Thermodynamic limits for neural networks

Andrea Montanari

Stanford University

November 21, 2019

- $\blacktriangleright \ \{(y_i, x_i)\}_{i \leq n}$
- $x_i \sim {\sf Unif}(\mathbb{S}^{d-1}(\sqrt{d})) ext{ or } x_i \sim {\sf N}(0, {I}_d) ext{ , } d \gg 1$
- Response (regression)

$$y_i = f_*(x_i) + arepsilon_i\,, \qquad arepsilon_i \sim {\sf N}(0, au^2)$$

Evaluating a model

▶ Loss function $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$ (e.g. $\ell(y_1, y_2) = (y_1 - y_2)^2$)

► Test error

$$R(f) = \mathbb{E}_{ ext{new}} \Big\{ \ \ell(y^{ ext{new}}, f(x^{ ext{new}})) \Big\}$$

Evaluating a model

▶ Loss function $\ell : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$ (e.g. $\ell(y_1, y_2) = (y_1 - y_2)^2$)

► Test error

$$R(f) = \mathbb{E}_{ ext{new}} \Big\{ \ oldsymbol{\ell}(y^{ ext{new}}, f(x^{ ext{new}})) \Big\}$$

Two-layers (fully-connected) neural networks

$$\mathcal{F}_{\mathsf{NN}}^N \equiv \left\{ f_{oldsymbol{ heta}}(oldsymbol{x}) = \sum_{i=1}^N a_i \, \sigma(\langle oldsymbol{w}_i, oldsymbol{x}
angle) \, : \ oldsymbol{ heta} = (a_i, oldsymbol{w}_i)_{i \leq N}, \ a_i \in \mathbb{R}, oldsymbol{w}_i \in \mathbb{R}^d
ight\}$$

• $\hat{\theta}_n$ computed on training sample

► Train/test error

$$egin{aligned} \widehat{R}_n(m{ heta}) &= rac{1}{n}\sum_{i=1}^n \ell(y_i, f_{m{ heta}}(x))\,, \ R(\hat{ heta}_n) &= \mathbb{E}_{ ext{new}}\{\ell(y^{ ext{new}}, f_{m{ heta}_n}(x^{ ext{new}}))\} \end{aligned}$$

Two-layers (fully-connected) neural networks

$$\mathcal{F}_{\mathsf{NN}}^N \equiv \left\{ f_{oldsymbol{ heta}}(x) = \sum_{i=1}^N a_i \, \sigma(\langle oldsymbol{w}_i, x
angle) : \hspace{0.2cm} oldsymbol{ heta} = (a_i, oldsymbol{w}_i)_{i \leq N}, \hspace{0.2cm} a_i \in \mathbb{R}, oldsymbol{w}_i \in \mathbb{R}^d
ight\}$$

• $\hat{\theta}_n$ computed on training sample

► Train/test error

$$egin{aligned} \widehat{R}_n(oldsymbol{ heta}) &= rac{1}{n}\sum_{i=1}^n \ell(y_i, f_{oldsymbol{ heta}}(x))\,, \ R(\hat{oldsymbol{ heta}}_n) &= \mathbb{E}_{ ext{new}}\{\ell(y^{ ext{new}}, f_{oldsymbol{ heta}_n}(x^{ ext{new}}))\} \end{aligned}$$

▶ Classical limit in Stats/ML: $n \to \infty$ (large sample)

• Here: $N \to \infty$ (large network)

▶ Classical limit in Stats/ML: $n \to \infty$ (large sample)

▶ Here: $N \to \infty$ (large network)

▶ Classical limit in Stats/ML: $n \to \infty$ (large sample)

• Here: $N \to \infty$ (large network)

▶ Classical limit in Stats/ML: $n \to \infty$ (large sample)

• Here: $N \to \infty$ (large network)

$$f_{oldsymbol{ heta}}(oldsymbol{x}) = \sum_{i=1}^N a_i\,\sigma(\langleoldsymbol{w}_i,oldsymbol{x}
angle)$$

$$f_{m{ heta}}(m{x}) = \int a \sigma(\langle m{w},m{x}
angle) \
ho(ext{d} a, ext{d} w) \,, \quad
ho = rac{1}{N} \sum_{i=1}^N \delta_{Na_i,w_i}$$

$$egin{split} \mathcal{F}_{\mathsf{NN}}^{N} \subseteq \mathcal{F}_{\mathsf{NN}}^{N+1} \subseteq \cdots \subseteq \mathcal{F}_{\mathsf{NN}}^{\infty}\,, \ \mathcal{F}_{\mathsf{NN}}^{\infty} \equiv & \left\{f(x;
ho) = \int a\sigma(\langle w,x
angle)\,\,
ho(\mathsf{d} a,\mathsf{d} w) \quad
ho \in \mathscr{P}(\mathbb{R}^{d+1})
ight\}. \end{split}$$

$$f_{oldsymbol{ heta}}({m x}) = \sum_{i=1}^N a_i\,\sigma(\langle {m w}_i,{m x}
angle)$$

$$f_{m{ heta}}(x) = \int a \sigma(\langle w, x
angle) \
ho(ext{d} a, ext{d} w) \,, \quad
ho = rac{1}{N} \sum_{i=1}^N \delta_{Na_i,w_i}$$

$$egin{split} \mathcal{F}_{\mathsf{NN}}^{N} &\subseteq \mathcal{F}_{\mathsf{NN}}^{N+1} \subseteq \cdots \subseteq \mathcal{F}_{\mathsf{NN}}^{\infty}\,, \ \mathcal{F}_{\mathsf{NN}}^{\infty} &\equiv \left\{f(x;
ho) = \int a\sigma(\langle w,x
angle) \;
ho(\mathsf{d} a,\mathsf{d} w) \quad
ho \in \mathscr{P}(\mathbb{R}^{d+1})
ight\}. \end{split}$$

$$f_{oldsymbol{ heta}}(x) = \sum_{i=1}^N a_i\,\sigma(\langle oldsymbol{w}_i,x
angle)$$

$$f_{oldsymbol{ heta}}(x) = \int a \sigma(\langle w, x
angle) \
ho(\mathrm{d} a, \mathrm{d} w) \,, \quad
ho = rac{1}{N} \sum_{i=1}^N \delta_{Na_i, w_i} \,.$$

$$egin{split} \mathcal{F}_{\mathsf{NN}}^{N} \subseteq \mathcal{F}_{\mathsf{NN}}^{N+1} \subseteq \cdots \subseteq \mathcal{F}_{\mathsf{NN}}^{\infty}\,, \ \mathcal{F}_{\mathsf{NN}}^{\infty} \equiv \left\{f(x;
ho) = \int a\sigma(\langle w,x
angle)\,\,
ho(\mathrm{d} a,\mathrm{d} w) \quad
ho \in \mathscr{P}(\mathbb{R}^{d+1})
ight\}. \end{split}$$

$$f_{oldsymbol{ heta}}(x) = \sum_{i=1}^N a_i\,\sigma(\langle oldsymbol{w}_i,x
angle)$$

$$f_{oldsymbol{ heta}}(x) = \int a \sigma(\langle w, x
angle) \
ho(\mathrm{d} a, \mathrm{d} w) \,, \quad
ho = rac{1}{N} \sum_{i=1}^N \delta_{Na_i, w_i} \,.$$

$$egin{split} \mathcal{F}_{\mathsf{NN}}^{N} \subseteq \mathcal{F}_{\mathsf{NN}}^{N+1} \subseteq \cdots \subseteq \mathcal{F}_{\mathsf{NN}}^{\infty}\,, \ \mathcal{F}_{\mathsf{NN}}^{\infty} \equiv \left\{f(x;
ho) = \int a\sigma(\langle w,x
angle)\,\,
ho(\mathsf{d} a,\mathsf{d} w) \quad
ho \in \mathscr{P}(\mathbb{R}^{d+1})
ight\}. \end{split}$$

$$\widehat{R}_n(
ho) = rac{1}{n}\sum_{i=1}^n \ell(y_i,f(x_i;
ho))$$

- **Good news:** Convex
- Bad news: Infinite dimensional
- Question: Can we optimize it efficiently?
 e.g. approximate ρ by finitely many points

$$\widehat{R}_n(
ho) = rac{1}{n}\sum_{i=1}^n \ell(y_i,f(m{x}_i;
ho))$$

► Good news: Convex

Bad news: Infinite dimensional

Question: Can we optimize it efficiently?
 e.g. approximate ρ by finitely many points

$$\widehat{R}_n(
ho) = rac{1}{n}\sum_{i=1}^n \ell(y_i,f(m{x}_i;
ho))$$

► Good news: Convex

Bad news: Infinite dimensional

Question: Can we optimize it efficiently?
 e.g. approximate ρ by finitely many points

$$\widehat{R}_n(
ho) = rac{1}{n}\sum_{i=1}^n \ell(y_i,f(x_i;
ho))$$

- Good news: Convex
- Bad news: Infinite dimensional
- Question: Can we optimize it efficiently?
 e.g. approximate ρ by finitely many points

$$\widehat{R}_n(
ho) = rac{1}{n}\sum_{i=1}^n \ell(y_i,f(x_i;
ho))$$

- Good news: Convex
- Bad news: Infinite dimensional
- Question: Can we optimize it efficiently?
 e.g. approximate ρ by finitely many points

Another approach: lazy limit

- ▶ Idea: Linearize around a random initialization
- $\blacktriangleright \Rightarrow \text{Linear class } \mathcal{F}_{\mathsf{NT}}$

Neural tangent

$$egin{aligned} \mathcal{F}_{\mathsf{NT}}^N(oldsymbol{W}) &\equiv \left\{f(oldsymbol{x}) = \sum_{i=1}^N \langle oldsymbol{a}_i, oldsymbol{x}
angle \sigma'(\langle oldsymbol{w}_i, oldsymbol{x}
angle) \ : & oldsymbol{a}_i \in \mathbb{R}^d \ orall i \leq N
ight\}, \ & oldsymbol{W} = [oldsymbol{w}_1, \dots, oldsymbol{w}_N] \quad oldsymbol{w}_i \sim_{iid} \mathsf{Unif}(\mathbb{S}^{d-1}(1)) \end{aligned}$$

• 'Tangent' to $\mathcal{F}_{\mathsf{NN}}^N$ around a random point

• Good approximation: (i) $N \gg n$; (ii) Parameters's scaling

[Jacot, Gabriel, Hongler, 2018; Du, Zhai, Poczos, Singh 2018; Allen-Zhu, Li, Song 2018; Chizat, Bach, 2019; Arora, Du, Hu, Li, Salakhutdinov, Wang, 2019; Oymak, Soltanolkotabi, 2019; ...]

Neural tangent

$$egin{aligned} \mathcal{F}_{\mathsf{NT}}^N(oldsymbol{W}) &\equiv \left\{f(oldsymbol{x}) = \sum_{i=1}^N \langle oldsymbol{a}_i, oldsymbol{x}
angle \sigma'(\langle oldsymbol{w}_i, oldsymbol{x}
angle) \ : & oldsymbol{a}_i \in \mathbb{R}^d \ orall i \leq N
ight\}, \ & oldsymbol{W} = [oldsymbol{w}_1, \dots, oldsymbol{w}_N] \quad oldsymbol{w}_i \sim_{iid} \mathsf{Unif}(\mathbb{S}^{d-1}(1)) \end{aligned}$$

- 'Tangent' to \mathcal{F}_{NN}^N around a random point
- Good approximation: (i) $N \gg n$; (ii) Parameters's scaling

[Jacot, Gabriel, Hongler, 2018; Du, Zhai, Poczos, Singh 2018; Allen-Zhu, Li, Song 2018; Chizat, Bach, 2019; Arora, Du, Hu, Li, Salakhutdinov, Wang, 2019; Oymak, Soltanolkotabi, 2019; ...]

A simpler linear model

Random features model

[Neal, 1996; Balcan, Blum, Vempala 2006; Rahimi, Recht; 2008; Bach, 2016; ...]

Which phenomena are captured linear models?

Outline

1) What is captured by linear models?

2 What is not captured by linear models?

Ghorbani, Mei, Misiakiewicz, M, arXiv:1904.12191, 1906.08899 Mei, M, arXiv:1908.05355 M, Ruan, Sohn, Yan, arXiv:1911.01544

What is captured by linear models?

What is captured by linear models?

- Interpolation phase transition
- Double descent

Using deep nets to fit noise

[Zhang, Bengio, Hardt, Recht, Vinyals, 2016]

Interpolating, yet not overfitting

- ▶ MNIST (subset): 4,000 images in 10 different classes.
- ▶ 2-layers Neural Net. Square loss.

[Belkin, Hsu, Ma, Mandal, 2018]

Interpolating, yet not overfitting

- ▶ MNIST: 50,000 images in 2 different classes.
- ▶ 5-layers Neural Net. Quadratic hinge loss.

[Spigler, Geiger, d'Ascoli, Sagun, Biroli, Wyart, 2018]

The double-descent curve

[Belkin, Hsu, Ma, Mandal, 2018]

Peak at the interpolation threshold

- ✓ Global minimum in the overparametrized regime
- ✓ Monotone decreasing in the overparametrized regime
- ✓ Optimal regularization \rightarrow 0.

Peak at the interpolation threshold

- ✓ Global minimum in the overparametrized regime
- ✓ Monotone decreasing in the overparametrized regime
- ✓ Optimal regularization \rightarrow 0.

- \checkmark Peak at the interpolation threshold
- ✓ Global minimum in the overparametrized regime
- ✓ Monotone decreasing in the overparametrized regime
 ✓ Optimal regularization → 0.

- \checkmark Peak at the interpolation threshold
- ✓ Global minimum in the overparametrized regime
- ✓ Monotone decreasing in the overparametrized regime
 ✓ Optimal regularization → 0.

- \checkmark Peak at the interpolation threshold
- ✓ Global minimum in the overparametrized regime
- \checkmark Monotone decreasing in the overparametrized regime
- ✓ Optimal regularization \rightarrow 0.
Random features model

$$\mathcal{F}_{\mathsf{RF}}(\mathit{W}) \equiv \left\{ f(x) = \sum_{i=1}^N a_i \, \sigma(\langle w_i, x
angle) \, : \quad a_i \in \mathbb{R} \; orall i \leq N
ight\}.$$

•
$$W = [w_1, \ldots, w_N]$$
 random; $w_i \sim \text{Unif}(\mathbb{S}^{d-1}(1))$, i.i.d.

Ridge regression

$$\widehat{a}(\lambda) = \mathrm{argmin}_{oldsymbol{a} \in \mathbb{R}^N} \left\{ \widehat{\mathbb{E}}_n \Big[\Big(y - \sum_{i=1}^N a_i \sigma(\langle oldsymbol{w}_i, oldsymbol{x}
angle \Big)^2 \Big] + rac{N\lambda}{d} \, \|oldsymbol{a}\|_2^2
ight\}$$

Random features ridge regression (as above.)

▶ Proportional regime $n, N, d \rightarrow \infty$,

$$rac{N}{d} o \psi_1, \quad rac{n}{d} o \psi_2\,.$$

$$\blacktriangleright \ y_i = f_*(x_i) + \varepsilon_i$$

 $\blacktriangleright \ f_*(x) = \langle \boldsymbol{\beta}_0, x \rangle$

(Higher order terms \rightarrow See paper)

Setting

Random features ridge regression (as above.)

▶ Proportional regime $n, N, d \rightarrow \infty$,

$$rac{N}{d} o \psi_1, \quad rac{n}{d} o \psi_2$$
 .

$$\blacktriangleright \ y_i = f_*(x_i) + \varepsilon_i$$

 $\blacktriangleright \ f_*(x) = \langle \boldsymbol{\beta}_0, x \rangle$

(Higher order terms \rightarrow See paper)

Setting

Random features ridge regression (as above.)

▶ Proportional regime $n, N, d \rightarrow \infty$,

$$rac{N}{d} o \psi_1, \quad rac{n}{d} o \psi_2$$
 .

$$\begin{array}{ll} \blacktriangleright & y_i = f_*(x_i) + \varepsilon_i \\ \hline & f_*(x) = \langle \beta_0, x \rangle \end{array} \tag{Higher order terms} \rightarrow \text{See paper}$$

Random features ridge regression (as above.)

▶ Proportional regime $n, N, d \rightarrow \infty$,

$$rac{N}{d} o \psi_1, \quad rac{n}{d} o \psi_2$$
 .

$$\begin{array}{ll} \blacktriangleright & y_i = f_*(x_i) + \varepsilon_i \\ \blacktriangleright & f_*(x) = \langle \beta_0, x \rangle \end{array} \tag{Higher order terms} \rightarrow \text{See paper}) \end{array}$$

Precise asymptotics

Theorem (Mei, M. 2019)

Assume $f_*(x) = \langle eta_0, x
angle$ and define (for $G \sim \mathsf{N}(0,1)$)

$$b_*^2 = \mathbb{E}[\sigma(G)^2] - \mathbb{E}[\sigma(G)]^2 - b_1^2, \hspace{0.2cm} b_1 = \mathbb{E}[G\sigma(G)], \hspace{0.2cm} \zeta \equiv rac{b_1^2}{b_*^2}$$

Then, for any $\lambda > 0$, we have

 $R_{\mathsf{RF}}(\widehat{f}_{\lambda}) = \|oldsymbol{eta}_0\|_2^2 \mathscr{B}(\zeta,\psi_1,\psi_2,\lambda/\overline{b}_*^2) + au^2 \mathscr{V}(\zeta,\psi_1,\psi_2,\lambda/\overline{b}_*^2) + o_d(1),$

where $\mathscr{B}(\zeta,\psi_1,\psi_2,\overline{\lambda}),\ \mathscr{V}(\zeta,\psi_1,\psi_2,\overline{\lambda})$ are explicitly given below.

Variance computed in [Hastie, M, Rosset, Tibshirani, 2019]

Precise asymptotics

Theorem (Mei, M. 2019)

Assume $f_*(x) = \langle eta_0, x
angle$ and define (for $G \sim \mathsf{N}(0,1)$)

$$b_*^2 = \mathbb{E}[\sigma(G)^2] - \mathbb{E}[\sigma(G)]^2 - b_1^2, \hspace{0.2cm} b_1 = \mathbb{E}[G\sigma(G)], \hspace{0.2cm} \zeta \equiv rac{b_1^2}{b_x^2}$$

Then, for any $\lambda > 0$, we have

$$R_{\mathsf{RF}}(\widehat{f}_{\lambda}) = \|oldsymbol{eta}_0\|_2^2 \mathscr{B}(\zeta,\psi_1,\psi_2,\lambda/\overline{b}_*^2) + au^2 \mathscr{V}(\zeta,\psi_1,\psi_2,\lambda/\overline{b}_*^2) + o_d(1),$$

where $\mathscr{B}(\zeta, \psi_1, \psi_2, \overline{\lambda})$, $\mathscr{V}(\zeta, \psi_1, \psi_2, \overline{\lambda})$ are explicitly given below.

Variance computed in [Hastie, M, Rosset, Tibshirani, 2019]

Explicit formulae

Let $(\nu_1(\xi), \nu_2(\xi))$ be the unique solution of

$$\begin{split} \nu_1 &= \psi_1 \Big(-\xi - \nu_2 - \frac{\zeta^2 \nu_2}{1 - \zeta^2 \nu_1 \nu_2} \Big)^{-1} , \\ \nu_2 &= \psi_2 \Big(-\xi - \nu_1 - \frac{\zeta^2 \nu_1}{1 - \zeta^2 \nu_1 \nu_2} \Big)^{-1} ; \end{split}$$

Let

$$\chi \equiv
u_1 (\boldsymbol{i} (\psi_1 \psi_2 \overline{\lambda})^{1/2}) \cdot
u_2 (\boldsymbol{i} (\psi_1 \psi_2 \overline{\lambda})^{1/2}),$$

and

$$\begin{split} \mathscr{E}_{0}(\zeta,\psi_{1},\psi_{2},\overline{\lambda}) &\equiv -\chi^{5}\zeta^{6} + 3\chi^{4}\zeta^{4} + (\psi_{1}\psi_{2} - \psi_{2} - \psi_{1} + 1)\chi^{3}\zeta^{6} - 2\chi^{3}\zeta^{4} - 3\chi^{3}\zeta^{2} \\ &+ (\psi_{1} + \psi_{2} - 3\psi_{1}\psi_{2} + 1)\chi^{2}\zeta^{4} + 2\chi^{2}\zeta^{2} + \chi^{2} + 3\psi_{1}\psi_{2}\chi\zeta^{2} - \psi_{1}\psi_{2} , \\ \mathscr{E}_{1}(\zeta,\psi_{1},\psi_{2},\overline{\lambda}) &\equiv \psi_{2}\chi^{3}\zeta^{4} - \psi_{2}\chi^{2}\zeta^{2} + \psi_{1}\psi_{2}\chi\zeta^{2} - \psi_{1}\psi_{2} , \\ \mathscr{E}_{2}(\zeta,\psi_{1},\psi_{2},\overline{\lambda}) &\equiv \chi^{5}\zeta^{6} - 3\chi^{4}\zeta^{4} + (\psi_{1} - 1)\chi^{3}\zeta^{6} + 2\chi^{3}\zeta^{4} + 3\chi^{3}\zeta^{2} + (-\psi_{1} - 1)\chi^{2}\zeta^{4} - 2\chi^{2}\zeta^{2} - \chi^{2} . \end{split}$$

We then have

$$\mathscr{B}(\zeta,\psi_1,\psi_2,\overline{\lambda}) \equiv \ \frac{\mathscr{E}_1(\zeta,\psi_1,\psi_2,\overline{\lambda})}{\mathscr{E}_0(\zeta,\psi_1,\psi_2,\overline{\lambda})} , \qquad \mathscr{V}(\zeta,\psi_1,\psi_2,\overline{\lambda}) \equiv \ \frac{\mathscr{E}_2(\zeta,\psi_1,\psi_2,\overline{\lambda})}{\mathscr{E}_0(\zeta,\psi_1,\psi_2,\overline{\lambda})}$$

Random matrix theory for kernel inner product random matrices

[Cheng, Singer, 2013; Do, Vu 2013; Fan, M. 2019; Penington, Wohra, 2017;...]

Peak at the interpolation threshold

- ✓ Global minimum in the overparametrized regime
- ✓ Monotone decreasing in the overparametrized regime

- \checkmark Peak at the interpolation threshold
- ✓ Global minimum in the overparametrized regime
- \checkmark Monotone decreasing in the overparametrized regime

Insigths

- Singularity at the interpolation threshold
- Minimum risk at extreme overparametrization $N/n \to \infty$.

Same at $\lambda > 0$ fixed: Minimum at $N/n \to \infty$.

- High SNR: Minimum at $\lambda = 0+$.
- Low SNR: Minimum at $\lambda > 0$.

Beyond square loss?

Binary classification

▶ Data
$$(y_i, x_i) \in \{+1, -1\} imes \mathbb{R}^d, \quad x_i \sim \mathsf{N}(0, I_d)$$
$$\mathbb{P}(y_i = +1 | x_i) = f_*(\langle \beta_0, x_i \rangle)$$

► Two-layer network

$$\hat{f}_a(x) = ext{sign} \left\{ \sum_{i=1}^N a_i \sigma(\langle w_i, x
angle)
ight\}$$

Prediction error

$$\mathrm{Err}_n \equiv \mathbb{P}(y^{ ext{new}} \widehat{f}_{\widehat{a}}(x^{ ext{new}}) \leq 0)$$
 ,

Binary classification

▶ Data
$$(y_i, x_i) \in \{+1, -1\} imes \mathbb{R}^d, \quad x_i \sim \mathsf{N}(0, I_d)$$
 $\mathbb{P}(y_i = +1 | x_i) = f_*(\langle eta_0, x_i \rangle)$

► Two-layer network

$$\hat{f}_{m{a}}(m{x}) = ext{sign} \left\{ \sum_{i=1}^{N} a_i \sigma(\langle m{w}_i, m{x}
angle)
ight\}$$

Prediction error

$$\mathrm{Err}_n \equiv \mathbb{P}(y^{\mathrm{new}} \widehat{f}_{\widehat{a}}(x^{\mathrm{new}}) \leq 0) \, ,$$

Binary classification

▶ Data
$$(y_i, x_i) \in \{+1, -1\} imes \mathbb{R}^d, \quad x_i \sim \mathsf{N}(0, I_d)$$
 $\mathbb{P}(y_i = +1 | x_i) = f_*(\langle eta_0, x_i \rangle)$

► Two-layer network

$$\hat{f}_{oldsymbol{a}}(oldsymbol{x}) = ext{sign} \left\{ \sum_{i=1}^N a_i \sigma(\langle oldsymbol{w}_i, oldsymbol{x}
angle)
ight\}$$

Prediction error

$$\mathrm{Err}_n \equiv \mathbb{P}(y^{\mathrm{new}} \widehat{f}_{\widehat{a}}(x^{\mathrm{new}}) \leq 0) \, ,$$

Max-margin classification

Random features:

$$oldsymbol{W} = [oldsymbol{w}_1, \dots, oldsymbol{w}_N] \quad oldsymbol{w}_i \sim_{iid} \mathsf{Unif}(\mathbb{S}^{d-1}(1))$$

Maximize the margin:

$$egin{array}{cc} ext{maximize} & \min_{i\leq n} \, y_i \hat{f}_{m{a}}(x_i) = \min_{i\leq n} \, y_i \langle \, m{a}, \sigma(\,m{W}x_i)
angle \, , \ & ext{subject to} & \| \, m{a} \|_2 \leq 1 \, . \end{array}$$

$\max ig\{ \min_{i \leq n} \, y_i \langle a, \sigma({\it W} x_i) angle \, : \, \, \|a\| \leq 1 ig\}$

- Can't use random matrix theory
- $\sigma(Wx_i)$ has correlated entries
- ▶ Non-gaussian

$$\max ig\{ \min_{i \leq n} \ y_i \langle a, \sigma(oldsymbol{W} x_i)
angle \ : \ \| oldsymbol{a} \| \leq 1 ig\}$$

Can't use random matrix theory

- $\sigma(Wx_i)$ has correlated entries
- ► Non-gaussian

$$\max ig\{ \min_{i \leq n} \ y_i \langle a, \sigma(oldsymbol{W} x_i)
angle \ : \ \| oldsymbol{a} \| \leq 1 ig\}$$

- Can't use random matrix theory
- $\sigma(Wx_i)$ has correlated entries
- ▶ Non-gaussian

$$\maxig\{\min_{i\leq n}\ y_i\langle a,\sigma({oldsymbol W} x_i)
angle\ :\ \|a\|\leq 1ig\}$$

- Can't use random matrix theory
- $\sigma(Wx_i)$ has correlated entries
- Non-gaussian

Nonlinear features

$$egin{aligned} \hat{f}_a(x_i) &= ext{sign}(\langle a, u
angle)\,, \ u_{ij} &= \sigma(\langle w_j, x_i
angle) &= b_1 \langle w_j, x_i
angle + b_* \sigma_\perp(\langle w_j, x_i
angle) \end{aligned}$$

Noisy linear features

$$egin{aligned} \hat{f}_a(x_i) &= ext{sign}(\langle a, ilde{u}
angle)\,, \ & ilde{u}_{ij} &= b_1 \langle w_j, x_i
angle + b_* z_{ij}\,, \quad (z_{ij}) \sim_{iid} \mathsf{N}(0, 1) \end{aligned}$$

Nonlinear features

$$egin{aligned} \hat{f}_{m{a}}(m{x}_i) &= ext{sign}(\langlem{a},m{u}
angle)\,, \ &u_{ij} &= \sigma(\langlem{w}_j,m{x}_i
angle) &= b_1\langlem{w}_j,m{x}_i
angle + b_*\sigma_\perp(\langlem{w}_j,m{x}_i
angle) \end{aligned}$$

Noisy linear features

$$egin{aligned} \hat{f}_a(x_i) &= ext{sign}(\langle a, ilde{u}
angle) \,, \ & ilde{u}_{ij} &= b_1 \langle w_j, x_i
angle + b_* z_{ij} \,, \quad (z_{ij}) \sim_{iid} \mathsf{N}(0, 1) \end{aligned}$$

Nonlinear features

$$egin{aligned} \hat{f}_{m{a}}(m{x}_i) &= ext{sign}(\langlem{a},m{u}
angle)\,, \ u_{ij} &= \sigma(\langlem{w}_j,m{x}_i
angle) &= b_1\langlem{w}_j,m{x}_i
angle + b_*\sigma_\perp(\langlem{w}_j,m{x}_i
angle) \end{aligned}$$

Noisy linear features

$$egin{aligned} \hat{f}_a(x_i) &= ext{sign}(\langle a, ilde{u}
angle) \,, \ & ilde{u}_{ij} &= b_1 \langle w_j, x_i
angle + b_* z_{ij} \,, \quad (z_{ij}) \sim_{iid} \mathsf{N}(0, 1) \end{aligned}$$

Nonlinear features

$$egin{aligned} \hat{f}_{m{a}}(m{x}_i) &= ext{sign}(\langlem{a},m{u}
angle)\,, \ & u_{ij} &= \sigma(\langlem{w}_j,m{x}_i
angle) &= b_1\langlem{w}_j,m{x}_i
angle + b_*\sigma_\perp(\langlem{w}_j,m{x}_i
angle) \end{aligned}$$

Noisy linear features

$$egin{aligned} \hat{f}_{a}(x_{i}) &= ext{sign}(\langle a, ilde{u}
angle)\,, \ & ilde{u}_{ij} &= b_{1}\langle w_{j}, x_{i}
angle + b_{*}z_{ij}\,, \quad (z_{ij})\sim_{iid} \mathsf{N}(0,1) \end{aligned}$$

Nonlinear features

$$egin{aligned} \hat{f}_{m{a}}(m{x}_i) &= ext{sign}(\langlem{a},m{u}
angle)\,, \ u_{ij} &= \sigma(\langlem{w}_j,m{x}_i
angle) &= b_1\langlem{w}_j,m{x}_i
angle + b_*\sigma_\perp(\langlem{w}_j,m{x}_i
angle) \end{aligned}$$

Noisy linear features

$$egin{aligned} \hat{f}_{a}(x_{i}) &= ext{sign}(\langle a, ilde{u}
angle)\,, \ & ilde{u}_{ij} &= b_{1}\langle w_{j}, x_{i}
angle + b_{*}z_{ij}\,, \quad (z_{ij})\sim_{iid} \mathsf{N}(0,1) \end{aligned}$$

Asymptotic equivalence

Theorem (Mei, M, 2019)

Consider ridge regression in the proportional asymptotics $d \to \infty$, $N/d \to \psi_1$, $n/d \to \psi_2$.

Then the nonlinear features model and the noisy linear features model are 'asymptotically equivalent:' they have asymptotically the same test error, training error, ...

Conjecture

Consider max-margin classification in the proportional asymptotics.

Then the nonlinear features model and the noisy linear features model are 'asymptotically equivalent.'

Asymptotic equivalence

Theorem (Mei, M, 2019)

Consider ridge regression in the proportional asymptotics $d \to \infty$, $N/d \to \psi_1$, $n/d \to \psi_2$.

Then the nonlinear features model and the noisy linear features model are 'asymptotically equivalent:' they have asymptotically the same test error, training error, ...

Conjecture

Consider max-margin classification in the proportional asymptotics.

Then the nonlinear features model and the noisy linear features model are 'asymptotically equivalent.'

Asymptotics of max-margin classification

Theorem (M, Ruan, Sogn, Yan, 2019)

Assume $\mathbb{P}(y_i = +1 | x_i) = f_0(\langle \beta_0, x_i \rangle)$, $x \sim \mathsf{N}(0, I_d)$, and consider max-margin classification from noisy features $\tilde{u}_{ij} = b_1 \langle w_j, x_i \rangle + b_* z_{ij}$.

Let κ_n be the margin and Err_n the test error. Then, we have

 $\mathrm{Err}_n = \mathrm{Err}_*(\zeta, \psi_1, \psi_2, f_0) + o_P(1), \quad \kappa_n = \kappa_*(\zeta, \psi_1, \psi_2, f_0) + o_P(1).$

where $\mathrm{Err}_*(\zeta,\psi_1,\psi_2,f_0),\;\kappa_*(\zeta,\psi_1,\psi_2,f_0)$ are explicitly given.

▶ Paper: general Gaussian features.

▶ Statistical physics: Gardner 1988, Seung et al. 1992, ...

Asymptotics of max-margin classification

Theorem (M, Ruan, Sogn, Yan, 2019)

Assume $\mathbb{P}(y_i = +1 | x_i) = f_0(\langle \beta_0, x_i \rangle)$, $x \sim \mathsf{N}(0, I_d)$, and consider max-margin classification from noisy features $\tilde{u}_{ij} = b_1 \langle w_j, x_i \rangle + b_* z_{ij}$.

Let κ_n be the margin and Err_n the test error. Then, we have

 $\mathrm{Err}_n = \mathrm{Err}_*(\zeta, \psi_1, \psi_2, f_0) + o_P(1), \quad \kappa_n = \kappa_*(\zeta, \psi_1, \psi_2, f_0) + o_P(1).$

where $\operatorname{Err}_*(\zeta, \psi_1, \psi_2, f_0)$, $\kappa_*(\zeta, \psi_1, \psi_2, f_0)$ are explicitly given.

▶ Paper: general Gaussian features.

▶ Statistical physics: Gardner 1988, Seung et al. 1992, ...

Asymptotics of max-margin classification

Theorem (M, Ruan, Sogn, Yan, 2019)

Assume $\mathbb{P}(y_i = +1|x_i) = f_0(\langle \beta_0, x_i \rangle)$, $x \sim N(0, I_d)$, and consider max-margin classification from noisy features $\tilde{u}_{ij} = b_1 \langle w_j, x_i \rangle + b_* z_{ij}$.

Let κ_n be the margin and Err_n the test error. Then, we have

 $\mathrm{Err}_n = \mathrm{Err}_*(\zeta, \psi_1, \psi_2, f_0) + o_P(1), \quad \kappa_n = \kappa_*(\zeta, \psi_1, \psi_2, f_0) + o_P(1).$

where $\operatorname{Err}_*(\zeta, \psi_1, \psi_2, f_0)$, $\kappa_*(\zeta, \psi_1, \psi_2, f_0)$ are explicitly given.

- Paper: general Gaussian features.
- Statistical physics: Gardner 1988, Seung et al. 1992, ...

Comparison

• $\psi_2 = n/d = 2, d = 200, 400, \text{ ReLU}$ activations
What is not captured by linear models?

What is not captured by linear models?

- Approximation
- Low-dimensional structures
- ► A 'simple' example

[see 1904.12191, 1906.08899]

What is not captured by linear models?

- Approximation
- Low-dimensional structures
- ► A 'simple' example

[see 1904.12191, 1906.08899]

Setting

►
$$x_i \sim \mathsf{N}(0, I_d),$$

$$y_i = f_*(x_i) \equiv b_0 + \langle x_i, Bx_i
angle \; \; \; ext{ with } \; \; B \succeq 0.$$

• Optimum test error $n = \infty$

 $R_{\mathsf{M},N} = \min_{\widehat{f}\in\mathcal{F}_{\mathsf{M},N}(oldsymbol{W})} \mathbb{E}\{(f_*(x) - \widehat{f}(x))^2\}, \quad \mathsf{M}\in\{\mathsf{RF},\mathsf{NT},\mathsf{NN}\}.$

• Here $\sigma(x) = x^2$

(cf. paper for generalizations)

Setting

►
$$x_i \sim \mathsf{N}(0, I_d)$$
,

• Optimum test error $n = \infty$

$$R_{\mathsf{M},N} = \min_{\widehat{f}\in\mathcal{F}_{\mathsf{M},N}(oldsymbol{W})} \mathbb{E}\{(f_*(oldsymbol{x}) - \widehat{f}(oldsymbol{x}))^2\}, \quad \mathsf{M}\in\{\mathsf{RF},\mathsf{NT},\mathsf{NN}\}.$$

• Here $\sigma(x) = x^2$

(cf. paper for generalizations)

Setting

•
$$x_i \sim \mathsf{N}(0, I_d),$$

 $y_i = f_*(x_i) \equiv b_0 + \langle x_i, Bx_i
angle ext{ with } B \succeq 0.$

• Optimum test error $n = \infty$

$$R_{\mathsf{M},N} = \min_{\widehat{f}\in\mathcal{F}_{\mathsf{M},N}(oldsymbol{W})} \mathbb{E}\{(f_*(oldsymbol{x}) - \widehat{f}(oldsymbol{x}))^2\}, \quad \mathsf{M}\in\{\mathsf{RF},\mathsf{NT},\mathsf{NN}\}.$$

• Here $\sigma(x) = x^2$

(cf. paper for generalizations)

Experiment

- ▶ $m{B} \in \mathbb{R}^{450 imes 450}$, $\lambda_i(m{b}) \sim_{iid} \exp(1)$
- N varies in $\{30, \dots, 4500\}$.

RF Model

 $f_{\sf RF}(x) = \sum_{i=1}^N a_i \sigma(\langle w_i, x \rangle)$ where $w_i \sim {\sf N}(0,\Gamma)$ and a_i are trained.

Theorem (Ghorbani, Mei, Misiakiewicz, M., 2019)

Assume $\sigma(x) = x^2 - 1$. Then we have, as $N, d \to \infty$ with $N/d \to \psi_1$:

$$R_{{\sf RF},N} = \|f_*\|_{L_2}^2 \left(1 - rac{\psi_1 d \langle m{B}, m{\Gamma}
angle^2}{\|m{B}\|_F^2 (1 + \psi_1 d \|m{\Gamma}\|_F^2)} + o_{d,\mathbb{P}}(1)
ight)$$

• The correlation between Γ and B controls the risk.

RF Model

 $f_{\mathsf{RF}}(x) = \sum_{i=1}^{N} a_i \sigma(\langle w_i, x \rangle)$ where $w_i \sim \mathsf{N}(0, \Gamma)$ and a_i are trained.

Theorem (Ghorbani, Mei, Misiakiewicz, M., 2019)

Assume $\sigma(x) = x^2 - 1$. Then we have, as $N, d \to \infty$ with $N/d \to \psi_1$:

$$R_{\mathsf{RF},N} = \|f_*\|_{L_2}^2 \left(1 - rac{\psi_1 d \langle m{B}, m{\Gamma}
angle^2}{\|m{B}\|_F^2 (1 + \psi_1 d \|m{\Gamma}\|_F^2)} + o_{d,\mathbb{P}}(1)
ight)\,.$$

• The correlation between Γ and B controls the risk.

RF Model

 $f_{\sf RF}(x) = \sum_{i=1}^N a_i \sigma(\langle w_i, x \rangle)$ where $w_i \sim {\sf N}(0,\Gamma)$ and a_i are trained.

Theorem (Ghorbani, Mei, Misiakiewicz, M., 2019)

Assume $\sigma(x) = x^2 - 1$. Then we have, as $N, d \to \infty$ with $N/d \to \psi_1$:

$$R_{\mathsf{RF},N} = \|f_*\|_{L_2}^2 \left(1 - rac{\psi_1 d \langle m{B}, m{\Gamma}
angle^2}{\|m{B}\|_F^2 (1 + \psi_1 d \|m{\Gamma}\|_F^2)} + o_{d,\mathbb{P}}(1)
ight)\,.$$

• The correlation between Γ and B controls the risk.

$$\lim_{\psi_1 o \infty} \lim_{d o \infty, N/d o \psi_1} rac{R_{\mathsf{F},N}}{\mathbb{E}\{f^2_*\}} = \lim_{d o \infty} \left(1 - rac{\langle m{\Gamma}, m{B}
angle^2}{\|m{\Gamma}\|_F^2\|m{B}\|_F^2}
ight) \,.$$

- Risk vanishes only if Γ is chosen perfectly and $\psi_1 \to \infty$.
- ▶ This result is true for any activation
- ▶ The asymptotic risk is independent of the non-linearity!

$$\lim_{\psi_1 o\infty} \lim_{d o\infty,N/d o\psi_1} rac{R_{\mathsf{RF},N}}{\mathbb{E}\{f^2_*\}} = \lim_{d o\infty} \left(1 - rac{\langle m{\Gamma},m{B}
angle^2}{\|m{\Gamma}\|_F^2\|m{B}\|_F^2}
ight)\,.$$

- Risk vanishes only if Γ is chosen perfectly and $\psi_1 o \infty$.
- ▶ This result is true for any activation
- ▶ The asymptotic risk is independent of the non-linearity!

$$\lim_{\psi_1 o \infty} \lim_{d o \infty, N/d o \psi_1} rac{R_{\mathsf{RF},N}}{\mathbb{E}\{f^2_*\}} = \lim_{d o \infty} \left(1 - rac{\langle m{\Gamma}, m{B}
angle^2}{\|m{\Gamma}\|_F^2 \|m{B}\|_F^2}
ight).$$

- Risk vanishes only if Γ is chosen perfectly and $\psi_1 o \infty$.
- ▶ This result is true for any activation
- ▶ The asymptotic risk is independent of the non-linearity!

٠

$$\lim_{\psi_1 o \infty} \lim_{d o \infty, N/d o \psi_1} rac{R_{\mathsf{RF},N}}{\mathbb{E}\{f^2_*\}} = \lim_{d o \infty} \left(1 - rac{\langle m{\Gamma}, m{B}
angle^2}{\|m{\Gamma}\|_F^2 \|m{B}\|_F^2}
ight).$$

- Risk vanishes only if Γ is chosen perfectly and $\psi_1 o \infty$.
- ▶ This result is true for any activation
- ▶ The asymptotic risk is independent of the non-linearity!

.

▶ Naive RF does not learn an efficient representation of the data.

▶ Naive RF does not learn an efficient representation of the data.

NT Model

• $f_{\mathsf{NT}}(x) = c + \sum_{i=1}^N \sigma'(\langle w_i, x \rangle) \langle a_i, x \rangle$ where $w_i \sim_{i.i.d} \mathsf{N}(0, I_d/d)$.

Theorem (Ghorbani, Mei, Misiakiewicz, M., 2019)

For $N, d
ightarrow \infty$ with $N/d
ightarrow \psi_1$

$$\frac{\mathbb{E}[R_{\mathsf{NT},N}]}{\mathbb{E}\{f_*^2\}} = \Big\{(1-\psi_1)_+^2 + \psi_1(1-\psi_1)_+ \frac{\mathrm{Tr}(B)^2}{d\|B\|_F^2} + o_d(1)\Big\}$$

where the expectation is taken over $w_i \sim_{i,i,d} N(\mathbf{0}, \mathbf{I}_d/d)$.

NT Model

• $f_{\mathsf{NT}}(x) = c + \sum_{i=1}^N \sigma'(\langle w_i, x \rangle) \langle a_i, x \rangle$ where $w_i \sim_{i.i.d} \mathsf{N}(0, I_d/d)$.

Theorem (Ghorbani, Mei, Misiakiewicz, M., 2019)

For N, $d
ightarrow \infty$ with $N/d
ightarrow \psi_1$

$$rac{\mathbb{E}[R_{\mathsf{NT},N}]}{\mathbb{E}\{f_*^2\}} = \Big\{(1-\psi_1)_+^2 + \psi_1(1-\psi_1)_+ rac{\mathrm{Tr}(B)^2}{d\|B\|_F^2} + o_d(1)\Big\}$$

where the expectation is taken over $w_i \sim_{i.i.d} N(0, I_d/d)$.

Quadratic Model - NT

Theorem (Ghorbani, Mei, Misiakiewicz, M., 2019) For $N, d \to \infty$ with $N/d \to \psi_1$ $\frac{\mathbb{E}[R_{\mathsf{NT},N]}}{\mathbb{E}\{f_*^2\}} = \left\{ (1 - \psi_1)_+^2 + \psi_1(1 - \psi_1)_+ \frac{\operatorname{Tr}(B)^2}{d||B||_F^2} + o_d(1) \right\}$ where the expectation is taken over $w_i \sim_{i,i,d} \mathsf{N}(\mathbf{0}, \mathbf{I}_d/d)$.

• Does NT learn subspaces based on their importance in B?

No! NT fits random directions (but more parameters).

Theorem (Ghorbani, Mei, Misiakiewicz, M., 2019) For $N, d \to \infty$ with $N/d \to \psi_1$ $\frac{\mathbb{E}[R_{\mathsf{NT},N]}}{\mathbb{E}\{f_*^2\}} = \left\{ (1 - \psi_1)_+^2 + \psi_1(1 - \psi_1)_+ \frac{\operatorname{Tr}(B)^2}{d||B||_F^2} + o_d(1) \right\}$ where the expectation is taken over $w_i \sim_{i,i,d} \mathsf{N}(\mathbf{0}, \mathbf{I}_d/d)$.

- ▶ Does NT learn subspaces based on their importance in B?
- **No!** NT fits random directions (but more parameters).

Theorem (Ghorbani, Mei, Misiakiewicz, M., 2019) For $N, d \to \infty$ with $N/d \to \psi_1$ $\frac{\mathbb{E}[R_{\mathsf{NT},N]}}{\mathbb{E}\{f_*^2\}} = \left\{ (1 - \psi_1)_+^2 + \psi_1(1 - \psi_1)_+ \frac{\operatorname{Tr}(B)^2}{d \|B\|_F^2} + o_d(1) \right\}$ where the expectation is taken over $w_i \sim_{i,i,d} \mathsf{N}(\mathbf{0}, \mathbf{I}_d/d)$.

- ▶ Does NT learn subspaces based on their importance in B?
- ▶ No! NT fits random directions (but more parameters).

- Square non-linearity $\longrightarrow f_{NN}(x; W, c) = \sum_{i=1}^{N} \langle w_i, x \rangle^2 + c.$
- $\blacktriangleright \ R(f_{\mathsf{NN}}) = R(\boldsymbol{W}, \boldsymbol{c}) = \mathbb{E}\Big[\Big(\langle \boldsymbol{x}\boldsymbol{x}^{\mathsf{T}}, \boldsymbol{B} \boldsymbol{W}\boldsymbol{W}^{\mathsf{T}}\rangle + b_0 \boldsymbol{c}\Big)^2\Big].$

Does gradient descent converge to this value?

- Square non-linearity $\longrightarrow f_{NN}(x; W, c) = \sum_{i=1}^{N} \langle w_i, x \rangle^2 + c.$
- $\blacktriangleright \ R(f_{\mathsf{NN}}) = R(\boldsymbol{W}, \boldsymbol{c}) = \mathbb{E}\Big[\Big(\langle \boldsymbol{x}\boldsymbol{x}^{\mathsf{T}}, \boldsymbol{B} \boldsymbol{W}\boldsymbol{W}^{\mathsf{T}}\rangle + b_0 \boldsymbol{c}\Big)^2\Big].$

Does gradient descent converge to this value?

• Square non-linearity
$$\longrightarrow f_{\sf NN}(x; W, c) = \sum_{i=1}^N \langle w_i, x \rangle^2 + c.$$

$$\blacktriangleright \ R(f_{\mathsf{NN}}) = R(W, c) = \mathbb{E}\Big[\Big(\langle xx^{\mathsf{T}}, B - WW^{\mathsf{T}} \rangle + b_0 - c\Big)^2\Big].$$

▶ Does gradient descent converge to this value?

• Square non-linearity $\longrightarrow f_{\sf NN}(x; W, c) = \sum_{i=1}^N \langle w_i, x \rangle^2 + c.$

$$\blacktriangleright \ R(f_{\mathsf{NN}}) = R(\boldsymbol{W}, \boldsymbol{c}) = \mathbb{E}\Big[\Big(\langle \boldsymbol{x}\boldsymbol{x}^{\mathsf{T}}, \boldsymbol{B} - \boldsymbol{W}\boldsymbol{W}^{\mathsf{T}}\rangle + b_0 - \boldsymbol{c}\Big)^2\Big].$$

▶ Does gradient descent converge to this value?

• Square non-linearity $\longrightarrow f_{\sf NN}(x; W, c) = \sum_{i=1}^N \langle w_i, x \rangle^2 + c.$

$$\blacktriangleright \ R(f_{\mathsf{NN}}) = R(\boldsymbol{W}, \boldsymbol{c}) = \mathbb{E}\Big[\Big(\langle \boldsymbol{x}\boldsymbol{x}^{\mathsf{T}}, \boldsymbol{B} - \boldsymbol{W}\boldsymbol{W}^{\mathsf{T}}\rangle + b_0 - \boldsymbol{c}\Big)^2\Big].$$

Does gradient descent converge to this value?

NN with Gradient Descent

One-pass version of SGD,

$$egin{aligned} & (m{W}_{k+1}, m{c}_{k+1}) = (m{W}_k, m{c}_k) - m{arepsilon}
abla_{m{W}, m{c}} \Big(f_*(m{x}_k) - \hat{f}(m{x}_k; m{W}, m{c}) \Big)^2 \, . \end{aligned}$$

▶ Define

$$R(\ell,\varepsilon)\equiv R(\boldsymbol{W}_{\ell},c_{\ell}).$$

Theorem (Ghorbani, Mei, Misiakiewicz, M., 2019)

We have

$$\lim_{t o\infty}\lim_{arepsilon o \infty} \mathbb{P}ig(\Big| R(\ell=t/arepsilon,arepsilon) - \inf_{oldsymbol{W},c} R(oldsymbol{W},c) \Big| \geq \delta) = 0,$$

(probability is over the initialization (W_0, c_0) and the samples.)

NN with Gradient Descent

One-pass version of SGD,

$$(\, oldsymbol{W}_{k+1}, \, oldsymbol{c}_{k+1}) = (\, oldsymbol{W}_k, \, oldsymbol{c}_k) - arepsilon
abla _{oldsymbol{W}, \, c} \Big(f_*(oldsymbol{x}_k) - \hat{f}(oldsymbol{x}_k; \, oldsymbol{W}, \, c) \Big)^2$$

Define

$$R(\ell, \varepsilon) \equiv R(W_{\ell}, c_{\ell}).$$

Theorem (Ghorbani, Mei, Misiakiewicz, M., 2019)

We have

$$\lim_{t o\infty}\lim_{arepsilon o \infty} \mathbb{P}ig(\Big| R(\ell=t/arepsilon,arepsilon) - \inf_{oldsymbol{W},c} R(oldsymbol{W},c) \Big| \geq \delta) = 0,$$

(probability is over the initialization (W_0, c_0) and the samples.)

NN with Gradient Descent

One-pass version of SGD,

$$(\, oldsymbol{W}_{k+1}, \, oldsymbol{c}_{k+1}) = (\, oldsymbol{W}_k, \, oldsymbol{c}_k) - arepsilon
abla _{oldsymbol{W}, \, c} \Big(f_*(oldsymbol{x}_k) - \hat{f}(oldsymbol{x}_k; \, oldsymbol{W}, \, c) \Big)^2$$

Define

$$R(\ell, \varepsilon) \equiv R(W_{\ell}, c_{\ell}).$$

Theorem (Ghorbani, Mei, Misiakiewicz, M., 2019)

We have

$$\lim_{\epsilon o \infty} \lim_{arepsilon o 0} \mathbb{P}ig(\Big| R(oldsymbol{\ell} = t/arepsilon, arepsilon) - \inf_{oldsymbol{W}, c} R(oldsymbol{W}, c) \Big| \geq \delta ig) = 0,$$

(probability is over the initialization (W_0, c_0) and the samples.)

$$rac{R_{\mathsf{M},N}}{\mathbb{E}\{f_*^2\}} pprox \left\{ egin{array}{ll} 1 - rac{\psi_1}{1 + \psi_1} rac{\mathrm{Tr}(m{B})^2}{d\|m{B}\|_F^2} & ext{for } \mathsf{M} = \mathsf{RF}, \ (1 - \psi_1)_+^2 + \psi_1(1 - \psi_1)_+ rac{\mathrm{Tr}(m{B})^2}{d\|m{B}\|_F^2} & ext{for } \mathsf{M} = \mathsf{NT}, \ 1 - rac{\sum_{i=1}^{d \wedge N} \lambda_i(m{B})^2}{\|m{B}\|_F^2} & ext{for } \mathsf{M} = \mathsf{NN}. \end{array}
ight.$$

- $\blacktriangleright \exists B$ arbtrarily large gap between NN and NT.
- ▶ How general are these phenomena?

$$rac{R_{\mathsf{M},N}}{\mathbb{E}\{f_*^2\}} pprox \left\{ egin{array}{ll} 1 - rac{\psi_1}{1 + \psi_1} rac{\mathrm{Tr}(B)^2}{d\|B\|_F^2} & ext{for } \mathsf{M} = \mathsf{RF}, \ (1 - \psi_1)_+^2 + \psi_1(1 - \psi_1)_+ rac{\mathrm{Tr}(B)^2}{d\|B\|_F^2} & ext{for } \mathsf{M} = \mathsf{NT}, \ 1 - rac{\sum_{i=1}^{d \wedge N} \lambda_i(B)^2}{\|B\|_F^2} & ext{for } \mathsf{M} = \mathsf{NN}. \end{array}
ight.$$

- $\blacktriangleright \exists B$ arbtrarily large gap between NN and NT.
- ▶ How general are these phenomena?

$$rac{R_{\mathsf{M},N}}{\mathbb{E}\{f_*^2\}} pprox \left\{ egin{array}{ll} 1 - rac{\psi_1}{1 + \psi_1} rac{\mathrm{Tr}(B)^2}{d\|B\|_F^2} & ext{for } \mathsf{M} = \mathsf{RF}, \ (1 - \psi_1)_+^2 + \psi_1(1 - \psi_1)_+ rac{\mathrm{Tr}(B)^2}{d\|B\|_F^2} & ext{for } \mathsf{M} = \mathsf{NT}, \ 1 - rac{\sum_{i=1}^{d \wedge N} \lambda_i(B)^2}{\|B\|_F^2} & ext{for } \mathsf{M} = \mathsf{NN}. \end{array}
ight.$$

- $\blacktriangleright \exists B$ arbtrarily large gap between NN and NT.
- ▶ How general are these phenomena?

$$rac{R_{\mathsf{M},N}}{\mathbb{E}\{f_*^2\}} pprox \left\{ egin{array}{ll} 1 - rac{\psi_1}{1 + \psi_1} rac{\mathrm{Tr}(B)^2}{d\|B\|_F^2} & ext{for } \mathsf{M} = \mathsf{RF}, \ (1 - \psi_1)_+^2 + \psi_1(1 - \psi_1)_+ rac{\mathrm{Tr}(B)^2}{d\|B\|_F^2} & ext{for } \mathsf{M} = \mathsf{NT}, \ 1 - rac{\sum_{i=1}^{d \wedge N} \lambda_i(B)^2}{\|B\|_F^2} & ext{for } \mathsf{M} = \mathsf{NN}. \end{array}
ight.$$

- $\blacktriangleright \exists B$ arbtrarily large gap between NN and NT.
- ▶ How general are these phenomena?

$$rac{R_{\mathsf{M},N}}{\mathbb{E}\{f_*^2\}} pprox \left\{ egin{array}{ll} 1 - rac{\psi_1}{1+\psi_1}rac{\mathrm{Tr}(m{B})^2}{d\|m{B}\|_F^2} & ext{for } \mathsf{M} = \mathsf{RF}, \ (1-\psi_1)_+^2 + \psi_1(1-\psi_1)_+rac{\mathrm{Tr}(m{B})^2}{d\|m{B}\|_F^2} & ext{for } \mathsf{M} = \mathsf{NT}, \ 1 - rac{\sum_{i=1}^{d\wedge N}\lambda_i(m{B})^2}{\|m{B}\|_F^2} & ext{for } \mathsf{M} = \mathsf{NN}. \end{array}
ight.$$

- ▶ Naive RF, NT do not learn good representations of the data.
- ▶ $\exists B$ arbtrarily large gap between NN and NT.
- ▶ How general are these phenomena?
Comparison

$$rac{R_{\mathsf{M},N}}{\mathbb{E}\{f_*^2\}} pprox \left\{ egin{array}{ll} 1 - rac{\psi_1}{1+\psi_1}rac{\mathrm{Tr}(m{B})^2}{d\|m{B}\|_F^2} & ext{for } \mathsf{M} = \mathsf{RF}, \ (1-\psi_1)_+^2 + \psi_1(1-\psi_1)_+rac{\mathrm{Tr}(m{B})^2}{d\|m{B}\|_F^2} & ext{for } \mathsf{M} = \mathsf{NT}, \ 1 - rac{\sum_{i=1}^{d\wedge N}\lambda_i(m{B})^2}{\|m{B}\|_F^2} & ext{for } \mathsf{M} = \mathsf{NN}. \end{array}
ight.$$

- ▶ Naive RF, NT do not learn good representations of the data.
- ▶ $\exists B$ arbtrarily large gap between NN and NT.
- How general are these phenomena?

Comparison with ReLU

Conclusion

Conclusion

▶ Thermodynamic/wide limit: a useful concept

Different regimes (depends on training)

▶ Linearized regime captures certain phenomena

Thanks!

Conclusion

- ▶ Thermodynamic/wide limit: a useful concept
- Different regimes (depends on training)
- Linearized regime captures certain phenomena

Thanks!