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High-dimensional non convex optimisation

e.g. Stochastic Gradient Descent for Machine Learning

Expected failure of GD for rough Risks with 
well-defined hard phase

The plan
reveal details of GD/landscape connection 
improve on GD (can it be versatile and competitive?) 
trace origin of well-defined hard phase
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Tensor PCA

Alike spin-glass model

Estimation of rank-one tensor from a noisy channel

Bayesian approach

Maximum likelihood estimate x
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Tensor PCA and generalisations
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Tensor PCA and generalisations

How is Risk landscape? 
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The Risk Landscape



Enumerating stationary points 

Kac-Rice formula to enumerate stationary points (at every risk level and latitude) 

hlogNN (E, q; r)i = lim

n!0

hN (E, q; r)ni � 1

n

Subag (2015)
Annealed computation not always matching the quenched (correct) result

> Structure of stationary points

Introduction of Replicas (a formidable task)!
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Generalised Tensor PCA: the rough landscape

Showing the latitude range for which a band of minima exist
Cavagna, Garrahan, Giardina (1999)k=1 k=2
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Generalised Tensor PCA: the rough landscape

Showing the latitude range for which a band of minima exist
Cavagna, Garrahan, Giardina (1999)
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 A first dynamical perspective
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Gradient Flow & Langevin



Mixed matrix-tensor PCA

H
tot

= Hp=2,k=2

+Hp=3,k=3

Approximate Message Passing much better than Langevin
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Fig. 5. Behaviour of the correlation with the signal in Langevin algorithm where the
tensor-related temperature T

p

is annealed as T
p

(t) = 1 +

C

�
p

e≠t/·ann with
C = 100 in the Langevin-hard regime with �2 = 0.70, �

p

= 0.10. We show
the behavior for several rates · (solid lines) and compare to the quenched Langevin
algorithm (dashed line close to zero), and to the value reached by AMP for the full
model (upper dotted line) and for the pure matrix model (lower dotted line). We see
that unless the annealing is very fast, it reaches the AMP value. When the annealing
is very slow it takes time to reach the AMP value.

vergence to equilibrium. This is particularly striking given
that for AMP it has been proven in (7) that mismatching the
parameters can never improve the performance.

8. Perspectives

In this work we have investigated the performances of the
Langevin algorithm considered as a tool to sample the posterior
measure in the spiked matrix-tensor model. We have shown
that the Langevin algorithm fails to find the signal in part of
the AMP-easy region. Our analysis is based on the Langevin
State Evolution equations that describe the evolution of the
algorithm in the large size limit.

In this work we managed to find the landscape-annealing
protocol under which the Langevin algorithm is able to match
the performance of AMP by relying on knowledge about gen-
erative model. It would be an interesting direction for future
work to investigate whether the performance of the Langevin
algorithm can be improved with some model-blind manner.

While we studied here the spiked matrix-tensor model, we
expect that our findings are universal because they are due
to the glassiness of the hard phase and therefore should apply
to any local sampling dynamics, e.g. to Monte Carlo Markov
chains. An interesting extension of this work would investigate
algorithms closer to stochastic gradient descent and models
closer to current neural network architectures.
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for this problem. AMP is an iterative algorithm inspired
from the work of Thouless-Anderson and Palmer in sta-
tistical physics [38]. We explicit its form in the Appendix
Sec. B 1. Most remarkably performance of AMP can be
evaluated by tracking its evolution with the iteration time
and it is given in terms of the (possibly local) maximum
of the above free entropy that is reached as a fixed point
of the following iterative process

mt+1 = 1� 1

1 + mt/�
2

+ (mt)p�1/�p
(6)

with initial condition mt=0 = ✏ with 0 < ✏ ⌧ 1. Eq. (6)
is called the State Evolution of AMP and its validity is
proven for closely related models in [39]. We denote the
corresponding fixed point m

AMP

and the corresponding
estimation error MSE

AMP

= 1� m
AMP

.
The phase diagram presented in Fig. 1 summarizes this

theory for the spiked 2 + 3-spin model. It is deduced by
investigating the local maxima of the scalar function (5).
Notably we observe that the phase diagram in terms of
�

2

and �p splits into three phases

• Easy in green for �
2

< 1 and any �p: The fixed
point of the state evolution (6) is the global maxi-
mizer of the free entropy (5), and m⇤ = m

AMP

> 0.

• Hard in orange for�
2

> 1 and low�p < �IT

p (�
2

):
The fixed point of the state evolution (6) is not
the global maximizer of the free entropy (5), and
m⇤ > m

AMP

= 0.

• Impossible in red for �
2

> 1 and high �p >
�IT

p (�
2

): The fixed point of the state evolution
(6) is the global maximizer of the free entropy (5),
and m⇤ = m

AMP

= 0.

For the 2 + p-spin model with p > 3 the phase dia-
gram is slightly richer and is presented in the Appendix
Sec. D 4.

IV. LANGEVIN ALGORITHM AND ITS
ANALYSIS

We now turn to the core of the paper and the analysis
of the Langevin algorithm. In statistics, the most com-
monly used way to compute the Bayes-optimal estimator
(3) is to attempt to sample the posterior distribution (2)
and use several independent samples to compute the ex-
pectation in (3). In order to do that one needs to set up a
stochastic dynamics on x that has a stationary measure
at long times given by the posterior measure (2). The
Langevin algorithm is one of the possibilities (others in-
clude notably Monte Carlo Markov chain). The common
bottleneck is that the time needed to achieve stationarity
can be in general exponential in the system size. In which
case the algorithm is practically useless. However, this
is not always the case and there are regions in param-
eter space where one can expect that the relaxation to

FIG. 1. Phase diagram of the spiked 2+3-spin model (matrix
plus order 3 tensor are observed). In the easy (green) region
AMP achieves the optimal error smaller than random pick
from the prior. In the impossible region (red) the optimal er-
ror is as bad as random pick from the prior, and AMP achieves
it as well. In the hard region (orange) the optimal error is low,
but AMP does not find an estimator better than random pick
from the prior. In the case of Langevin algorithm the perfor-
mance is strictly worse than that for AMP in the sense that
the hard region increases up to line 1/�⇤

2 = max(1,
p

�3/2),
depicted in green dots. The green circles are obtained by nu-
merical extrapolation of the Langevin state evolution equa-
tions.

the posterior measure happens on tractable timescales.
Therefore it is crucial to understand where this happens
and what are the associated relaxation timescales.
The Langevin algorithm on the hypersphere with

Hamiltonian given by Eq. (4) reads

ẋi(t) = �µ(t)xi(t)�
@H
@xi

+ ⌘i(t) , (7)

where ⌘i(t) is a zero mean noise term, with h⌘i(t)⌘j(t0)i =
2�ij�(t � t0) where the average h·i is with respect to the
realizations of the noise. The Lagrange multiplier µ(t)
is chosen in such a way that the dynamics remains on
the hypersphere. In the large N -limit one finds µ(t) =
1�2H

2

(t)�pHp(t) where the H2

(t) is the 1st term from
(4) evaluated at x(t), and Hp(t) is the value of the 2nd
term from (4).
The presented spiked matrix-tensor model falls into the

particular class of spherical 2+ p-spin glasses [40, 41] for
which the performance of the Langevin algorithm can be
tracked exactly in the large-N limit via a set of integro-
partial di↵erential equations [26, 27], beforehand dubbed
CHSCK. We call this generalised version of the CHSCK
equations Langevin State Evolution (LSE) equations in
analogy with the state evolution of AMP.

In order to write the LSE equations, we defined three
dynamical correlation functions

CN (t, t0) ⌘ 1

N

PN
i=1

xi(t)xi(t0) , (8)

CN (t) ⌘ 1

N

PN
i=1

xi(t)x⇤
i , (9)

RN (t, t0) ⌘ 1

N

PN
i=1

@xi(t)/@hi(t0)|h
i

=0

, (10)

hW 2
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hZ2
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Fig. 5. Behaviour of the correlation with the signal in Langevin algorithm where the
tensor-related temperature T

p

is annealed as T
p

(t) = 1 +

C

�
p

e≠t/·ann with
C = 100 in the Langevin-hard regime with �2 = 0.70, �

p

= 0.10. We show
the behavior for several rates · (solid lines) and compare to the quenched Langevin
algorithm (dashed line close to zero), and to the value reached by AMP for the full
model (upper dotted line) and for the pure matrix model (lower dotted line). We see
that unless the annealing is very fast, it reaches the AMP value. When the annealing
is very slow it takes time to reach the AMP value.

vergence to equilibrium. This is particularly striking given
that for AMP it has been proven in (7) that mismatching the
parameters can never improve the performance.

8. Perspectives

In this work we have investigated the performances of the
Langevin algorithm considered as a tool to sample the posterior
measure in the spiked matrix-tensor model. We have shown
that the Langevin algorithm fails to find the signal in part of
the AMP-easy region. Our analysis is based on the Langevin
State Evolution equations that describe the evolution of the
algorithm in the large size limit.

In this work we managed to find the landscape-annealing
protocol under which the Langevin algorithm is able to match
the performance of AMP by relying on knowledge about gen-
erative model. It would be an interesting direction for future
work to investigate whether the performance of the Langevin
algorithm can be improved with some model-blind manner.

While we studied here the spiked matrix-tensor model, we
expect that our findings are universal because they are due
to the glassiness of the hard phase and therefore should apply
to any local sampling dynamics, e.g. to Monte Carlo Markov
chains. An interesting extension of this work would investigate
algorithms closer to stochastic gradient descent and models
closer to current neural network architectures.
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for this problem. AMP is an iterative algorithm inspired
from the work of Thouless-Anderson and Palmer in sta-
tistical physics [38]. We explicit its form in the Appendix
Sec. B 1. Most remarkably performance of AMP can be
evaluated by tracking its evolution with the iteration time
and it is given in terms of the (possibly local) maximum
of the above free entropy that is reached as a fixed point
of the following iterative process

mt+1 = 1� 1

1 + mt/�
2

+ (mt)p�1/�p
(6)

with initial condition mt=0 = ✏ with 0 < ✏ ⌧ 1. Eq. (6)
is called the State Evolution of AMP and its validity is
proven for closely related models in [39]. We denote the
corresponding fixed point m

AMP

and the corresponding
estimation error MSE

AMP

= 1� m
AMP

.
The phase diagram presented in Fig. 1 summarizes this

theory for the spiked 2 + 3-spin model. It is deduced by
investigating the local maxima of the scalar function (5).
Notably we observe that the phase diagram in terms of
�

2

and �p splits into three phases

• Easy in green for �
2

< 1 and any �p: The fixed
point of the state evolution (6) is the global maxi-
mizer of the free entropy (5), and m⇤ = m
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The fixed point of the state evolution (6) is not
the global maximizer of the free entropy (5), and
m⇤ > m

AMP

= 0.

• Impossible in red for �
2

> 1 and high �p >
�IT

p (�
2

): The fixed point of the state evolution
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For the 2 + p-spin model with p > 3 the phase dia-
gram is slightly richer and is presented in the Appendix
Sec. D 4.

IV. LANGEVIN ALGORITHM AND ITS
ANALYSIS

We now turn to the core of the paper and the analysis
of the Langevin algorithm. In statistics, the most com-
monly used way to compute the Bayes-optimal estimator
(3) is to attempt to sample the posterior distribution (2)
and use several independent samples to compute the ex-
pectation in (3). In order to do that one needs to set up a
stochastic dynamics on x that has a stationary measure
at long times given by the posterior measure (2). The
Langevin algorithm is one of the possibilities (others in-
clude notably Monte Carlo Markov chain). The common
bottleneck is that the time needed to achieve stationarity
can be in general exponential in the system size. In which
case the algorithm is practically useless. However, this
is not always the case and there are regions in param-
eter space where one can expect that the relaxation to

FIG. 1. Phase diagram of the spiked 2+3-spin model (matrix
plus order 3 tensor are observed). In the easy (green) region
AMP achieves the optimal error smaller than random pick
from the prior. In the impossible region (red) the optimal er-
ror is as bad as random pick from the prior, and AMP achieves
it as well. In the hard region (orange) the optimal error is low,
but AMP does not find an estimator better than random pick
from the prior. In the case of Langevin algorithm the perfor-
mance is strictly worse than that for AMP in the sense that
the hard region increases up to line 1/�⇤

2 = max(1,
p

�3/2),
depicted in green dots. The green circles are obtained by nu-
merical extrapolation of the Langevin state evolution equa-
tions.

the posterior measure happens on tractable timescales.
Therefore it is crucial to understand where this happens
and what are the associated relaxation timescales.
The Langevin algorithm on the hypersphere with

Hamiltonian given by Eq. (4) reads

ẋi(t) = �µ(t)xi(t)�
@H
@xi

+ ⌘i(t) , (7)

where ⌘i(t) is a zero mean noise term, with h⌘i(t)⌘j(t0)i =
2�ij�(t � t0) where the average h·i is with respect to the
realizations of the noise. The Lagrange multiplier µ(t)
is chosen in such a way that the dynamics remains on
the hypersphere. In the large N -limit one finds µ(t) =
1�2H

2

(t)�pHp(t) where the H2

(t) is the 1st term from
(4) evaluated at x(t), and Hp(t) is the value of the 2nd
term from (4).
The presented spiked matrix-tensor model falls into the

particular class of spherical 2+ p-spin glasses [40, 41] for
which the performance of the Langevin algorithm can be
tracked exactly in the large-N limit via a set of integro-
partial di↵erential equations [26, 27], beforehand dubbed
CHSCK. We call this generalised version of the CHSCK
equations Langevin State Evolution (LSE) equations in
analogy with the state evolution of AMP.

In order to write the LSE equations, we defined three
dynamical correlation functions
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Fig. 5. Behaviour of the correlation with the signal in Langevin algorithm where the
tensor-related temperature T
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is annealed as T
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(t) = 1 +

C

�
p

e≠t/·ann with
C = 100 in the Langevin-hard regime with �2 = 0.70, �

p

= 0.10. We show
the behavior for several rates · (solid lines) and compare to the quenched Langevin
algorithm (dashed line close to zero), and to the value reached by AMP for the full
model (upper dotted line) and for the pure matrix model (lower dotted line). We see
that unless the annealing is very fast, it reaches the AMP value. When the annealing
is very slow it takes time to reach the AMP value.

vergence to equilibrium. This is particularly striking given
that for AMP it has been proven in (7) that mismatching the
parameters can never improve the performance.

8. Perspectives

In this work we have investigated the performances of the
Langevin algorithm considered as a tool to sample the posterior
measure in the spiked matrix-tensor model. We have shown
that the Langevin algorithm fails to find the signal in part of
the AMP-easy region. Our analysis is based on the Langevin
State Evolution equations that describe the evolution of the
algorithm in the large size limit.

In this work we managed to find the landscape-annealing
protocol under which the Langevin algorithm is able to match
the performance of AMP by relying on knowledge about gen-
erative model. It would be an interesting direction for future
work to investigate whether the performance of the Langevin
algorithm can be improved with some model-blind manner.

While we studied here the spiked matrix-tensor model, we
expect that our findings are universal because they are due
to the glassiness of the hard phase and therefore should apply
to any local sampling dynamics, e.g. to Monte Carlo Markov
chains. An interesting extension of this work would investigate
algorithms closer to stochastic gradient descent and models
closer to current neural network architectures.
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for this problem. AMP is an iterative algorithm inspired
from the work of Thouless-Anderson and Palmer in sta-
tistical physics [38]. We explicit its form in the Appendix
Sec. B 1. Most remarkably performance of AMP can be
evaluated by tracking its evolution with the iteration time
and it is given in terms of the (possibly local) maximum
of the above free entropy that is reached as a fixed point
of the following iterative process

mt+1 = 1� 1

1 + mt/�
2

+ (mt)p�1/�p
(6)

with initial condition mt=0 = ✏ with 0 < ✏ ⌧ 1. Eq. (6)
is called the State Evolution of AMP and its validity is
proven for closely related models in [39]. We denote the
corresponding fixed point m

AMP

and the corresponding
estimation error MSE

AMP

= 1� m
AMP

.
The phase diagram presented in Fig. 1 summarizes this

theory for the spiked 2 + 3-spin model. It is deduced by
investigating the local maxima of the scalar function (5).
Notably we observe that the phase diagram in terms of
�

2

and �p splits into three phases

• Easy in green for �
2

< 1 and any �p: The fixed
point of the state evolution (6) is the global maxi-
mizer of the free entropy (5), and m⇤ = m

AMP

> 0.

• Hard in orange for�
2

> 1 and low�p < �IT

p (�
2

):
The fixed point of the state evolution (6) is not
the global maximizer of the free entropy (5), and
m⇤ > m

AMP

= 0.

• Impossible in red for �
2

> 1 and high �p >
�IT

p (�
2

): The fixed point of the state evolution
(6) is the global maximizer of the free entropy (5),
and m⇤ = m

AMP

= 0.

For the 2 + p-spin model with p > 3 the phase dia-
gram is slightly richer and is presented in the Appendix
Sec. D 4.

IV. LANGEVIN ALGORITHM AND ITS
ANALYSIS

We now turn to the core of the paper and the analysis
of the Langevin algorithm. In statistics, the most com-
monly used way to compute the Bayes-optimal estimator
(3) is to attempt to sample the posterior distribution (2)
and use several independent samples to compute the ex-
pectation in (3). In order to do that one needs to set up a
stochastic dynamics on x that has a stationary measure
at long times given by the posterior measure (2). The
Langevin algorithm is one of the possibilities (others in-
clude notably Monte Carlo Markov chain). The common
bottleneck is that the time needed to achieve stationarity
can be in general exponential in the system size. In which
case the algorithm is practically useless. However, this
is not always the case and there are regions in param-
eter space where one can expect that the relaxation to

FIG. 1. Phase diagram of the spiked 2+3-spin model (matrix
plus order 3 tensor are observed). In the easy (green) region
AMP achieves the optimal error smaller than random pick
from the prior. In the impossible region (red) the optimal er-
ror is as bad as random pick from the prior, and AMP achieves
it as well. In the hard region (orange) the optimal error is low,
but AMP does not find an estimator better than random pick
from the prior. In the case of Langevin algorithm the perfor-
mance is strictly worse than that for AMP in the sense that
the hard region increases up to line 1/�⇤

2 = max(1,
p

�3/2),
depicted in green dots. The green circles are obtained by nu-
merical extrapolation of the Langevin state evolution equa-
tions.

the posterior measure happens on tractable timescales.
Therefore it is crucial to understand where this happens
and what are the associated relaxation timescales.
The Langevin algorithm on the hypersphere with

Hamiltonian given by Eq. (4) reads

ẋi(t) = �µ(t)xi(t)�
@H
@xi

+ ⌘i(t) , (7)

where ⌘i(t) is a zero mean noise term, with h⌘i(t)⌘j(t0)i =
2�ij�(t � t0) where the average h·i is with respect to the
realizations of the noise. The Lagrange multiplier µ(t)
is chosen in such a way that the dynamics remains on
the hypersphere. In the large N -limit one finds µ(t) =
1�2H

2

(t)�pHp(t) where the H2

(t) is the 1st term from
(4) evaluated at x(t), and Hp(t) is the value of the 2nd
term from (4).
The presented spiked matrix-tensor model falls into the

particular class of spherical 2+ p-spin glasses [40, 41] for
which the performance of the Langevin algorithm can be
tracked exactly in the large-N limit via a set of integro-
partial di↵erential equations [26, 27], beforehand dubbed
CHSCK. We call this generalised version of the CHSCK
equations Langevin State Evolution (LSE) equations in
analogy with the state evolution of AMP.

In order to write the LSE equations, we defined three
dynamical correlation functions
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Figure 1: The figure summarizes the main results of this paper for the spiked matrix-tensor model with p = 3
(left) and p = 4 (right). As a function of the tensor-noise parameter �

p

on the x-axes, we plot the values of
1/�

2

above which the following happens (from above): Above �triv

2

(the dashed purple line) the landscape of
the problem becomes trivial in the sence that all spurious local minima disappear. Above �GF

2

(the dotted blue
line) and �ML�AMP

2

(the full cyan line), Eq. (32), the gradient flow and the ML-AMP algorithm, respectively,
converge close to the ground truth signal in time linear in the input size. While the results for Kac-Rice and
ML-AMP are given in a closed form, the ones for GF are obtained by extrapolating a convergence time obtained
by numerical solution of integro-di↵erential equations that describe large size behaviour of the GF. We note
that all the three lines �triv

2

, �GF

2

, and �ML�AMP

2

converge to 1 as �
p

! 1, consistently with the spiked
matrix model. These three lines, related to minimization of the landscape, and their mutual positions, are
the main result of this paper. The colors in the background, separated by the black dashed-dotted lines, show
for comparison the phase diagram for the Bayes-optimal inference, related to the ability to approximate the
marginals of the corresponding posterior probability distribution, and are taken from [1]. In the red region
obtaining a positive correlation with the signal in information-theoretically impossible. In the green region it is
possible to obtain optimal correlation with the signal using the Bayes-optimal AMP (BO-AMP). And in the
orange the region the BO-AMP is not able to reach the Bayes-optimal performance.

then obtain two types of observations about the signal, a symmetric matrix Y , and an order p symmetric tensor
T , that given the signal x⇤ are obtained as

Y
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 N , using and symmetries to obtain the other non-diagonal
components. Here ⇠

ij

and ⇠
i1,...,ip are for each i < j and each i

1

< · · · < i
p

independent Gaussian random
numbers of zero mean and variance �

2

and �
p

, respectively.
The goal in this spiked matrix-tensor inference problem is to estimate the signal x⇤ from the knowledge

of the matrix Y and tensor T . If only the matrix was present, this model reduces to well known model of
low-rank perturbation of a random symmetric matrix, closely related to the spiked covariance model [15]. If on
the contrary only the tensor is observed then the above model reduces to the spiked tensor model as introduced
in [16] and studies in a range of subsequent papers.

In this paper we study the matrix-tensor model where the two observations are combined. Our motivation
is similar to the one exposed in [1], that is, we aim to access a regime in which it is algorithmically tractable
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obtaining a positive correlation with the signal in information-theoretically impossible. In the green region it is
possible to obtain optimal correlation with the signal using the Bayes-optimal AMP (BO-AMP). And in the
orange the region the BO-AMP is not able to reach the Bayes-optimal performance.

then obtain two types of observations about the signal, a symmetric matrix Y , and an order p symmetric tensor
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The goal in this spiked matrix-tensor inference problem is to estimate the signal x⇤ from the knowledge

of the matrix Y and tensor T . If only the matrix was present, this model reduces to well known model of
low-rank perturbation of a random symmetric matrix, closely related to the spiked covariance model [15]. If on
the contrary only the tensor is observed then the above model reduces to the spiked tensor model as introduced
in [16] and studies in a range of subsequent papers.

In this paper we study the matrix-tensor model where the two observations are combined. Our motivation
is similar to the one exposed in [1], that is, we aim to access a regime in which it is algorithmically tractable
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The horizontal dotted lines correspond to value of the threshold energy ‘th, as derived both from the Kac-Rice
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Left panel: Eigenvalue distribution of the Hessian of the threshold states for the same set of parameters. When
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spiked matrix-tensor model [20,21] the above quantities satisfy:
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with initial conditions C(t, t) = 1 ’t and R(t, tÕ) = 0 for all t < tÕ and lim
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Õæt

≠ R(t, tÕ) = 1 ’t. The additional
function µ(t), and its associated equation, are due to the spherical constraint; µ(t) plays the role of a Lagrange
multiplier and guarantees that the solution of the previous equations is such that C(t, t) = 1. The derivation of
these equations can be found in [21] and in the SM Sec. B. It is obtained using heuristic theoretical physics
approach and can be very plausibly made fully rigorous generalising the work of [26,31].

This set of equations can be solved numerically as described in [21]. The numerical estimation of the
algorithmic threshold of gradient-flow, reproduced in Fig. 2, was obtained in [20]. We have also directly simulated
the gradient flow Eq. (4) and compare the result to the one obtained from solving Eqs. (8-11). As shown in the
SM Sec. C, for N = 65535, we find a very good agreement even for this large yet finite size.

Surfing on saddles: Armed with the dynamical equations, we now confirm the prediction of the threshold
(5) based on the Kac-Rice-type of landscape analysis. In the SM we check that the minima trapping the dynamics
are indeed the marginally stable ones (t = 2), see Figs. 7 and 8 in the SM, and we show the energy can be
expressed in terms of C, R and m. In the right panel of Fig. 4 we then plot the energy as a function of time
obtained from the numerical solution of Eqs. (8-11) for 1/�2 = 1.5, 1.9, 2.3, 2.7 and �

p

= 1 (same points and
colour code of Figs. 2 and 3). For the two smaller values of 1/�2 the energy converges to a plateau value at ‘th
(dotted line), whereas for 1/�2 = 2.3, 2.7 the energy plateaus close to ‘th but then eventually drifts away and
reaches a lower value, corresponding to the global minimum correlated with the signal. This behaviour can be
understood in terms of the spectral properties of the Hessian (6) of the minima trapping the dynamics. In the left
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obtaining a positive correlation with the signal in information-theoretically impossible. In the green region it is
possible to obtain optimal correlation with the signal using the Bayes-optimal AMP (BO-AMP). And in the
orange the region the BO-AMP is not able to reach the Bayes-optimal performance.
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multiplier and guarantees that the solution of the previous equations is such that C(t, t) = 1. The derivation of
these equations can be found in [21] and in the SM Sec. B. It is obtained using heuristic theoretical physics
approach and can be very plausibly made fully rigorous generalising the work of [26,31].

This set of equations can be solved numerically as described in [21]. The numerical estimation of the
algorithmic threshold of gradient-flow, reproduced in Fig. 2, was obtained in [20]. We have also directly simulated
the gradient flow Eq. (4) and compare the result to the one obtained from solving Eqs. (8-11). As shown in the
SM Sec. C, for N = 65535, we find a very good agreement even for this large yet finite size.
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for comparison the phase diagram for the Bayes-optimal inference, related to the ability to approximate the
marginals of the corresponding posterior probability distribution, and are taken from [1]. In the red region
obtaining a positive correlation with the signal in information-theoretically impossible. In the green region it is
possible to obtain optimal correlation with the signal using the Bayes-optimal AMP (BO-AMP). And in the
orange the region the BO-AMP is not able to reach the Bayes-optimal performance.
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of the matrix Y and tensor T . If only the matrix was present, this model reduces to well known model of
low-rank perturbation of a random symmetric matrix, closely related to the spiked covariance model [15]. If on
the contrary only the tensor is observed then the above model reduces to the spiked tensor model as introduced
in [16] and studies in a range of subsequent papers.

In this paper we study the matrix-tensor model where the two observations are combined. Our motivation
is similar to the one exposed in [1], that is, we aim to access a regime in which it is algorithmically tractable
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The horizontal dotted lines correspond to value of the threshold energy ‘th, as derived both from the Kac-Rice
approach in Appendix Sec. A.2.3 and from the large time behaviour of the dynamics in Appendix Sec. B.2.6.
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Concomitantly, the energy as a function of time first approaches the plateau and eventually departs from it and
reaches the energy of the global minimum.
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≠ R(t, tÕ) = 1 ’t. The additional
function µ(t), and its associated equation, are due to the spherical constraint; µ(t) plays the role of a Lagrange
multiplier and guarantees that the solution of the previous equations is such that C(t, t) = 1. The derivation of
these equations can be found in [21] and in the SM Sec. B. It is obtained using heuristic theoretical physics
approach and can be very plausibly made fully rigorous generalising the work of [26,31].

This set of equations can be solved numerically as described in [21]. The numerical estimation of the
algorithmic threshold of gradient-flow, reproduced in Fig. 2, was obtained in [20]. We have also directly simulated
the gradient flow Eq. (4) and compare the result to the one obtained from solving Eqs. (8-11). As shown in the
SM Sec. C, for N = 65535, we find a very good agreement even for this large yet finite size.

Surfing on saddles: Armed with the dynamical equations, we now confirm the prediction of the threshold
(5) based on the Kac-Rice-type of landscape analysis. In the SM we check that the minima trapping the dynamics
are indeed the marginally stable ones (t = 2), see Figs. 7 and 8 in the SM, and we show the energy can be
expressed in terms of C, R and m. In the right panel of Fig. 4 we then plot the energy as a function of time
obtained from the numerical solution of Eqs. (8-11) for 1/�2 = 1.5, 1.9, 2.3, 2.7 and �
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obtaining a positive correlation with the signal in information-theoretically impossible. In the green region it is
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Figure 4: Right panel: energy as a function of time for the set of parameters indicated by small circles in Fig. 2.
The horizontal dotted lines correspond to value of the threshold energy ‘th, as derived both from the Kac-Rice
approach in Appendix Sec. A.2.3 and from the large time behaviour of the dynamics in Appendix Sec. B.2.6.
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1/�2 becomes smaller than 2 an isolated eigenvalue appears; it has been highlighted using vertical arrows.
Concomitantly, the energy as a function of time first approaches the plateau and eventually departs from it and
reaches the energy of the global minimum.
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Figure 1: The figure summarizes the main results of this paper for the spiked matrix-tensor model with p = 3
(left) and p = 4 (right). As a function of the tensor-noise parameter �

p

on the x-axes, we plot the values of
1/�

2

above which the following happens (from above): Above �triv

2

(the dashed purple line) the landscape of
the problem becomes trivial in the sence that all spurious local minima disappear. Above �GF

2

(the dotted blue
line) and �ML�AMP

2

(the full cyan line), Eq. (32), the gradient flow and the ML-AMP algorithm, respectively,
converge close to the ground truth signal in time linear in the input size. While the results for Kac-Rice and
ML-AMP are given in a closed form, the ones for GF are obtained by extrapolating a convergence time obtained
by numerical solution of integro-di↵erential equations that describe large size behaviour of the GF. We note
that all the three lines �triv

2

, �GF

2

, and �ML�AMP

2

converge to 1 as �
p

! 1, consistently with the spiked
matrix model. These three lines, related to minimization of the landscape, and their mutual positions, are
the main result of this paper. The colors in the background, separated by the black dashed-dotted lines, show
for comparison the phase diagram for the Bayes-optimal inference, related to the ability to approximate the
marginals of the corresponding posterior probability distribution, and are taken from [1]. In the red region
obtaining a positive correlation with the signal in information-theoretically impossible. In the green region it is
possible to obtain optimal correlation with the signal using the Bayes-optimal AMP (BO-AMP). And in the
orange the region the BO-AMP is not able to reach the Bayes-optimal performance.

then obtain two types of observations about the signal, a symmetric matrix Y , and an order p symmetric tensor
T , that given the signal x⇤ are obtained as

Y
ij

=
x⇤
i

x⇤
jp

N
+ ⇠

ij

, (1)

T
i1,...,ip =

p
(p� 1)!

N (p�1)/2

x⇤
i1
. . . x⇤

i

p

+ ⇠
i1,...,ip (2)

for 1  i < j  N and 1  i
1

< · · · < i
p

 N , using and symmetries to obtain the other non-diagonal
components. Here ⇠

ij

and ⇠
i1,...,ip are for each i < j and each i

1

< · · · < i
p

independent Gaussian random
numbers of zero mean and variance �

2

and �
p

, respectively.
The goal in this spiked matrix-tensor inference problem is to estimate the signal x⇤ from the knowledge

of the matrix Y and tensor T . If only the matrix was present, this model reduces to well known model of
low-rank perturbation of a random symmetric matrix, closely related to the spiked covariance model [15]. If on
the contrary only the tensor is observed then the above model reduces to the spiked tensor model as introduced
in [16] and studies in a range of subsequent papers.

In this paper we study the matrix-tensor model where the two observations are combined. Our motivation
is similar to the one exposed in [1], that is, we aim to access a regime in which it is algorithmically tractable
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Figure 4: Right panel: energy as a function of time for the set of parameters indicated by small circles in Fig. 2.
The horizontal dotted lines correspond to value of the threshold energy ‘th, as derived both from the Kac-Rice
approach in Appendix Sec. A.2.3 and from the large time behaviour of the dynamics in Appendix Sec. B.2.6.
Left panel: Eigenvalue distribution of the Hessian of the threshold states for the same set of parameters. When
1/�2 becomes smaller than 2 an isolated eigenvalue appears; it has been highlighted using vertical arrows.
Concomitantly, the energy as a function of time first approaches the plateau and eventually departs from it and
reaches the energy of the global minimum.

spiked matrix-tensor model [20,21] the above quantities satisfy:

ˆ

ˆt
C(t, tÕ) = ≠µ(t) C(t, tÕ) + QÕ(m(t))m(tÕ) +

⁄
t

0
R(t, tÕÕ)QÕÕ(C(t, tÕÕ))C(tÕ, tÕÕ)dtÕÕ

+
⁄

t

Õ

0
R(tÕ, tÕÕ)QÕ(C(t, tÕÕ))dtÕÕ ,

(8)

ˆ

ˆt
R(t, tÕ) = ≠µ(t) R(t, tÕ) +

⁄
t

t

Õ
R(t, tÕÕ)QÕÕ(C(t, tÕÕ))R(tÕÕ, tÕ)dtÕÕ , (9)

d

dt
m(t) = ≠µ(t) m(t) + QÕ(m(t)) +

⁄
t

0
R(t, tÕÕ)m(tÕÕ)QÕÕ(C(t, tÕÕ))dtÕÕ , (10)

µ(t) = QÕ(m(t))m(t) +
⁄

t

0
R(t, tÕÕ)

#
QÕ(C(t, tÕÕ)) + QÕÕ(C(t, tÕÕ)) C(t, tÕÕ)

$
dtÕÕ , (11)

with initial conditions C(t, t) = 1 ’t and R(t, tÕ) = 0 for all t < tÕ and lim
t

Õæt

≠ R(t, tÕ) = 1 ’t. The additional
function µ(t), and its associated equation, are due to the spherical constraint; µ(t) plays the role of a Lagrange
multiplier and guarantees that the solution of the previous equations is such that C(t, t) = 1. The derivation of
these equations can be found in [21] and in the SM Sec. B. It is obtained using heuristic theoretical physics
approach and can be very plausibly made fully rigorous generalising the work of [26,31].

This set of equations can be solved numerically as described in [21]. The numerical estimation of the
algorithmic threshold of gradient-flow, reproduced in Fig. 2, was obtained in [20]. We have also directly simulated
the gradient flow Eq. (4) and compare the result to the one obtained from solving Eqs. (8-11). As shown in the
SM Sec. C, for N = 65535, we find a very good agreement even for this large yet finite size.

Surfing on saddles: Armed with the dynamical equations, we now confirm the prediction of the threshold
(5) based on the Kac-Rice-type of landscape analysis. In the SM we check that the minima trapping the dynamics
are indeed the marginally stable ones (t = 2), see Figs. 7 and 8 in the SM, and we show the energy can be
expressed in terms of C, R and m. In the right panel of Fig. 4 we then plot the energy as a function of time
obtained from the numerical solution of Eqs. (8-11) for 1/�2 = 1.5, 1.9, 2.3, 2.7 and �

p

= 1 (same points and
colour code of Figs. 2 and 3). For the two smaller values of 1/�2 the energy converges to a plateau value at ‘th
(dotted line), whereas for 1/�2 = 2.3, 2.7 the energy plateaus close to ‘th but then eventually drifts away and
reaches a lower value, corresponding to the global minimum correlated with the signal. This behaviour can be
understood in terms of the spectral properties of the Hessian (6) of the minima trapping the dynamics. In the left
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A traditional way to Iron the landscape -> Big Data!

Each data point carries an independent
realisation of the noise component

What if only one data point is available?

IDEA: use the fact that noise could be uncorrelated in different regions of the landscape

Central Limit Theorem will do the rest

x(t+�t) = x(t)� ⌘r
x

L

L(x) = 1

M

MX

↵=1

`(x;X↵, Y ↵)

`(x;X1, Y 1) = H(x)

Ironing the landscape
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algorithms based on similar ideas: Anandkumar Deng Ge and Mobahi (2016) 
                                 Baldassi et al. (2016)
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Figure 2: Left: at the end of the first dynamical regime RGD achieves an overlap with
the signal larger or equal to the one achieved by SRGD. Right: A schematic picture of
the trajectories followed by RGD, represented by r = ||x

CM

||
2

/
p
N and the overlap m

with the signal.

Algorithmic threshold and threshold phenomenon. In Figure 1 (left panel) we show
the mean overlap with the signal, m

II

, achieved at the end of the algorithm (either
for RGD or SRGD) as a function of the signal to noise ratio �. In the right panel we
show that a threshold phenomena (a phase transition) is taking place in the large N
limit on the scale � ⇠ N (k�2)/4

= N1/4. It is worth noticing, as shown in the left panel,
that both version of the algorithm, RGD and SRGD, do achieve the same final mean
overlap with the signal. For this reason in the right panel we have re-scaled only the
data obtained via RGD. In the right panel we also mark with a vertical line our best
estimation for the critical threshold �

c

' 0.37N1/4. Finally, the inset shows the same
results plotted as a function of �� 0.37N1/4. This highlights that the size of the critical
window around the algorithmic threshold �

c

' 0.37N1/4 is almost N independent.
Comparison between RGD and SRGD. Although the final overlap achieved by the

two versions of the algorithm is the same, the dynamics followed by the algorithms in
the first regime is very different (see previous section for the distinction of two regimes
in the dynamics). While in the SRGD algorithm the center of mass takes a straight path
to the surface of the sphere of radius

p
N , in the RGD algorithm the center of mass

moves according to the mean gradient at each time and thus follows a curved trajectory
determined by the landscape. A priori it is unclear which dynamics is better; we offer
an insight by measuring the evolution of the center of mass during and at the end of the
first regime.
In the left panel of Figure 2 we report the mean overlap hm

I

i achieved at the end of the
first phase by the RGD and SRGD algorithms. We clearly see that the dynamics followed
by the RGD algorithm reaches a larger overlap. Therefore a natural question arises:
how can SRGD achieve the same accuracy in detection than RGD although it starts
from a lower value of m

I

? While trying to answer this question, we notice an important
difference between the two dynamics in the first phase: although both depend on the
landscape, they feel the landscape in a quite different way. In the SRGD algorithm the
mean gradient is computed only once at the beginning. Then a straight path is followed
until the center of mass hits the sphere. In this sense the algorithm in its first regime
should be considered as a strongly out of equilibrium process that feels little of the
original landscape and thus ends on a point on the sphere whose energy has been not
optimized. SRGD then secure its own connection to the landscape only in the second
regime, where it continues with usual gradient descent that starts from this high energy
configuration.
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Figure 1: Left: RGD and SRGD achieve the same accuracy detecting the signal in tensor
PCA with k = 3. Right: their algorithmic threshold scales as �

c

' 0.37N1/4 (only data
for RGD are shown). Inset: the final overlap with the signal mostly depends on �� �

c

.

The analysis performed above can be repeated for a finite number of replicas, hence
bridging the gap between the performance of the GD and RGD algorithm. For finite R
one finds that the algorithmic transition is at �

RGD

(R) ⇠ N (k�2)/2R�0.5(k�2)/(k�1) (see
SM3). The use of R > 1 different initial configurations helps reducing the algorithmic
gap: the larger is R the smaller the algorithmic threshold is. As explained in the
SM, the smoothing of the landscape using different replicas becomes ineffective when
R � R

max

⇠ N (k�1)/2. However, for these values of R one has already reached the
regime studied above.

In summary, in the odd and even k cases, we find that the analysis of the "bare" landscape
naturally leads to the scaling of the algorithmic threshold as N

k�2
2 whereas the analysis

performed using many replicas allow to substantially averaging out the noise and to
match the best scaling currently known, which is N

k�2
4 .

We have found that the k-even case is simpler than the k-odd one; this finding emerges
also from the previous literature (more involved methods were used to obtain the scaling
N

k�2
4 for odd values of k), but was not explained. Our landscape based analysis offers a

simple reason for it.

5 Numerical results

In this section we present the results of our numerical tests, which are limited to the
k = 3 case because the memory requirements scale like Nk and thus for larger values of
k one is limited to very small values of N . The aim of this section is twofold: on the
one hand we want to identify the algorithmic thresholds for both the full and simplified
versions of RGD, on the other hand we wish to directly test the connection between
RGD and SRGD performance and the properties of the energy landscape. As discussed
in the previous section, it was shown that there exists no spurious minima [5] such that
its overlap with the signal satisfies �mk�2 > C

k

(for k = 3 one finds C
3

' 0.425815),
see SM for further details. In the following we are going to show numerically that such
condition is directly related to the algorithmic threshold of RGD. The results we present
are obtain for runs of RGD and SRGD on problems of sizes N = 30, 100, 300, 1000, 2000.
They are then averaged over a number M of different disorder realizations such that
NM = 1.2 · 105.
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Figure 2: Left: at the end of the first dynamical regime RGD achieves an overlap with
the signal larger or equal to the one achieved by SRGD. Right: A schematic picture of
the trajectories followed by RGD, represented by r = ||x

CM

||
2

/
p
N and the overlap m

with the signal.

Algorithmic threshold and threshold phenomenon. In Figure 1 (left panel) we show
the mean overlap with the signal, m

II

, achieved at the end of the algorithm (either
for RGD or SRGD) as a function of the signal to noise ratio �. In the right panel we
show that a threshold phenomena (a phase transition) is taking place in the large N
limit on the scale � ⇠ N (k�2)/4

= N1/4. It is worth noticing, as shown in the left panel,
that both version of the algorithm, RGD and SRGD, do achieve the same final mean
overlap with the signal. For this reason in the right panel we have re-scaled only the
data obtained via RGD. In the right panel we also mark with a vertical line our best
estimation for the critical threshold �

c

' 0.37N1/4. Finally, the inset shows the same
results plotted as a function of �� 0.37N1/4. This highlights that the size of the critical
window around the algorithmic threshold �

c

' 0.37N1/4 is almost N independent.
Comparison between RGD and SRGD. Although the final overlap achieved by the

two versions of the algorithm is the same, the dynamics followed by the algorithms in
the first regime is very different (see previous section for the distinction of two regimes
in the dynamics). While in the SRGD algorithm the center of mass takes a straight path
to the surface of the sphere of radius

p
N , in the RGD algorithm the center of mass

moves according to the mean gradient at each time and thus follows a curved trajectory
determined by the landscape. A priori it is unclear which dynamics is better; we offer
an insight by measuring the evolution of the center of mass during and at the end of the
first regime.
In the left panel of Figure 2 we report the mean overlap hm

I

i achieved at the end of the
first phase by the RGD and SRGD algorithms. We clearly see that the dynamics followed
by the RGD algorithm reaches a larger overlap. Therefore a natural question arises:
how can SRGD achieve the same accuracy in detection than RGD although it starts
from a lower value of m

I

? While trying to answer this question, we notice an important
difference between the two dynamics in the first phase: although both depend on the
landscape, they feel the landscape in a quite different way. In the SRGD algorithm the
mean gradient is computed only once at the beginning. Then a straight path is followed
until the center of mass hits the sphere. In this sense the algorithm in its first regime
should be considered as a strongly out of equilibrium process that feels little of the
original landscape and thus ends on a point on the sphere whose energy has been not
optimized. SRGD then secure its own connection to the landscape only in the second
regime, where it continues with usual gradient descent that starts from this high energy
configuration.
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the trajectories followed by RGD, represented by r = ||x
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Algorithmic threshold and threshold phenomenon. In Figure 1 (left panel) we show
the mean overlap with the signal, m

II

, achieved at the end of the algorithm (either
for RGD or SRGD) as a function of the signal to noise ratio �. In the right panel we
show that a threshold phenomena (a phase transition) is taking place in the large N
limit on the scale � ⇠ N (k�2)/4

= N1/4. It is worth noticing, as shown in the left panel,
that both version of the algorithm, RGD and SRGD, do achieve the same final mean
overlap with the signal. For this reason in the right panel we have re-scaled only the
data obtained via RGD. In the right panel we also mark with a vertical line our best
estimation for the critical threshold �

c

' 0.37N1/4. Finally, the inset shows the same
results plotted as a function of �� 0.37N1/4. This highlights that the size of the critical
window around the algorithmic threshold �

c

' 0.37N1/4 is almost N independent.
Comparison between RGD and SRGD. Although the final overlap achieved by the

two versions of the algorithm is the same, the dynamics followed by the algorithms in
the first regime is very different (see previous section for the distinction of two regimes
in the dynamics). While in the SRGD algorithm the center of mass takes a straight path
to the surface of the sphere of radius

p
N , in the RGD algorithm the center of mass

moves according to the mean gradient at each time and thus follows a curved trajectory
determined by the landscape. A priori it is unclear which dynamics is better; we offer
an insight by measuring the evolution of the center of mass during and at the end of the
first regime.
In the left panel of Figure 2 we report the mean overlap hm

I

i achieved at the end of the
first phase by the RGD and SRGD algorithms. We clearly see that the dynamics followed
by the RGD algorithm reaches a larger overlap. Therefore a natural question arises:
how can SRGD achieve the same accuracy in detection than RGD although it starts
from a lower value of m

I

? While trying to answer this question, we notice an important
difference between the two dynamics in the first phase: although both depend on the
landscape, they feel the landscape in a quite different way. In the SRGD algorithm the
mean gradient is computed only once at the beginning. Then a straight path is followed
until the center of mass hits the sphere. In this sense the algorithm in its first regime
should be considered as a strongly out of equilibrium process that feels little of the
original landscape and thus ends on a point on the sphere whose energy has been not
optimized. SRGD then secure its own connection to the landscape only in the second
regime, where it continues with usual gradient descent that starts from this high energy
configuration.
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Figure 2: Left: at the end of the first dynamical regime RGD achieves an overlap with
the signal larger or equal to the one achieved by SRGD. Right: A schematic picture of
the trajectories followed by RGD, represented by r = ||x
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Algorithmic threshold and threshold phenomenon. In Figure 1 (left panel) we show
the mean overlap with the signal, m

II

, achieved at the end of the algorithm (either
for RGD or SRGD) as a function of the signal to noise ratio �. In the right panel we
show that a threshold phenomena (a phase transition) is taking place in the large N
limit on the scale � ⇠ N (k�2)/4

= N1/4. It is worth noticing, as shown in the left panel,
that both version of the algorithm, RGD and SRGD, do achieve the same final mean
overlap with the signal. For this reason in the right panel we have re-scaled only the
data obtained via RGD. In the right panel we also mark with a vertical line our best
estimation for the critical threshold �

c

' 0.37N1/4. Finally, the inset shows the same
results plotted as a function of �� 0.37N1/4. This highlights that the size of the critical
window around the algorithmic threshold �

c

' 0.37N1/4 is almost N independent.
Comparison between RGD and SRGD. Although the final overlap achieved by the

two versions of the algorithm is the same, the dynamics followed by the algorithms in
the first regime is very different (see previous section for the distinction of two regimes
in the dynamics). While in the SRGD algorithm the center of mass takes a straight path
to the surface of the sphere of radius

p
N , in the RGD algorithm the center of mass

moves according to the mean gradient at each time and thus follows a curved trajectory
determined by the landscape. A priori it is unclear which dynamics is better; we offer
an insight by measuring the evolution of the center of mass during and at the end of the
first regime.
In the left panel of Figure 2 we report the mean overlap hm

I

i achieved at the end of the
first phase by the RGD and SRGD algorithms. We clearly see that the dynamics followed
by the RGD algorithm reaches a larger overlap. Therefore a natural question arises:
how can SRGD achieve the same accuracy in detection than RGD although it starts
from a lower value of m

I

? While trying to answer this question, we notice an important
difference between the two dynamics in the first phase: although both depend on the
landscape, they feel the landscape in a quite different way. In the SRGD algorithm the
mean gradient is computed only once at the beginning. Then a straight path is followed
until the center of mass hits the sphere. In this sense the algorithm in its first regime
should be considered as a strongly out of equilibrium process that feels little of the
original landscape and thus ends on a point on the sphere whose energy has been not
optimized. SRGD then secure its own connection to the landscape only in the second
regime, where it continues with usual gradient descent that starts from this high energy
configuration.
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Figure 3: Signal detection is possible if �m
I

is larger than the threshold value reported
with a full vertical line, estimated from data in the right panel. Complexity is null on
the right of the dashed line.

RGD starts in a similar way computing the mean gradient when the centre of mass
is close to the origin. At this initial stage, the averaging process reaches its highest
efficiency in ironing out the landscape as the replicas are completely uncorrelated. The
gradient on the center of mass is much less affected by noise with respect to the one of
single replicas. However, as soon as the centre of mass starts to approach the sphere of
radius

p
N the cloud of replicas shrinks, thus sampling a progressively smaller region of

the landscape, until the mean gradient converges continuously to the standard gradient.
Thus we expect RGD to reach a point on the sphere of lower energy than SRGD. This
is explicitly shown in SM6. In summary RGD and SRGD algorithms reach the same
accuracy in signal detection, although they land on the sphere on very different points,
with RGD reaching larger overlaps and lower energies.

Landscape and dynamics. In the right panel of Figure 2 we show the trajectories
followed by the center of mass during the execution of the RGD algorithm solving
10 problems of size N = 300 with � = 2: we plot the overlap of the center of mass
with the signal m = (x

CM

,v)/N versus the normalized norm of the center of mass
r = ||x

CM

||
2

/
p
N . Remind that when r = 1 RGD reduces to standard GD. Observing

the plot it should be clear that there is a threshold value for the overlap on the sphere
(marked by a thick blue line) such that when the algorithm hits the sphere above (below)
that threshold value, then GD is able (not able) to recover the signal. Moreover we
notice that the trajectories of the runs that eventually detect the signal tend to bend
upwards already in the first dynamical regime.
To better illustrate the threshold phenomena in m

I

we show in the left panel of Figure
3 a scattered plot of the final overlap m

II

versus �m
I

. Clouds of points have different
sizes for two reasons: for the smaller problems we have studied more samples and finite
size effects tend to disperse the points more for smaller sizes. We clearly see that for
large enough N the data points form two different and well separated clouds: the lower
one corresponds to samples where RGD has been unable to detect the signal, while
the upper one corresponds to samples where signal detection was achieved. The choice
of using a scaled overlap �m

I

for the abscissa is dictated by the observation that the
complexity of local minima depends only on the variable �mk�2

I

= �m
I

(for k = 3) in
the large N limit and it is null with high probability for �m

I

> C
3

= 0.425815 (marked
by a dashed vertical line in the plot). The full vertical line marks the location of the
threshold estimated from the data shown in the right panel of Figure 3: in the large N
limit if RGD reaches an overlap satisfying �m

I

& 0.33 then it detects the signal with
high probability. We have thus found that the numerically estimated threshold is slightly
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Conclusion/Discussion

Focus on the intimate connection between landscape and GD-based dynamics

Is all the info available contained in landscape?

Can we do better than that or it is not possible because RGD is already exploiting it at best?

Only the stability of the most numerous minima does matter

Smart use of the knowledge of landscape structure allows GD to match AMP

Replicated Gradient Descent makes GD competitive, keeping its versatility
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