),F, = deterministic drag, dW(z) = stochastic
X O «®
. V. vAt ¥

> > > 77
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Hybrid Algorithm for Binary Collisions

Combine fluid and particle simulation methods?:

Treat as particles ) i
@ Separate f into Maxwellian

and non-Maxwellian
components: f = m+ k

Treat m as fluid — solves
Euler equations

Simulate k by Monte Carlo
algorithm

Interaction of m and k is the
key step

IR. Caflisch et al., Multiscale Model. Simul. 7, 865 (2008)
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Interaction of m and k: thermalization
and dethermalization

Two steps Theorem (Boltzmann H-theorem)

@ Collisions If f solves the kinetic equation, and

o Choose a particle from k and sample a particle from M
o Perform collision as in Monte Carlo algorithm / flogfdv

o Thermalization/dethermalization
o Collisions drive particles into equilibrium then O:H > 0, with equality achieved iff f is Maxwellian.

e Move particles from k to M when they have collided enough
o Move sampled particles from M into k if the collision is strong L€sser known theorem about relative entropy:

enough Theorem (Relative Entropy Decay)

If f solves 0;f + V- Vf = C(f, m) with m a fixed Maxwellian, and

)= [reg(£) o

2p: ; : ; ‘ . -
3R|'ck.etson et. al, preprint, 2013 then O;H,e < 0, with equality achieved iff f = c(X)m.
Dimits et. al., private communication

o (De)Thermalization criterion using entropy?
o Alternative criterion based on scattering angle®
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Hybrid Method: Thermalization/dethermalization
Algorithm (cont’d)

Reinterpreting f Approximation by Maxwellian

To track Hye exactly, we need to track f,, which is

o The velocity space dependence of f is usually interpreted as computationally infeasible

an ensemble average over many particle velocities.

o We may also assign a velocity space distribution f, to a single
particle, which is interpreted as the probability density of that
particle's velocity

o Relative entropy decay theorem ensures that Hye(f,, m) — 0
through collisions with the fluid component of the scheme

o Idea: Track H, of each simulation particle, thermalize when
it falls below some threshold*

*Ricketson et. al, preprint, 2013
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o Simplifying (but reasonable) assumption: Approximate f,
by a Maxwellian

@ In this case,

3[Tp-T, T, | — iim|?
Hrel = 5 | 2= +log | — P
" 2[ Tm +og<TP)]+ Vt2m

o So, tracking Hye reduces to tracking T, and i,

o Efficient and accurate method developed for this®

*Ricketson et. al, preprint, 2013
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Hybrid Method: Thermalization/dethermalization
Algorithm (cont’d)

Algorithm Summary

First, fix a value H. > 0

o Simulate collisions using Monte-Carlo algorithm for
Fokker-Planck equation (see Takizuka-Abe or Nanbu).
Sample particles from fluid portion of scheme where necessary,
assigning them T, = Ty, U, = U

o Evolve i, and T, according to relevant ODEs, using
parameters of collision partner as input

o Loop over all kinetic particles: thermalize if H,e < Hc

o Loop over all sampled fluid particles: dethermalize if
Hrel > Hc
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Example Computation: Collisional Relaxation
of a Bump on Tail

Bump-on-Tail Test Problem
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* Entropy Scheme

* Entropy + Dethermalization
~—— Scattering Angle Scheme
— Scattering Angle + Dethermalization .

210 25 30 35 40
Improvement Factor vs. PIC

e The hybrid scheme achieves improvements of 5-40x over full PIC depending on the
level of accuracy desired.
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Higher-order Methods for Langevin
Collision Methods (SDEs)

Near Equilibrium

Linear Landau-Fokker-Planck (LFP) equation:
B = —C(M, f) (9)
“ T Kn W

with linear LFP collision operator

CMf=—2-Ff 6—2~D2f 10

in which F = A(M) and D? = B(M).

Langevin Formulation

Linear LFP equation for f(v,t) is in exact correspondence with the
Langevin equation (SDE) for v(t)

dvi = F; dt + D dW,, (11)

where f is probability density of v and i, j are component indices
o W = W(t) is Brownian motion in velocity
o dW is white noise in velocity
o Direct extension to spatial dependence
o Valid for nonlinear LFP, if F and D are updated as needed

Objective is an average of f:

1 _
; / P(W)F(v, £) dv = E[P(v(t)) (12)
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Lowest-order Methods for Langevin
Collision Methods

Discretization of SDEs

Euler-Maruyama discretization in time:

Vin+tl = Vinp+ Fi,nAt + Dij,n AVVj,n, (13)
AWn - Wn+1 - Wn (14)

in which v; , = vi(ts) and F, = F(v,)
@ Choose N Brownian paths to get N values of P(v(T))
@ Average to approximate E[P(v(T))]

Computational cost vs. Error &:

Statistical error is O(N—1/2)

At error is O(At), since AW = O(v/At) and random
Optimal choice is e = N~1/2 = At

Cost = NAt™1 =¢3

X ., Var[P'] _
* From & = MSE ~ clAtI + L~ a=1, solve for optimal At/ and N,
/

by minimizing computational cost K =N, /Atl using Lagrange multipliers
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Higher-order Methods for Langevin
Collision Methods (cont’d)

Higher Order Discretization Approximation of Milstein in 2D

Milstein discretization in time: Off-diagonal Milstein term includes Levy area Ly,:

1 1
Vint1 = Vin+ FinAt+ Djjn AW+ Gijicnlikn hy = SAWIAW, + 7L (17)

At ps
Ijk,n = / /dM/j(tn-{-Sl)de(tn-}-S)
0 0

2 2

At s

Ly / / AWA (s')dWa(s) — dWa(s)dWa(s)  (18)
0 0

in which v; , = v;(t,) and F, = F(v,)

Requires conditional probability distribution function
o G depends on D and its derivatives

P(Lia] AWL, AW) = P(Lio|y/AW2 + AWZ)  (19)
@ Milstein is tractable in 1D
o Only requires diagonal term h; = ((AW)* — At)/2 o Dimits found a simple approximation of P(L12|Ri2)?
@ Milstein is intractable in 3D and higher o Numerical values given through a 1D lookup table
o Off-diagonal [;'s involve " Levy areas” which are intractable o Related to earlier work?

o Milstein is tractable in 2D o Generalization to d > 2 is possible but difficult
o Special methods for calculating a single Levy area® "Levy, 2nd Berkeley Symp Pob Stat, 1951

*Dimits et. al., JCP, 2013
%Gaines & Lyons , SIAM J Appl Math, 1997

®Dimits et. al., JCP, 2013
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Whether Higher-order Discretizations Are Useful Is
Related to Strong and Weak Convergence

Weak and Strong Convergence

Weak convergence of time discretization:

[E[P(v)] - E[P(var)]]
[E[P(v)] - E[P(va)]

O(At) for Euler-Maruyama(20)
O(At) for Milstein (21)

o Weak convergence implies convergence of distributions
o Milstein is no better than Euler-Maruyama in weak sense

Strong convergence of time discretization:

Efv-va] =
Eflv—va¢]

O(VAt) for Euler-Maruyama ~ (22)
O(At) for Milstein (23)

o Strong convergence implies convergence for each realization
@ Milstein is better than Euler-Maruyama in strong sense

4/15/14 B.Cohen

Usefulness of Milstein

o Monte Carlo mostly aimed at computation of E [P(v))
o Milstein offers no advantage over Euler-Maruyama
o Multilevel Monte Carlo (MLMC) Ievera%es strong convergence
to accelerate computation of E[P(v)] *
o Milstein superior to Euler-Maruyama
o Previous uses of MLMC mostly confined to finance

o QOur application of MLMC to plasma simulation is its first use
for SDEs from physics

"Giles, Operations Research, 56(3):607, 2008
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Application of Milstein Scheme to MC Coulomb
Collisions for Spherical Coordinates in a Fixed Frame

Coulomb test-particle problem as SDE's for spherical
coordinates wrt a fixed frame

o Write as Ito form drag-diffusion (forward Kolmogorov) equation: Av =

(%) B _aa_v[Fd()ft] 32[ ()ft]+ [2Da( )ll'ft] Ap

32
o2

oy
[Dut) (1-42) 7] + 2 [ 2% 7,

where f; = 2rv?f;
@ Corresponding Ito-Langevin equations:

= Fy(v)dt+ /2Dy(v)dW, (t)
= —2D,(v)udt + /2D, (v) (1 — p2)dW,, (t),

2D, (v)
(1-p?)

dWy (t).
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Milstein scheme for Coulomb test-particle problem

FypAt + /2Dy AW, + nMDUO2 (AW?Z - At),

~2Da0u0AAt + 1/2Dqg (1 — ) AW,
1 D,
i | ~2Daotioy (AW — At) +4/ ag,/(l—ug) oAu|

v 2Da Ho
,/ AW + Ky ,/ 0 Do ~Aug Ly

Ay ¥ (tip1) —
Yo ¥ (ti),

t.,; 1 8
A / a5 / AW (6,
ti

t;

/]
ion E
o i b



Accurate Evaluation of 2D Area Integrals Involved in
Multi-dimensional Milstein Method

Theory and numerical implementations exist for the We have developed a simple accurate method for
sampling of the stochastic integral terms sampling area integrals
@ Existing methods
At s % ( AW}L)Q _ At] ’ i=j > Interpqlation from 2D table based on Levy’s results (Gaines and
/0 dW*(t, + s) /0 AW (t, +1n) = {% Lyons ‘94)

AW’;AW';L + L:i]] y 1 #J' * accurate and efficient

* somewhat involved
* challenging for conditional sampling - adaptive integration

» Discrete approximations (Clark and Cameron ‘80; Kloeden and
Platen ‘92; Gaines and Lyons ‘97)

* simple to implement
9 N 2 * straightforward for adaptive integration
(AW}L) -+ (Asz) * expensive for good accuracy (many random numbers per L sample)

@ Our method is a simplification of that of Gaines and Lyons ‘94

(exp (—ikL))|p » based on an accurate approximation to Levy's PDF
k/2 R2 (k/2) cosh (k/2) » can implement with 1D tables or analytical functions
- exp { ll - - ] } . » can be used to significantly reduce memory and computation
sinh (k/2) sinh (k/2) requirements for conditional sampling

o Levy, ‘51

P (L|AWS AWS) = Pug (LER)

2
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Application of Milstein Scheme to MC Coulomb
Collisions — Test Problem Results

Approach 2 achieves O (At) strong convergence for v
and for angular component

@ v evolution unaffected by angular evolution, and .. by area terms
@ Angular evolution has poor convergence without area terms

@ 16 realizations; time step range = 3%; end time v (vyy) teng = 0.1
@ Blue-Euler, Green-Milstein diagonal, Red-full Milstein

”Uend(At)l — I'Uend—ﬁnell |ll'end(At) - ;u'end—ﬁnel
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Multi-level Monte Carlo (MLMC) for Langevin Methods

Standard Monte Carlo |dea of MLMC

Normally, to estimate E[P(v(T))], discretize in time, e.g. Standard MC leverages weak convergence of time discretization:
Euler-Maruyama:

ew = [E[P(v)] - E[P(vac)]| = O(At?). (15)
Vint1 = Vin + Fai(vn) At + Djj(vs) AW, p, (14) L .
Standard discretizations also converge in the strong sense:
then choose N different Brownian paths to get N values of
P(v(T)), and average. es = E[lv —vad] = O(AL9). (16)

Note: AW, is a normal r.v. w/ mean 0, variance At, so is

characteristicall VAL). )
y O( ) Can we leverage strong convergence to improve performance?

e~ N-2and e ~ AtP. Cost ~ NAE™ = Cost ~ e=(21/P) MLMC answers yes.

4/15/14 B.Cohen

o it b



Multi-level Monte Carlo Basics

MLMC Basics MLMC Scaling

o Introduce time step levels, At; = T27¢ for £ = 0,..,L . ) )
: A Lagrange multiplier argument gives the optimal number of

samples Ny used to compute each E[P; — P;_1], constrained by
RMSE < €. The complexity now scales like®

e~%(loge)?) q=
Cost = { 855_2? ge)’) g> ig (18)

Notes:

o MLMC scales better than standard MC for any values of p, g.

o Milstein method (g > 1/2) is difficult to implement in d > 1,
L but possible thanks to Dimits et. al. ‘13.
E[P,] = E[Po] + Z]E [Py — Pp_i]. (17) e g > 1/2 s sufficient to get O(¢2) scaling, but not necessary*
=1 - can use antithetic sampling method.

o Let P, = P(va¢,). We have

@ When computed using same Brownian path, the variance of

(Py—Py—q) is O(At,?") by strong convergence. 3Giles, Operations Research, 56(3):607, 2008
“Giles & Szpruch, arXiv:1202.6283, 2012

* The number of samples N, at each time level scales as O(At)
for Euler and O(At*2) including Milstein terms, i.e., fewer samples
are computed as the time step is refined.
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Comparison of Direct Euler, MLMC
and MLMC with Milstein on a Test Problem

e A collisional relaxation initial-value problem was studied

A Sample Plasma Problem

2D Coulomb Collisions Complexity analysis: MLMC

® @ Direct
+-+4+ MLMC Euler
XX MLMC Milstein

2

—  ~(Ing)

o
31
=]
&

o
g

8

>

XX V; - Milstein
+4 ;- Euler
o0 Varp]

: 2,
Operations K to ensure MSE < € is:

K=Y K=) NAt'_—

( Kyvrmve ~ 0(6_2))

UCLA 1. Giles in “Monte Carlo and Quasi-Monte Carlo Method", Springer-Verlag, (2006)

Rosin, LFR, et. al., submitted to JCP, 2013
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Complexity analysis: Comparison of all methods

® @® Direct

+-+ MLMC Euler K~ 0(6_3) — Binary
XX MLMC Milstein
—  ~(me)’ | K~0O(®) — Direct

K ~ O(e~?t1/2))  _ Order—adirect
K ~ O(eP/7~1/%)  _ Continuum
K~ O(e?%(ln€)?) — MLMC Euler

K~ O(e?) — MLMC Milstein

|

Number of
operations to bound Error bound = €

error by €
MLMC Milstein 1s math. provably optimal Monte Carlo scheme.

How good is it in practice?
1. Giles in “Monte Carlo and Quasi-Monte Carlo Method”, Springer-Verlag, (2006)
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Other Methods: Antithetic Sampling and
Ito Linearization (ref. Ricketson )

Improving on MLMC through Antithetic Sampling Computational Results

= W = Euler

= © = Antithetic

= B = Approx. Milstein
=¥ Euler+lto

= Antithetic+Ito
=8 Approx. Milstein+Ito

Antithetic sampling is a Monte Carlo variance reduction method

o For MC estimation of E[f(x)] with normal random variable x
o Standard estimator is N™ }" f(x;)
o Antithetic estimator is (2N)~1 Y (f(x) + f(—x;))

o Antithetic sampling for Milstein does not eliminate Levy areas

o Antithetic sampling for MLMC-Milstein achieves O (¢2)

without Levy areas! 13

The Levy area terms are anti-symmetric wrt to sign changes in
the Brownian increments of the fine and antithetic paths, which
are averaged, resulting in a cancellation of the Levy area
contributions in the MLMC-Milstein computation.

BGiles & Szpruch, arXiv:1202.6283, 2012
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Summary: Computational Complexity for Monte Carlo
Simulation of Coulomb Collisions in Plasmas

Two methods for Monte Carlo simulation of collisions:
— Binary: Takizuka-Abe ‘77, Nanbu ‘97
— Langevin: Jones ‘96, Manheimer ‘97
Computation cost to achieve RMS error of size € (Euler):
— Binary: O(¢73) at best, O(g™*) at worst?!>
— Langevin: O(g73)
The Hybrid Method reduces the computational cost of the binary collision method.

Higher order methods (Milstein or antithetic) are useful for Multilevel Monte
Carlo, and the computational cost of the Langevin formulation can be reduced to O
(€7?(loge)?) or even O(g72), e.g., 2 orders of magnitude acceleration in examples

Future work needs to address the inclusion of both time-evolving electromagnetic
fields and collisions that influence the plasma

15Bobylev & Potapenko, J Comp Phys, 2013
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