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Data structure

- Hidden manifolds and sub manifolds
- Combinatorial structure
- Euclidean correlations

* Analyse data

* Build generative models that can be
analyzed fully in some large size limit

* Understand mechanisms



Theory: Ensembles of data,
ensemble of weights

Mostly used so far
Data = input patterns
with 1id entries

Perceptron learning, committee
machine, teacher-student

Pattern / ,input entry @ : X,; = N (0,1) P x N matrix

NB Physicists use P patterns in /N dimensions,
statisticians use 1 patterns in p dimensions... Sorry



Differences between
MNIST and iid data

Learn using a 2-layer neural
net, X hidden units

K N
G(X’) = kag (ﬁkf/\/ﬁ>

k _ _/
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Differences between

"\ MNIST and iid data

Learn using a 2-layer neural
net, X hidden units

K N
G()Z’) = kag (wk)?/\/ﬁ)
k _ 4

Task |:distinguish odd from even numbers in MNIST
¢ (X) =1 for even digits  ¢4(X) = —1 for odd digits
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Differences between
\ MNIST and iid data

Uk Learn using a 2-layer neural

/a
O

net, X hidden units
. K \
‘/ G(X)kag(zﬁkf/\/ﬁ)
N " J k . _/

Task |:distinguish odd from even numbers in MNIST
¢ (X) =1 for even digits  ¢4(X) = —1 for odd digits

Task 2: iid input data; desired output given by a 2-layer
« teacher network » with M hidden units

¢+ (X) = Sign _i Vi G ((D’mf/\/ﬁ)
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Differences between
MNIST and iid data

Learn using a 2-layer neural
net, KX hidden units

H(X) = ivkg (U_J’k-)z'/\/ND
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1 _ 2
Training error & = 7 Z 0 {¢(Xu) — ¢t(Xu)}
u=1

Differences between
MNIST and iid data

Learn using a 2-layer neural
net, KX hidden units

H(X) = ivkﬁ] (U_J’k-)z/\/ND

—

Generalization error: same with P* new patterns
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j=
1 . 2
Training error Eqg = 5p Z 0 {¢(Xu) — ¢t(Xu)}
u=1

Differences between
MNIST and iid data

Learn using a 2-layer neural
net, KX hidden units

H(X) = EK:UM] (?ﬁk-)?/\/ﬁ))

—

Generalization error: same with P* new patterns

Also monitored: difference between two learning
trials with different initial conditions

€12 = % EP: 0 {Cbl()zu) — ¢2(Xu)r

11—1
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Generalization error decreases with K

The difference on MNIST between two trials agrees
with generalization error

The difference on random images between two trials
is large (nearly uncorrelated functions)



lid data and teacher network
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Generalization error decreases with K , vanishes forK > M

The difference on random images between two trials
is equal to €g9 .For K > M the two trials learn the
same global function
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Learning dynamics

—— Vanilla teacher/student
100_

MNIST task Plateau in the « teacher-

student » setup

W
10_13

101 10° 10' 102 103 10%
steps / K/ N

After some time the dynamics stabilize in a metastable
state where all the hidden units have roughly the same

overlap with all the teacher vector. Long plateau before
the specialization of hidden units occurs.



Differences between MNIST and iid data

05 —— Vanilla teacher/student
' ® frac 10° 4
PO + + ¢ ¢ 0.067 4 ¢ ~) MNIST task
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Two different trials learn the same function in iid data

teacher-student, completely different functions in
MNIST (outside of the hidden manifold)

Plateau in the learning of teacher-student with iid data,
not seen in MNIST



The hidden manifold of data
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Input space: dimension 282 = 784



The hidden manifold of data

Input space: dimension 282 = 784

Manifold of handwritten digits in MNIST:

@ Nearest neighbors’ distance : R,,,, ~ p~ /¢



The hidden manifold of data

Input space: dimension 282 = 784




< Omin > (normalized)

The hidden manifold of data

MNIST: d = 784
dog ~ 15
6x10"
= Random d=35 . :
o0 | 0o Nearest neighbors
o e e » r distance :

: Ry ~p~ '/



< Omin > (normalized)

The hidden manifold of data

MNIST: d =784
deg ~ 15
6x10"
= Random d=35 . :
0™ | — o350 Nearest neighbors
10" 10° 10° 10° 10° dIStance : Rnn ~ p—l/d
o
O~o



< Omin > (normalized)

The hidden manifold of data

MNIST: d =784
dog ~ 15
6x10"
= Random d=35 . :
0™ | — o350 Nearest neighbors
10’ 10° 10° 10" 10° dIStance . Rnn ~ p_l/d
(-]
O~o




The hidden manifold of data
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MNIST: d =784
deﬂ‘ ~ 15

Nearest neighbors’

distance : R~ p—l/d

The neural net should answer: this image
does not seem to be a handwritten digit



Structure of the task:

perceptual sub-manifolds

Table 7. Number of samples and estimated intrinsic di-
mensionality of the digits in MNIST.

deg (D) =~ 12

1 2 3 4 5
7877 6990 7141 6824 6903
8/7/7 |13/12/13|14/13/13]13/12/12|12/12/12

6 7 8 9 0
6876 7293 6825 6958 6903

11/11/11[10/10/10 |14/13/13|12/11/11 [12/11/11

MNIST problem:in the 15-dim manifold of
handwritten digits, identify the 10 perceptual
sub manifolds associated with each digit, of
dimensions between 7 and 13...




Structure of the task:
perceptual sub-manifolds

Table 7. Number of samples and estimated intrinsic di-
mensionality of the digits in MNIST.

1 5 3 1 5
7877 | 6990 | 7141 | 6824 | 6903
8/7/7 |13/12/13|14/13/13]13/12/12 |12/12/12
deg (D) >~ 12 6 7 g 9 0

6376 | 7293 | 6825 | 6958 | 6903
11/11/11|10/10/10| 14/13/13 | 12/11/11 [12/11/11

MNIST problem:in the 15-dim manifold of

handwritten digits, identify the 10 perceptual
sub manifolds associated with each digit, of

dimensions between 7 and 13...

... from an input in 784 dimensions!



A new ensemble
for the hidden manifold
and for the task to be achieved

S. Goldt, F Krzakala MM L. Zdeborova

arXiv:1909.11500



https://arxiv.org/abs/1909.11500

An ensemble for the hidden
manifold

] - _
1

Pattern u: Xp=f|—=) Cu,Fy

Y I _\/E; m _

Data = input patterns built from R features F.

A feature is a N component vector in the input space

Each pattern is built from a weighted superposition

of features (feature 7 has weight C’.):
R

Z C.F.

r=1




An ensemble for the hidden
manifold

1
X,ui = f ﬁ Z CurFir

The R-dimensional data manifold is folded by applying
the non-linear function f




An ensemble for the task

R
< _ f Z C. ﬁr « Latent

representation »: {C).}
iid

Desired output = function of latent representation

(perceptron in

R
: — ~7°Cr . .
Examples: ¥y =g Zw hidden manifold)

r=1




An ensemble for the task

) | LB ~ « Latent
X=f NG ZCrFr representation »: {C,.}

r=1

Desired output (task) = function of latent representation

R
o N erceptron in
Examples: ¥ =g (Z w"“CT) I(Etent space)

r=1

M R
y = Z O G (Z UNerCfr> (2 layers nn in
m=1 r=1

latent space)



Manifold of data and sub
mahnifolds of the task

| LB ~ « Latent
X=f ﬁ ;CrFr representation »: {C,.}

Hidden manifold of data: folded R-dimensional manifold

M R
Task y_z@mg( %cr)
1

m=1 r—=
depends on {@W,.C}, m e {1,..M}
where (5 1and C livein a R-dim space

For M < C perceptual sub manifold = moving in directions
orthogonal to the {w,,} ,in latent space
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Hidden manifold model
R =10

Experimenting with the
« hidden manifold model »
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Experimenting with the
« hidden manifold model »

o —— Teacher task . —— Vanilla teacher/student
107 —— Latent task 10740 —— MNIST task
N g
Ech EO\
“w 107! w
101  10° 10' 102 103  10% 10! 10° 10! 102 103 104

steps /K /N steps / K/ N

Hidden manifold model MNIST



Hidden manifold model

R
Z o Data. « Latent
o representation »: {C,.}

o
|
~

Desired output (task) = function of latent representation

R
Example Y=g (Z ZTJTCT)
r=1

* Does not have the pathologies of teacher-student setup
with iid data

* Learning and generalization phenomenology ~ MNIST

* Can be studied analytically



Analytic study of the hidden manifold model

R
X = Z C.F ®
Correlated X

components
& .

N

Solvable limit = thermodynamic limit with extensive
latent dimension N — oo, R — oo, P — o0

With fixed R/N =+, P/N=a, K



Analytic study of the hidden manifold model

£ |y CF
T r=1

components ||d\

C.F
Correlated \

balanced:
F,; = O(1) N

% Y F,Fy =O0(1/VN)
%ZFMFM =1



Analytic study of the hidden manifold model

T —1

C.F
Correlated \
components

Xi = flug]

R
1
—= Z C,Fr;  Gaussian, weakly correlated O(1/V N)
— when F).; are balanced and O(1)

E (fluil flu;]) = <}f1(u)>2 + (uf (u)°E (uiuy)
u Gaussian N (0, 1)



Gaussian Equivalence Theorem (GET)

1 R
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Xi = [lui] id
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Wk

1
Inputs of hidden units: A= \/—N Z wff[uz]

N

GET: In the thermodynamic limit, the variables \*
have a Gaussian distribution, with covariance

E[N* )] = (c —a® — VYW 4 p?uke
1 12 - k ot Al
ENZw P E}%X}STST z::
c=(f(w)? a=(f(u) b=(uf(v)) u Gaussian N(0,1)

ﬂ\**



Gaussian Equivalence Theorem (GET)

R
1
Uy = —— CrF,,; Inputs of hidden units:
1 \/(ié ;%;; r+rTrt

N
E_ L NT R,
X; = flui v P

GET in a nutshell: in the thermodynamic limit (with
extensive latent dimension of the hidden manifold, i = V),
the inputs of hidden units have Gaussian distribution. Then

the model is solvable.

NB: F,; andw; are not necessarily random, but balanced

rir2...T'g

1
Sklemkp = \/—N Zwflwa...wprirlFiTQ...Firq = 0(1)



Gaussian Equivalence Theorem (GET)

R
1
Uy = —— CrF,,; Inputs of hidden units:
1 \/E 7;1 r+rTrt

N
E_ L NT R,
X; = flui v P

GET in a nutshell: in the thermodynamic limit (with
extensive latent dimension of the hidden manifold, i = V),
the inputs of hidden units have Gaussian distribution. Then

the model is solvable.
NB: depends on the manifold folding function /' only
through the three quantities

c=(f@?) a=(f(w) b= (uf(w)) u Gaussian N(0,1)

Any folding function [ is statistically equivalent to a quadratic one
f(u) = a+ Bu+yu®



Online learning of Hidden Manifold Model

W

O o Learn using a 2-layer neural
net, KX hidden units
K
5 (X) =3 g (a5 V)
‘/ K k=1 . | B B
N X=Ff ﬁ;@ﬂ

X = inside hidden R-dimensional manifold, folded by
function f

Desired output given constructed from latent

representation M R
O (X) =) 7 (Z w:ﬁ@)
1
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Online learning: ODE for SGD
Evolution of the weights during learning

~ (w}

"= jﬁAg'(W(ui)
A = Zg (A) — Zf](vm

New pattern (and therefore new latent representation (. )
at each time

(wf)“+1

GET: Aand V™ are Gaussian, and the learning dynamics
can be analyzed by ordinary differential equations for order

parameters like R
ke — L Z k, 0
1=1



Preliminary result

Perceptron, n=0.2

M Simulation
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Phase diagram of Hidden Manifold Model

W

O ) Learn using a 2-layer neural
k . .
net, K hidden units
K
d(X) = g (@ X/VN
o/ ()=3 o (- 21v7)
K . 1 B .
X=f|—=Y CF
LN Vi

X = inside hidden R-dimensional manifold, folded by
function f

Desired output given constructed from latent

representation M d
O (X) =) 3§ (Z w?@)
m=1 r=1

Learn from database of I patterns. P
Training error E=) c[®:(X,)— ®(X,)]
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Gardner’s computation: probability (or volume) that w;

compatible with the data {)ZM, @t(fu)}

/ H [dwk Py (wh)] e Zn «(®e(X)-2(X,))



Gardner’s computation: probability (or volume) that w;

compatible with the data {)ZM, @t(fu)}

/ H dwk Py (wh)] e S (@ (Ki) = 2(X,)

1
Compute N log Z averaged over the distribution of

latent components C,, , using replicas EcZ" ~ ¢

1

NW(n)



Gardner’s computation: probability (or volume) that w;

compatible with the data {)ZM, @t(fu)}

7 / TT [t Py ()] =8 S c(@e(Z)=#(X))
(N

1
Compute N log Z averaged over the distribution of
latent components C,,, using replicas EcZ" ~ e N¥(n)

1

ka

Committee with weights w;



n

7 / [T [k Pu ko)) e Fme 027D

1k a=1
K
o (Xﬂ) = Z g (lﬁka.Xu/\/N)
k=1

Natural variables = inputs to hidden neurons

1] B — 1 &
Ao — N e fl — N Oy V= — Y a™C,
- En ] | o -dbmes

=

GET =>These are joint Gaussian, with known covariance

EcZ™ = /H [dwfan(wfa)] HEA;V exp —ﬁZe (Z gv;') — Zg(AZ%)]
7 w,a m k

1ka

=>The replica computation can be done, for any€, 9,9 , K, M



In short

, : .k
Gardner’s computation: volume of space in w;
compatible with the data {XM, @t(fu)}

Evaluated with replicas

The volume can be written in terms of the local
input fields to the hidden variables, A" .

The GET shows that these are Gaussian variables,
independent for different patterns, correlated for
one given pattern. Finite number of correlations
between nk variables, so the computation can be
done.

Results... coming soon.



NB: Hidden manifold and random features

X —
Correlated
components
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NB: Hidden manifold and random features

. 1 < o
X=f|—=) CF,
1

_ R r=1 X i
Correlated
components iid

Connection between C, and X, : F;

Hidden manifold model = build patterns directly in feature
space, from iid coefficients in latent representation



NB: Hidden manifold and random features

R _
X=f|— C.F,
t L eru\ :

Correlated

components iid

Connexion to Montanari Mei
arXiv:1908.05335

R
Task @,(X) = Z@?Cr
r=1

Linear regression

& ()Z') — % X/VN

M R : o
2(X) = 3 (Zwa) with M =1

linear qg




NB: Hidden manifold and random features

R _
X=f|— C.F,
t L eru\ :

Correlated

components iid

Connexion to Montanari Mei
arXiv:1908.05335

R
Task @,(X) = Z@?Cr
r=1

Linear regression
& ()Z') — % X/VN

o,(X) = i J (i ’L’W@) with M =1 Linear regression of
linear g random features is a
special case of HMM




NB: Hidden manifold and random features

| R
X=7f|— C.F,
T f_ eru\ ]
Correlated

components iid

Connexion to Montanari Mei
arXiv:1908.05335

Linear regression



NB: Hidden manifold and random features

1 & ]

X = — C,.F.,

T f_ eru\ ]
Correlated

components iid

Connexion to Montanari Mei
arXiv:1908.05335

Linear regression
Statistically equivalent to a case where

5 & NB: applies also to the
Xy =a+ —= Z Curtri +Mpi case where Fri are not
VR X iid
r random (but they must
Consequence of GET and be « balanced »)

c=(f(w)? a={f(u) b= (uf(u))



summary Data structure is important

- Hidden manifolds and sub manifolds
- Combinatorial structure

Hidden Manifold Model
Data has « Latent representation »: {Cr}

Desired output (task) = function of latent representation

R R

— 1 —

Example =g u.C, X=f|—=) CF
P ’ ? r=1 R?"zl

* Does not have the pathologies of teacher-student setup
with iid data

* Learning and generalization phenomenology ~ MNIST

* Can be studied analytically : online learning and full batch
in the limit where R = O(N), thanks to a Gaussian
Equivalence property




