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Machine learning is important for the “quantum revolution”

1990
Hidden subgroup

Shor QFT Adiabatic optimization
Quantum Walks ~ HHL/ Matrix inversion ~Grover

C')
Quantum Simulation

QUANTUM SOFTWARE QUANTUM HARDWARE

Group isomorpk

Deutsch-Josza

MOTIVATION



Machine learning is important for the “quantum revolution”.
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Should Al researchers care about quantum computing?
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Flnally, Proof That Quantum
Computing'Can Boost
Machine Learning

By Shelly Fan - Mar 17, 2019 @ 19,654
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How can quantum computers improve machine learning?

robustness
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The “first w

ve of QML” wanted to speed up ML.

Problems

QIP tools

Applied to

Simulating linear algebra calculus with qubits

matrix inversion, inner products,
eigenvalue decomposition, singular
value decomposition

quantum phase estimation, postselec-
tive amplitude update, Hamiltonian
simulation, density matrix exponentia-
tion

support vector machines, Gaussian pro-
cesses, linear regression, discriminant anal-
ysis, recommendation systems, principal
component analysis

Optimisation with Grover search

finding closest neighbours,
Markov chains

amplitude amplification, quantum
walks

k-nearest neigbour, page ranking, cluster-
ing, associative memory, perceptrons, active
learning agents, natural language processing

Sampling from quantum states

sampling from model distribution

quantum annealing, quantum rejection
sampling

Boltzmann machines, Bayesian nets,
Bayesian inference

Optimisation with ground states of Hamiltonians

combinatorial optimisation

adiabatic quantum computing, quan-
tum annealing, quantum simulation

associative memory, boosting, debugging,
variational Bayes inference, Bayesian net-
works, perceptron, EM algorithm, clustering
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The “second wave of qml” trains quantum computations.

Quantum device
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THE MATHEMATICS OF QML



Quantum theory is a math. framework invented in the 1930s.

Paul Dirac and
John von Neumann
unite approaches
& formulate modern
quantum theory

Max Born
applies quantisation
to atomic spectrum
Quantum theory branches out

Max Planck Heisenberg, Jordan, Born into physzcul subdisciplines

discovers quantisation formulate matrix
of black-body radiation mechanics
1900 1925 1932
} I I P

T T L
1905 1923 © 1930

Albert Einstein 1926

deCL{UWS '41{'1””’ Erwin Schrédinger
sation of light formulates wave
mechanics

de Broglie
postulates the duality
of waves and particles

HEMATICS OF QML



Quantum theory calculates the expectations of measurements.

>
>

A quantum state [) lives in a Hilbert space 3 with scalar product ([ ).

An observable is represented by a Hermitian operator O on H. The
eigenvectors of O form an orthonormal basis of H with real eigenvalues.
Every ) € CN can hence be expressed in O’s eigenbasis {{;)}i—1.n,

) = Zfi 1ailb;), where the a; € C are the amplitudes.

The effect of applying O to an element ) € CV is fully defined by the
eigenvalue equations Ohp;) = Ajp;) with eigenvalues A;. Expectation values
of the observable property are calculated by [E(O) = (\|Ohp).

The dynamic evolution of a quantum state is represented by a unitary
operator U = U(fp, t1) mapping [\p(t1)) to U(tz, t1)[(t1)) = hp(t2)) with
UTU = 1. U is the solution of the corresponding Schrédinger equation
ihdip) = Hhp) with Hamiltonian H.

THE MATHEMATICS OF QML



From probabilities to amplitudes.

Consider a set of N measurement outcomes X = {xy,...,,xy} occurring with
probability p1, ..., pn. The expectation of the measurement is given by:

N
(X)=) pxi=p'%
i=1

THE MATHEMATICS OF QML



From probabilities to amplitudes.

Consider

P 1 0 X
(e l)l) <
NS 0 1 0

The expectation value can now be written as

N
(X)=7"X7=7) pm:

i=1

THE MATHEMATICS OF QML



From probabilities to amplitudes.

Replace g with a complex amplitude vector { = («, ..., )T € CN.

Replace X by a complex, self-adjoint matrix O & CNxN,

The eigenvalues o; of O correspond to the outcomes of measurements.

THE MATHEMATICS OF QML



Unitary transformations describe evolutions.

Time evolutions of a quantum system are described by unitary transformations of
the amplitude vector,

Ui

N N
s D =)l =1.
i=1 i=1

UN1

THE MATHEMATICS OF QML



Quantum computing is a special case.

Quantum system — n qubits

Measurement outcomes — X = {00...0, ..., 11...1}.

States — P = (&q, ..., )T

Evolution — U = Gy, ..., Gy

Expectation of measuring first qubit — Pi(o, @ 101Dy

THE MATHEMATICS OF QML



VAR. QUANTUM MODELS



Variational models are trainable circuits.

Quantum device
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Variational models are trainable circuits.

10)

10)

Quantum device

Ug

Cost(0)

Classical device

VARIATIONAL QML MODELS
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Variational models consist of three elements.

(0z)

Sx UQ

CIRCUIT

o measure- post-
state prep. model circuit ment process.

Farhi & Neven 1802.06002, Schuld et al. 1804.00633, Benedetti et al. 1906.07682
VARIATIONAL QML MODELS




Variational models consist of three elements.

x = 0| =9 =Ugh(x) || = (—)%2

nonlin. map unitary transform. expectation

FORMAL

= (0z)

Sx UQ

CIRCUIT

o measure- post-
state prep. model circuit ment process.

Farhi & Neven 1802.06002, Schuld et al. 1804.00633, Benedetti et al. 1906.07682
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LINKS TO NEURAL NETS



Variational models are linear, symmetric neural networks.

LINKS TO NEURAL NETS



Variational models are linear, symmetric neural networks.
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Fig. 8.1 The single qubit gate G4, (left) and the controlled single qubit gate cq, G,
(right) from the examples applied to a system of 3 qubits drawn in the graphical
representation of neural networks. The gates take a quantum state with amplitude

Schuld & Petruccione, Springer 2018
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Variational models are linear, symmetric neural networks.

Processing >

Pérez-Salinas et al. 1907.02085

LINKS TO NEURAL NETS



We can do gradient descent on variational models.

D hybrid computation

classical
node

quantum
device

Guerreschi & Smelyanskiy 1701.01450, Mitarai et al. 1803.00745, Schuld et al. 1811.11184
LINKS TO NEURAL NETS




We can do gradient descent on variational models.

D hybrid computation

classical
node

quantum

quantum
device

Guerreschi & Smelyanskiy 1701.01450, Mitarai et al. 1803.00745, Schuld et al. 1811.11184
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We can do gradient descent on variational models.

Quantum Natural Gradient.

L(g,,4,)
L(6,6,)

Stokes, Izaac, Killoran, Carleo 1909.02108
LINKS TO NEURAL NETS




We can do gradient descent on variational models.

Stochastic gradient descent.

Doubly Stochastic Gradient Descent
Ir=0.0005

1 shot
3 shot
9 shot
27 shat
B1 shat

Sweke et al 1910.01155
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We are investigating the expressivity of variational models.
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We are investigating the expressivity of variational models.

Idle circuit Circuit A Circuit B Arbitrary unitary
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We are investigating the expressivity of variational models.

Circuit 13

e PRy

]
Number of layers, L

16 3 18 10 121517 4 11 7
Circuit ID

Sim, Johnson, Aspuru-Guzik 1905.10876
LINKS TO NEURAL NETS




We are investigating the expressivity of variational models.

Theorem 3. The expressive power of MPQCs and
TPQCs with Olpoly(N)) single gubits gates and CNOT
gates, and classical neural networks with O(poly(N))
trainable parameters, where N refers to the number of
qubits or the visible units, can be ordered as: MPQCs >
DBM = long range BRBM = TPQCs = short range BRBM.

Du, Hsieh, Liu, Tao, 1810.11922

LINKS TO NEURAL NETS



LINKS TO KERNELS



QC and kernel methods share the same basic idea.

Schuld & Killoran 1803.07128, Havlicek et al. 1804.11326
LINKS TO KERNEL METHODS




QC and kernel methods share the same basic idea.

Schuld & Killoran 1803.07128, Havlicek et al. 1804.11326
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Kernel methods use inner products in Hilbert space.

feature map

RN

LINKS TO KERNEL METHODS



Kernel methods use inner products in Hilbert space.

feature map

RN

original space feature space

K(x,x') = {b(x)Id(x)P

LINKS TO KERNEL METHODS



Variational QML models are similar to kernel methods.
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Variational QML models are similar to kernel methods.
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Variational QML models are similar to kernel methods.
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Schuld & Killoran 1803.07128, Havlicek et al. 1804.11326
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Variational QML models are similar to kernel methods.

Quantum
device

& (z) N4

' ML system |
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EXAMPLE OF A QUANTUM
EMBEDDING



A Gaussian Boson Sampler can help to compute kernels.

b1

~

(bD KJ(¢7 : )
feature kernel
adjacency matrix vector

ENCODING

Schuld, Bradler, Israel, Su, Gupt 1905.12646
LINKS TO KERNEL METHODS




The covariance matrix encodes the graph.

POSTPROCESSING
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W o inte 8" U, TN
~ o .
2% - %,

graph % b1
00101 % :
00011 3 - gevice : ’_\
3% ép k(. - )
11100, ® feature kernel
adjacency matrix vector
ENCODING

A Gaussian state of M optical modes is fully described by a covariance matrix
o € R?M>X2M a5 well as a displacement vector d € R*M.

We can associate such a state with an adjacency matrix A via

G:(]l—XA)_l—g, withX:<$ g),A:c@ g).
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The features are probabilities of detecting certain photon events.

POSTPROCESSING
interferomete’__
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feature kernel
adjacency matrix vector

An orbit is a set of photon click events which are permuta-
tions of each other.
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i.e., Opnoo) = {[111100], 111010, [010111], [100111], [001111], ...}

LINKS TO KERNEL METHODS



Orbits count the number of r-matchings in subgraphs.

RIPEIPEIPr

p(Opa10) =p([1,1,1,00) +p([1,1,0,1]) +p([1,0,1,1]) +p([0,1,1,1])

LINKS TO KERNEL METHODS



Orbits count the number of r-matchings in subgraphs.
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We can test the kernel on standard graph data sets.

BZR_MD

COX2_MD ENZYMES

R TN

1728 [86%] 257 [84%]
Fingerprint IMDB-BINARY

.. I

118 [39%] 204 [34°!u]

MUTAG NCI1

ER_MD

357 [80%]
PROTEINS

number of
graph edges

number of
graph nodes

PTC_FM

w T T

1080'[38%*] 806 [81%]

—

179 [96%] 1836 [45%]

LINKS TO KERNEL METHODS
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The results are promising.

Dataset GBS (d =0.0) GBS (d = 0.25) GS RW SM

AIDS 99.60 £0.05  99.62 £ 0.03 9844 £0.09 56.95+799 79.20+0.68
BZR_MD 6273+071  6213+144 6060 +1.77 49.88+3.74 61.90+1.21
COX2_MD 4498+1.80 50114097 55044333 57.72+326 66.94+1.22
ENZYMES 22294160  2801+183 35874219 21.13+191 36.70+2.83
ER_MD 7036 +078  7041+047  65.65+1.06 68.75+053 6821 +0.99
FINGERPRINT 65424049  6585+036 6410152 47694021 47.14+0.62
IMDB-BIN 64.09+034  6871+£059 6837+£062 66.38+021 outof time*
MUTAG 86.41+033  8558+059 81.08+093 83.02+1.08 83.14+0.24
NCI1 63.61+000 62794000 49.96+327 52364263 51.36+1.88
PROTEINS 6688022  66.14+048 6591+129 5627+123 63.03+0.84
PTC_FM 53.84+£096  5245+178  59.48+195 51.97+268 54.92+294

LINKS TO KERNEL METHODS
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This is only the beginning of the journey..

» How can we benchmark quantum models?
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This is only the beginning of the journey..
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How can we benchmark quantum models?

Is there a connection between quantum theory and deep learning?
Do quantum models inherently regularise?

How does noise impact applications?

What domains is QML good for?

Do QML ideas scale?

What optimization strategies work for variational circuits?

Which circuit architectures are good for ML?

OPEN PROBLEMS



Thank you!

www.pennylane.ai
www.xanadu.ai
@XanaduAl




