International Workshop on Multiscale Modeling and Simulation April 25, 2014 - April 27, 2014 IPAM, UCLA, Los Angeles, CA

Improving the Efficiency of Kinetic Simulation of Plasmas*

Bruce I. Cohen
Lawrence Livermore National Laboratory, Livermore, CA
94550

*In collaboration with R. Caflisch, A. Dimits, M. Rosin, and L. Ricketson. This work was performed under the auspices of the U.S. Department of Energy under contract DE-AC52-07NA27344 at the Lawrence Livermore National Laboratory and DE-FG02-05ER25710 at UCLA.

LLNL-PRES-652467

Multiscale Mathematics for Plasma Kinetics Spanning Multiple Collisionality Regimes

- A very high fraction of the universe is in the plasma state
- Plasma phenomena are complex and highly nonlinear, and characterized by enormous ranges of time and space scales
- Plasmas exhibit a range of collisionality: when collisional mean-freepaths are short, plasmas behave as fluids; and when collisional meanfree paths are long, plasmas behave kinetically
- Coulomb collisions are a significant bottleneck in simulations, which motivates the development of advanced algorithms

Improving the Efficiency of Kinetic Simulation of Plasmas-- Outline

- Basic Monte Carlo algorithms for computing Coulomb collisions in particle simulation of plasmas
 - Binary collision methods
 - Langevin collision methods (stochastic differential equations)
- Fluid-kinetic methods using binary collisions methods
 - Fluid-particle representation of velocity distribution function
 - Collisions and thermalization/dethermalization
 - Relative entropy and thermalization criterion
 - Results for a test problem
- Higher-order methods for Langevin collision methods (SDEs)
 - Lowest order: Euler-Murayama
 - Higher order: Milstein
 - Higher order in multiple dimensions → Levy areas
- Multi-level Monte Carlo (MLMC) for Langevin methods (SDEs)
 - Combining solutions for different time steps
 - Using antithetic variables to remove the need for Levy areas
 - Results for test problems
- Summary

Basic Monte Carlo Algorithms for Computing Coulomb Collisions

- Coulomb collisions are computed in many different ways:
 - Binary: Takizuka & Abe '87, Nanbu '97, Dimits '09
 Velocities of pairs of particles are scattered through a small random angle with given variance in center of mass frame
 - Continuum representation: Abel '08, Xiong '08
 Landau-Fokker-Planck PDE in velocity variables is solved

$$\partial_t f + \mathbf{v} \cdot \nabla_{\mathbf{x}} f + \mathbf{a} \cdot \nabla_{\mathbf{v}} f = C(f', f) = -\nabla_{\mathbf{v}} \cdot \mathbf{F}_d(f') f + \frac{\partial^2}{\partial \mathbf{v} \partial \mathbf{v}} : \mathbf{D}^2(f') f$$

Langevin equations (SDEs): Rognlien '80, Jones '96, Manheimer '97,
 Lemons '09, Cohen '06,'10

SDEs are solved for test particles with drag and diffusion determined from moments of the field particles computed on a spatial grid

 $\Delta \mathbf{v}(t) = \mathbf{F}_d(\mathbf{v})dt + \mathbf{D}(\mathbf{v}) \cdot d\mathbf{W}(t), \mathbf{F}_d = \text{deterministic drag}, d\mathbf{W}(t) = \text{stochastic}$

Hybrid Algorithm for Binary Collisions

Combine fluid and particle simulation methods¹:

- Separate f into Maxwellian and non-Maxwellian components: f = m + k
- Treat m as fluid → solves
 Euler equations
- Simulate k by Monte Carlo algorithm
- Interaction of m and k is the key step

¹R. Caflisch et al., Multiscale Model. Simul. **7**, 865 (2008)

Interaction of *m* and *k*: thermalization and dethermalization

Two steps

- Collisions
 - Choose a particle from k and sample a particle from M
 - Perform collision as in Monte Carlo algorithm
- Thermalization/dethermalization
 - · Collisions drive particles into equilibrium
 - Move particles from k to M when they have collided enough
 - Move sampled particles from M into k if the collision is strong enough
- (De)Thermalization criterion using entropy²
 - Alternative criterion based on scattering angle³

Theorem (Boltzmann H-theorem)

If f solves the kinetic equation, and

$$H = -\int f \log f \, d\vec{v}$$

then $\partial_t H \geq 0$, with equality achieved iff f is Maxwellian.

Lesser known theorem about relative entropy:

Theorem (Relative Entropy Decay)

If f solves $\partial_t f + \vec{v} \cdot \nabla f = C(f, m)$ with m a fixed Maxwellian, and

$$H_{rel}(f, m) = \int f \log\left(\frac{f}{m}\right) d\vec{v}$$

then $\partial_t H_{rel} \leq 0$, with equality achieved iff $f = c(\vec{x})m$.

²Ricketson et. al, preprint, 2013

³Dimits et. al., private communication

Hybrid Method: Thermalization/dethermalization Algorithm (cont'd)

Reinterpreting f

Approximation by Maxwellian

- The velocity space dependence of f is usually interpreted as an ensemble average over many particle velocities.
- We may also assign a velocity space distribution f_p to a single particle, which is interpreted as the probability density of that particle's velocity
- Relative entropy decay theorem ensures that $H_{rel}(f_p, m) \to 0$ through collisions with the fluid component of the scheme
- Idea: Track H_{rel} of each simulation particle, thermalize when it falls below some threshold⁴

To track H_{rel} exactly, we need to track f_p , which is computationally infeasible

- Simplifying (but reasonable) assumption: Approximate f_p by a Maxwellian
- In this case.

$$H_{rel} = \frac{3}{2} \left[\frac{T_p - T_m}{T_m} + \log \left(\frac{T_m}{T_p} \right) \right] + \frac{|\vec{u}_p - \vec{u}_m|^2}{v_{tm}^2}$$
 (8)

- ullet So, tracking H_{rel} reduces to tracking T_p and \vec{u}_p
- Efficient and accurate method developed for this⁵

⁴Ricketson et. al, preprint, 2013

⁵Ricketson et. al, preprint, 2013

Hybrid Method: Thermalization/dethermalization Algorithm (cont'd)

Algorithm Summary

First, fix a value $H_c > 0$

- Simulate collisions using Monte-Carlo algorithm for Fokker-Planck equation (see Takizuka-Abe or Nanbu). Sample particles from fluid portion of scheme where necessary, assigning them $T_p = T_m$, $\vec{u}_p = \vec{u}_m$
- Evolve \vec{u}_p and T_p according to relevant ODEs, using parameters of collision partner as input
- Loop over all kinetic particles: thermalize if $H_{rel} < H_c$
- Loop over all sampled fluid particles: dethermalize if $H_{rel} \geq H_c$

Example Computation: Collisional Relaxation of a Bump on Tail

• The hybrid scheme achieves improvements of 5-40x over full PIC depending on the level of accuracy desired.

4/15/14 B. Cohen

Higher-order Methods for Langevin Collision Methods (SDEs)

Near Equilibrium

Langevin Formulation

Linear Landau-Fokker-Planck (LFP) equation:

$$\partial_t f = \frac{1}{\operatorname{Kn}} C(M, f) \tag{9}$$

with linear LFP collision operator

$$C(M, f) \equiv -\frac{\partial}{\partial \mathbf{v}} \cdot \mathbf{F} f + \frac{\partial^2}{\partial \mathbf{v} \partial \mathbf{v}} : \mathbf{D}^2 f \tag{10}$$

in which $F = \mathbf{A}(M)$ and $D^2 = \mathbf{B}(M)$.

Linear LFP equation for f(v, t) is in exact correspondence with the Langevin equation (SDE) for v(t)

$$dv_i = F_i dt + D_{ij} dW_i, (11)$$

where f is probability density of \mathbf{v} and i, j are component indices

- W = W(t) is Brownian motion in velocity
- dW is white noise in velocity
- Direct extension to spatial dependence
- Valid for nonlinear LFP, if F and D are updated as needed

Objective is an average of f:

$$\frac{1}{\rho} \int P(\mathbf{v}) f(\mathbf{v}, t) \, d\mathbf{v} \equiv \mathbb{E}[P(\mathbf{v}(t))] \tag{12}$$

Lowest-order Methods for Langevin Collision Methods

Discretization of SDEs

Euler-Maruyama discretization in time:

$$v_{i,n+1} = v_{i,n} + F_{i,n} \Delta t + D_{ij,n} \Delta W_{j,n}, \qquad (13)$$

$$\Delta \mathbf{W}_n = \mathbf{W}_{n+1} - \mathbf{W}_n \tag{14}$$

in which $v_{i,n} = v_i(t_n)$ and $\mathbf{F}_n = \mathbf{F}(\mathbf{v}_n)$

- Choose N Brownian paths to get N values of $P(\mathbf{v}(T))$
- Average to approximate $\mathbb{E}[P(\mathbf{v}(T))]$

Computational cost vs. Error ε :

- Statistical error is $O(N^{-1/2})$
- Δt error is $O(\Delta t)$, since $\Delta W = O(\sqrt{\Delta t})$ and random
- Optimal choice is $\varepsilon = N^{-1/2} = \Delta t$
- Cost = $N\Delta t^{-1} = \varepsilon^{-3}$
- From $\varepsilon^2 \ge MSE \sim c_1^2 \Delta t_i^{2\alpha} + \frac{Var[P_i^i]}{N_i}$, $\alpha = 1$, solve for optimal Δt_i and N_i

by minimizing computational cost $K = N_i / \Delta t_i$ using Lagrange multipliers

Higher-order Methods for Langevin Collision Methods (cont'd)

Higher Order Discretization

Milstein discretization in time:

$$v_{i,n+1} = v_{i,n} + F_{i,n} \Delta t + D_{ij,n} \Delta W_{j,n} + G_{ijk,n} I_{jk,n}$$
 (15)

$$I_{jk,n} = \int_0^{\Delta t} \int_0^s dW_j(t_n + s') dW_k(t_n + s)$$
 (16)

in which $v_{i,n} = v_i(t_n)$ and $\mathbf{F}_n = \mathbf{F}(\mathbf{v}_n)$

- G depends on D and its derivatives
- Milstein is tractable in 1D
 - Only requires diagonal term $I_{11} = ((\Delta W_1)^2 \Delta t)/2$
- Milstein is intractable in 3D and higher
 - ullet Off-diagonal I_{jk} 's involve "Levy areas" which are intractable
- Milstein is tractable in 2D
 - Special methods for calculating a single Levy area⁶

Approximation of Milstein in 2D

Off-diagonal Milstein term includes Levy area L_{12} :

$$I_{12} = \frac{1}{2} \Delta W_1 \Delta W_2 + \frac{1}{2} L_{12} \tag{17}$$

$$L_{12} = \int_0^{\Delta t} \int_0^s dW_1(s')dW_2(s) - dW_2(s')dW_1(s) \quad (18)$$

Requires conditional probability distribution function

$$P(L_{12}|\Delta W_1, \Delta W_2) = \hat{P}(L_{12}|\sqrt{\Delta W_1^2 + \Delta W_2^2})^7$$
 (19)

- Dimits found a simple approximation of $\hat{P}(L_{12}|R_{12})^8$
 - Numerical values given through a 1D lookup table
 - Related to earlier work⁹
- Generalization to d > 2 is possible but difficult

⁶Dimits et. al., JCP, 2013

⁷Levy, 2nd Berkeley Symp Pob Stat, 1951

⁸Dimits et. al., JCP, 2013

⁹Gaines & Lyons, SIAM J Appl Math, 1997

Whether Higher-order Discretizations Are Useful Is Related to Strong and Weak Convergence

Weak and Strong Convergence

Usefulness of Milstein

Weak convergence of time discretization:

$$|\mathbb{E}[P(\mathbf{v})] - \mathbb{E}[P(\mathbf{v}_{\Delta t})]| = O(\Delta t) \text{ for Euler-Maruyama}(20)$$

$$|\mathbb{E}[P(\mathbf{v})]| = \mathbb{E}[P(\mathbf{v}_{\Delta t})]| = O(\Delta t) \text{ for Miletoin}$$
(21)

- $|\mathbb{E}[P(\mathbf{v})] \mathbb{E}[P(\mathbf{v}_{\Delta t})]| = O(\Delta t)$ for Milstein (21)
- Weak convergence implies convergence of distributions
- Milstein is no better than Euler-Maruyama in weak sense

Strong convergence of time discretization:

$$\mathbb{E}\left[|\mathbf{v} - \mathbf{v}_{\Delta t}|\right] = O(\sqrt{\Delta t}) \text{ for Euler-Maruyama} \qquad (22)$$

$$\mathbb{E}[|\mathbf{v} - \mathbf{v}_{\Delta t}|] = O(\Delta t) \quad \text{for Milstein}$$
 (23)

- Strong convergence implies convergence for each realization
- Milstein is better than Euler-Maruyama in strong sense

- Milstein offers no advantage over Euler-Maruyama
- Multilevel Monte Carlo (MLMC) leverages strong convergence to accelerate computation of $\mathbb{E}[P(\mathbf{v})]^{10}$
 - Milstein superior to Euler-Maruyama
 - Previous uses of MLMC mostly confined to finance
 - Our application of MLMC to plasma simulation is its first use for SDEs from physics

[•] Monte Carlo mostly aimed at computation of $\mathbb{E}[P(\mathbf{v})]$

¹⁰Giles, Operations Research, 56(3):607, 2008

Application of Milstein Scheme to MC Coulomb Collisions for Spherical Coordinates in a Fixed Frame

Coulomb test-particle problem as SDE's for spherical coordinates wrt a fixed frame

• Write as Ito form drag-diffusion (forward Kolmogorov) equation:

$$\left(\frac{\partial \hat{f}_t}{\partial \hat{t}}\right)_c = -\frac{\partial}{\partial v} \left[F_d(v) \, \hat{f}_t \right] + \frac{\partial^2}{\partial v^2} \left[D_v(v) \, \hat{f}_t \right] + \frac{\partial}{\partial \mu} \left[2D_a(v)\mu \, \hat{f}_t \right]
+ \frac{\partial^2}{\partial \mu^2} \left[D_a(v) \left(1 - \mu^2 \right) \, \hat{f}_t \right] + \frac{\partial^2}{\partial \phi^2} \left[\frac{D_a(v)}{(1 - \mu^2)} \, \hat{f}_t \right],$$

where $\hat{f}_t = 2\pi v^2 f_t$

Corresponding Ito-Langevin equations:

$$dv(t) = F_{d}(v) dt + \sqrt{2D_{v}(v)} dW_{v}(t),$$

$$d\mu(t) = -2D_{a}(v)\mu dt + \sqrt{2D_{a}(v)(1-\mu^{2})} dW_{\mu}(t),$$

$$d\phi(t) = \sqrt{\frac{2D_{a}(v)}{(1-\mu^{2})}} dW_{\phi}(t).$$

Milstein scheme for Coulomb test-particle problem

$$\begin{split} \Delta v &= F_{d0} \Delta t + \sqrt{2 D_{v0}} \Delta W_v + \kappa_{\rm M} D_{v0}' \frac{1}{2} \left(\Delta W_v^2 - \Delta t \right), \\ \Delta \mu &= -2 D_{a0} \mu_0 \Delta t + \sqrt{2 D_{a0} \left(1 - \mu_0^2 \right)} \Delta W_\mu, \\ &+ \kappa_{\rm M} \left[-2 D_{a0} \mu_0 \frac{1}{2} \left(\Delta W_\mu^2 - \Delta t \right) + \sqrt{\frac{D_{v0}}{D_{a0}}} \sqrt{\left(1 - \mu_0^2 \right)} D_{a0}' A_{v\mu} \right], \\ \Delta \phi &= \sqrt{\frac{2 D_a(v)}{1 - \mu_0^2}} \Delta W_\phi + \kappa_{\rm M} \left[\sqrt{\frac{D_{v0}}{D_{a0}}} \frac{D_{a0}'}{\sqrt{1 - \mu_0^2}} A_{v\phi} + \frac{2 D_{a0} \mu_0}{1 - \mu_0^2} A_{\mu\phi} \right], \end{split}$$

$$\begin{array}{rcl} \Delta\psi & = & \psi\left(t_{i+1}\right) - \psi\left(t_{i}\right), \\ \psi_{0} & = & \psi\left(t_{i}\right), \\ A_{kl} & = & \int_{t_{i}}^{t_{i+1}} dW_{l}\left(s\right) \int_{t_{i}}^{s} dW_{k}\left(\xi\right), \end{array}$$

Accurate Evaluation of 2D Area Integrals Involved in Multi-dimensional Milstein Method

Theory and numerical implementations exist for the sampling of the stochastic integral terms

$$\int_0^{\Delta t} dW^i(t_n+s) \int_0^s dW^j(t_n+\eta) = egin{cases} rac{1}{2} \left[\left(\Delta W^i_n
ight)^2 - \Delta t
ight], & i=j \ rac{1}{2} \left[\Delta W^i_n \Delta W^j_n + L^{i,j}_n
ight], & i
eq j \end{cases}$$

Levy, '51

$$\begin{split} P_{cL}\left(L_n^{i,j}|\Delta W_n^i,\Delta W_n^j\right) &=& \hat{P}_{cL}\left(L_n^{i,j}|R_n^{i,j}\right) \\ R_n^{i,j} &=& \sqrt{\left(\Delta W_n^i\right)^2 + \left(\Delta W_n^j\right)^2} \\ \phi_{cL}\left(k|R\right) &\equiv& \left\langle \exp\left(-ikL\right)\right\rangle|_R \\ &=& \frac{k/2}{\sinh\left(k/2\right)} \exp\left\{\frac{R^2}{2}\left[1 - \frac{\left(k/2\right)\cosh\left(k/2\right)}{\sinh\left(k/2\right)}\right]\right\}. \end{split}$$

We have developed a simple accurate method for sampling area integrals

- Existing methods
 - Interpolation from 2D table based on Levy's results (Gaines and Lyons '94)
 - * accurate and efficient
 - * somewhat involved
 - ★ challenging for conditional sampling adaptive integration
 - Discrete approximations (Clark and Cameron '80; Kloeden and Platen '92; Gaines and Lyons '97)
 - * simple to implement
 - * straightforward for adaptive integration
 - \star expensive for good accuracy (many random numbers per L sample)
- Our method is a simplification of that of Gaines and Lyons '94
 - based on an accurate approximation to Levy's PDF
 - can implement with 1D tables or analytical functions
 - can be used to significantly reduce memory and computation requirements for conditional sampling

Application of Milstein Scheme to MC Coulomb Collisions – Test Problem Results

Approach 2 achieves $O\left(\triangle t\right)$ strong convergence for v and for angular component

- ullet v evolution unaffected by angular evolution, and \cdot by area terms
- Angular evolution has poor convergence without area terms
- 16 realizations; time step range = 3^8 ; end time $\nu\left(v_{\mathrm{th}}\right)t_{\mathrm{end}}=0.1$
- Blue-Euler, Green-Milstein diagonal, Red-full Milstein

$$||v_{ ext{end}}(\Delta t)| - |v_{ ext{end-fine}}||$$

$$|\mu_{
m end}(\Delta t) - \mu_{
m end-fine}|$$

Multi-level Monte Carlo (MLMC) for Langevin Methods

Standard Monte Carlo

Idea of MLMC

Normally, to estimate $\mathbb{E}[P(\mathbf{v}(T))]$, discretize in time, e.g. Euler-Maruyama:

$$v_{i,n+1} = v_{i,n} + F_{d,i}(\mathbf{v}_n)\Delta t + D_{ij}(\mathbf{v}_n)\Delta W_{j,n}, \qquad (14)$$

then choose N different Brownian paths to get N values of $P(\mathbf{v}(T))$, and average.

Note: $\Delta W_{j,n}$ is a normal r.v. w/ mean 0, variance Δt , so is characteristically $O(\sqrt{\Delta t})$.

$$\varepsilon \sim N^{-1/2}$$
 and $\varepsilon \sim \Delta t^p$. Cost $\sim N\Delta t^{-1} \implies \text{Cost} \sim \varepsilon^{-(2+1/p)}$

Standard MC leverages weak convergence of time discretization:

$$\varepsilon_{w} = |\mathbb{E}\left[P(\mathbf{v})\right] - \mathbb{E}\left[P(\mathbf{v}_{\Delta t})\right]| = O(\Delta t^{p}). \tag{15}$$

Standard discretizations also converge in the strong sense:

$$\varepsilon_s = \mathbb{E}[|\mathbf{v} - \mathbf{v}_{\Delta t}|] = O(\Delta t^q).$$
 (16)

Can we leverage strong convergence to improve performance? MLMC answers yes.

Multi-level Monte Carlo Basics

MLMC Basics

• Introduce time step levels, $\Delta t_{\ell} = T2^{-\ell}$, for $\ell = 0, ..., L$.

• Let $P_{\ell} = P(\mathbf{v}_{\Delta t_{\ell}})$. We have

$$\mathbb{E}[P_L] = \mathbb{E}[P_0] + \sum_{\ell=1}^{L} \mathbb{E}[P_{\ell} - P_{\ell-1}]. \tag{17}$$

- When computed using same Brownian path, the variance of $(P_{\ell} P_{\ell-1})$ is $O(\Delta t_{\ell}^{2q})$ by strong convergence.
- The number of samples N_1 at each time level scales as $O(\Delta t)$ for Euler and $O(\Delta t^{3/2})$ including Milstein terms, i.e., fewer samples are computed as the time step is refined.

MLMC Scaling

A Lagrange multiplier argument gives the optimal number of samples N_ℓ used to compute each $\mathbb{E}[P_\ell-P_{\ell-1}]$, constrained by RMSE $< \varepsilon$. The complexity now scales like³

$$Cost = \begin{cases} O\left(\varepsilon^{-2}(\log \varepsilon)^{2}\right) & q = 1/2\\ O\left(\varepsilon^{-2}\right) & q > 1/2 \end{cases}$$
 (18)

Notes:

- MLMC scales better than standard MC for any values of p, q.
- Milstein method (q > 1/2) is difficult to implement in d > 1, but possible thanks to Dimits et. al. '13.
- q > 1/2 is sufficient to get $O(\varepsilon^{-2})$ scaling, but not necessary can use antithetic sampling method.

³Giles, Operations Research, 56(3):607, 2008

⁴Giles & Szpruch, *arXiv:1202.6283*, 2012

Comparison of Direct Euler, MLMC and MLMC with Milstein on a Test Problem

• A collisional relaxation initial-value problem was studied

A Sample Plasma Problem

2D Coulomb Collisions

Rosin, LFR, et. al., submitted to JCP, 2013

Complexity analysis: MLMC

Fusion Energy Sciences

Complexity analysis: Comparison of all methods

$$K \sim \mathcal{O}(\epsilon^{-3})$$
 — Binary

$$K \sim \mathcal{O}(\epsilon^{-3})$$
 — Direct

$$K \sim \mathcal{O}(\epsilon^{-(2+1/\alpha)})$$
 - Order- α direct

$$K \sim \mathcal{O}(\epsilon^{-D/\gamma - 1/\alpha})$$
 – Continuum

$$K \sim \mathcal{O}(\epsilon^{-2}(\ln \epsilon)^2)$$
 – MLMC Euler

$$K \sim \mathcal{O}(\epsilon^{-2})$$
 — MLMC Milstein

MLMC Milstein is math. provably optimal Monte Carlo scheme. How good is it in practice?

1. Giles in "Monte Carlo and Quasi-Monte Carlo Method", Springer-Verlag, (2006)

Other Methods: Antithetic Sampling and Ito Linearization (ref. Ricketson)

Improving on MLMC through Antithetic Sampling

Computational Results

Antithetic sampling is a Monte Carlo variance reduction method

- For MC estimation of E[f(x)] with normal random variable x
 - Standard estimator is $N^{-1} \sum f(x_i)$
 - Antithetic estimator is $(2N)^{-1}\sum_{i=1}^{n}(f(x_i)+f(-x_i))$
- Antithetic sampling for Milstein does not eliminate Levy areas
- \bullet Antithetic sampling for MLMC-Milstein achieves $O\left(\varepsilon^{-2}\right)$ without Levy areas! 13

The Levy area terms are anti-symmetric wrt to sign changes in the Brownian increments of the fine and antithetic paths, which are averaged, resulting in a cancellation of the Levy area contributions in the MLMC-Milstein computation.

¹³Giles & Szpruch, *arXiv:1202.6283*, 2012

Summary: Computational Complexity for Monte Carlo Simulation of Coulomb Collisions in Plasmas

- Two methods for Monte Carlo simulation of collisions:
 - Binary: Takizuka-Abe '77, Nanbu '97
 - Langevin: Jones '96, Manheimer '97
- Computation cost to achieve RMS error of size ε (Euler):
 - Binary: $O(\epsilon^{-3})$ at best, $O(\epsilon^{-4})$ at worst¹⁵
 - Langevin: $O(\epsilon^{-3})$
- The **Hybrid Method** reduces the computational cost of the binary collision method.
- Higher order methods (Milstein or antithetic) are useful for **Multilevel Monte Carlo,** and the computational cost of the Langevin formulation can be reduced to O $(\epsilon^{-2}(\log \epsilon)^2)$ or even $O(\epsilon^{-2})$, e.g., 2 orders of magnitude acceleration in examples
- Future work needs to address the inclusion of both time-evolving electromagnetic fields and collisions that influence the plasma

¹⁵Bobylev & Potapenko, J Comp Phys, 2013

References

References

- Basic theory of Coulomb collisions in plasmas
 - L. D. Landau, Phys. Z. Sowjet **10**, 154 (1936); JETP **7**, 203 (1937)
 - M. N. Rosenbluth, W. M. MacDonald and D. L. Judd, Phys. Rev. 107, 1 (1957)
 - ▶ review: B.A. Trubnikov, in Reviews of Plasma Physics (M. A. Leontovich, ed., Consultants Bureau, New York) 1, 105 (1965)
- Monte-Carlo methods for Coulomb collisions
 - Langevin (+ field-term) methods of interest in the present work
 - ★ S; Painter, Computer Physics Communications 77, 342—356 (1993)
 - * S. A. Dettrick, et. al., Aust. J. Phys., **52**, 715–32 (1999)
 - ★ W. M. Manheimer, et. al., J. Comp. Phys. 138, 563-584 (1997)
 - * D. S. Lemons, et.al., J. Comput. Phys. 228, 1391-1403 (2009)
 - * B. I. Cohen, et. al., IEEE Trans. Plasma Sci. 38, (2010)
 - ▶ Binary-collision methods used in our hybrid work
 - * T. Takizuke and H. Abe, J. Comput. Phys. 25, 205-219 (1977)
 - * K. Nanbu, Phys. Rev. E55, 4642 (1997)
 - * A. M. Dimits, C. M. Wang, R. E. Caflisch, B. I. Cohen Y. Huang, J. Comp. Phys. **228**, 4881 (2009)

References, contd.

- Continuum methods for Coulomb collisions
 - Z. Xiong, R. H. Cohen, T. D. Rognlien, X. Q. Xu, J. Comp. Phys. 227 (2008)
 - ► I. G. Abel, M. Barnes, S. C. Cowley, W. Dorland, A. A. Schekochihin, Phys. Plasmas 15, 122509 (2008)
- Higher-order methods for SDE's
 - ► G.N. Milstein, "Numerical Integration of Stochastic Differential Equations," (Kluwer Academic, Dordrecht, 1995)
 - M.B. Giles, "Improved multilevel Monte Carlo convergence using the Milstein scheme," in "Monte Carlo and Quasi-Monte Carlo Methods 2006 (A. Keller, S. Heinrich, and H. Niederreiter, eds., Springer-Verlag, 2007), 343
 - ► P.E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations" (Springer-Verlag, Berlin, 1992)
- Levy areas, theory and numerical methods
 - P. Levy, Proc. 2nd Berkeley Symp. Math. Stat. and Prob., University of California Press, Berkeley, Ca., 2 (1951)
 - J. M. C. Clark and R. J. Cameron, Stochastic Differential Systems,
 B. Grigelionis, ed., Lecture Notes in Control and Information
 Sciences 25, Springer-Verlag, Berlin, (1980)
 - J.G. Gaines and T.J. Lyons, SIAM J. Appl. Math. 54, 1132, (1994) & SIAM J. Appl. Math. 57, 1455 (1997)
 - ▶ P.E. Kloeden and E. Platen, "Numerical Solution of Stochastic Differential Equations" (Springer-Verlag, Berlin, 1992)