# Innovating machine learning with near-term quantum computing

### Maria Schuld

University of KwaZulu-Natal and Xanadu

IPAM Workshop @ UCLA, November 2019



### Agenda

- Motivation
- Mathematics of QML
- Variational quantum models
- Links to neural nets
- Links to kernel methods
- Open problems

# MOTIVATION

### Machine learning is important for the "quantum revolution".





### Machine learning is important for the "quantum revolution".



MOTIVATION

### Should AI researchers care about quantum computing?



### How can quantum computers improve machine learning?





#### MOTIVATION

# The "first wave of QML" wanted to speed up ML.

| Problems                                                                                       | QIP tools                                                                                                                    | Applied to                                                                                                                                               |  |  |  |  |  |
|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Simulating linear algebra calculus with qubits                                                 |                                                                                                                              |                                                                                                                                                          |  |  |  |  |  |
| matrix inversion, inner products,<br>eigenvalue decomposition, singular<br>value decomposition | quantum phase estimation, postselec-<br>tive amplitude update, Hamiltonian<br>simulation, density matrix exponentia-<br>tion | support vector machines, Gaussian pro-<br>cesses, linear regression, discriminant anal-<br>ysis, recommendation systems, principal<br>component analysis |  |  |  |  |  |
| Optimisation with Grover search                                                                |                                                                                                                              |                                                                                                                                                          |  |  |  |  |  |
| finding closest neighbours,<br>Markov chains                                                   | amplitude amplification, quantum<br>walks                                                                                    | k-nearest neigbour, page ranking, cluster-<br>ing, associative memory, perceptrons, active<br>learning agents, natural language processing               |  |  |  |  |  |
| Sampling from quantum states                                                                   |                                                                                                                              |                                                                                                                                                          |  |  |  |  |  |
| sampling from model distribution                                                               | quantum annealing, quantum rejection sampling                                                                                | Boltzmann machines, Bayesian nets,<br>Bayesian inference                                                                                                 |  |  |  |  |  |
| Optimisation with ground states of Hamiltonians                                                |                                                                                                                              |                                                                                                                                                          |  |  |  |  |  |
| combinatorial optimisation                                                                     | adiabatic quantum computing, quan-<br>tum annealing, quantum simulation                                                      | associative memory, boosting, debugging,<br>variational Bayes inference, Bayesian net-<br>works, perceptron, EM algorithm, clustering                    |  |  |  |  |  |

### The "second wave of qml" trains quantum computations.





# THE MATHEMATICS OF QML

### Quantum theory is a math. framework invented in the 1930s.



### Quantum theory calculates the expectations of measurements.

- A quantum state  $|\psi\rangle$  lives in a **Hilbert space**  $\mathcal{H}$  with scalar product  $\langle \psi | \psi \rangle$ .
- An **observable** is represented by a Hermitian operator O on  $\mathcal{H}$ . The eigenvectors of O form an orthonormal basis of  $\mathcal{H}$  with real eigenvalues. Every  $|\psi\rangle \in \mathbb{C}^N$  can hence be expressed in O's eigenbasis  $\{|\psi_i\rangle\}_{i=1...N}$ ,  $|\psi\rangle = \sum_{i=1}^{N} a_i |\psi_i\rangle$ , where the  $a_i \in \mathbb{C}$  are the **amplitudes**.
- ► The effect of applying *O* to an element  $|\psi\rangle \in \mathbb{C}^N$  is fully defined by the eigenvalue equations  $O|\psi_i\rangle = \lambda_i |\psi_i\rangle$  with eigenvalues  $\lambda_i$ . Expectation values of the observable property are calculated by  $\mathbb{E}(O) = \langle \psi | O | \psi \rangle$ .

► The dynamic evolution of a quantum state is represented by a **unitary operator**  $U = U(t_2, t_1)$  mapping  $|\psi(t_1)\rangle$  to  $U(t_2, t_1)|\psi(t_1)\rangle = |\psi(t_2)\rangle$  with  $U^{\dagger}U = 1$ . *U* is the solution of the corresponding **Schrödinger equation**  $i\hbar\partial_t |\psi\rangle = H|\psi\rangle$  with **Hamiltonian** *H*.

Consider a set of *N* measurement outcomes  $\mathcal{X} = \{x_1, ..., x_N\}$  occurring with probability  $p_1, ..., p_N$ . The expectation of the measurement is given by:

$$\langle X \rangle = \sum_{i=1}^{N} p_i x_i = \vec{p}^T \vec{x}$$

### From probabilities to amplitudes.

### Consider

$$\vec{q} = \begin{pmatrix} \sqrt{p_1} \\ \vdots \\ \sqrt{p_N} \end{pmatrix} = \sqrt{p_1} \begin{pmatrix} 1 \\ \vdots \\ 0 \end{pmatrix} + \ldots + \sqrt{p_N} \begin{pmatrix} 0 \\ \vdots \\ 1 \end{pmatrix}, \qquad X = \begin{pmatrix} x_1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & x_N \end{pmatrix}.$$

The expectation value can now be written as

$$\langle X \rangle = \vec{q}^T X \vec{q} = \sum_{i=1}^N p_i x_i.$$

Replace *q* with a complex *amplitude vector*  $\boldsymbol{\psi} = (\alpha_1, ..., \alpha_N)^T \in \mathbb{C}^N$ .

Replace *X* by a complex, self-adjoint matrix  $O \in \mathbb{C}^{N \times N}$ .

The eigenvalues  $o_i$  of O correspond to the outcomes of measurements.

Time evolutions of a quantum system are described by unitary transformations of the amplitude vector,

$$\begin{pmatrix} u_{11} & \dots & u_{1N} \\ \vdots & \ddots & \vdots \\ u_{N1} & \dots & u_{NN} \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_N \end{pmatrix} = \begin{pmatrix} \alpha'_1 \\ \vdots \\ \alpha'_N \end{pmatrix}, \qquad \sum_{i=1}^N |\alpha_i|^2 = \sum_{i=1}^N |\alpha'_i|^2 = 1.$$

### Quantum computing is a special case.

Quantum system  $\rightarrow n$  qubits

Measurement outcomes  $\rightarrow X = \{00...0, ..., 11...1\}.$ 

States 
$$\rightarrow \psi = (\alpha_1, ..., \alpha_{2^n})^T$$

Evolution  $\rightarrow U = G_L, ..., G_1$ 

Expectation of measuring first qubit  $\rightarrow \psi^{\dagger}(\sigma_z \otimes \mathbb{1}^{(n-1)})\psi$ 

# VAR. QUANTUM MODELS

### Variational models are trainable circuits.



### Variational models are trainable circuits.



### Variational models are trainable circuits.



### Variational models consist of three elements.



Farhi & Neven 1802.06002, Schuld et al. 1804.00633, Benedetti et al. 1906.07682

VARIATIONAL QML MODELS

### Variational models consist of three elements.



Farhi & Neven 1802.06002, Schuld et al. 1804.00633, Benedetti et al. 1906.07682

VARIATIONAL QML MODELS

# LINKS TO NEURAL NETS

### Variational models are linear, symmetric neural networks.



### Variational models are linear, symmetric neural networks.



**Fig. 8.1** The single qubit gate  $G_{q_2}$  (left) and the controlled single qubit gate  $c_{q_3}G_{q_2}$  (right) from the examples applied to a system of 3 qubits drawn in the graphical representation of neural networks. The gates take a quantum state with amplitude

### Schuld & Petruccione, Springer 2018

### Variational models are linear, symmetric neural networks.





### Pérez-Salinas et al. 1907.02085



Guerreschi & Smelyanskiy 1701.01450, Mitarai et al. 1803.00745, Schuld et al. 1811.11184

### LINKS TO NEURAL NETS



Guerreschi & Smelyanskiy 1701.01450, Mitarai et al. 1803.00745, Schuld et al. 1811.11184

LINKS TO NEURAL NETS



Stokes, Izaac, Killoran, Carleo 1909.02108

### Stochastic gradient descent.



Sweke et al 1910.01155

25

### We are investigating the expressivity of variational models.



#### LINKS TO NEURAL NETS

### We are investigating the expressivity of variational models.



Sim, Johnson, Aspuru-Guzik 1905.10876

### We are investigating the expressivity of variational models.



Sim, Johnson, Aspuru-Guzik 1905.10876

**Theorem 3.** The expressive power of MPQCs and TPQCs with O(poly(N)) single qubits gates and CNOT gates, and classical neural networks with O(poly(N))trainable parameters, where N refers to the number of qubits or the visible units, can be ordered as: MPQCs > DBM > long range RBM > TPQCs > short range RBM.

# LINKS TO KERNELS

### QC and kernel methods share the same basic idea.



Schuld & Killoran 1803.07128, Havlicek et al. 1804.11326

### QC and kernel methods share the same basic idea.



Schuld & Killoran 1803.07128, Havlicek et al. 1804.11326

### Kernel methods use inner products in Hilbert space.



$$\kappa(x,x') = \langle \phi(x), \phi(x') \rangle$$

### Kernel methods use inner products in Hilbert space.



$$\kappa(x, x') = |\langle \phi(x) | \phi(x') \rangle|^2$$









Schuld & Killoran 1803.07128, Havlicek et al. 1804.11326



# EXAMPLE OF A QUANTUM EMBEDDING

### A Gaussian Boson Sampler can help to compute kernels.



Schuld, Bradler, Israel, Su, Gupt 1905.12646

### The covariance matrix encodes the graph.



A Gaussian state of *M* optical modes is fully described by a *covariance matrix*  $\sigma \in \mathbb{R}^{2M \times 2M}$  as well as a *displacement vector*  $d \in \mathbb{R}^{2M}$ .

We can associate such a state with an adjacency matrix *A* via

$$\sigma = (\mathbb{1} - X\tilde{A})^{-1} - \frac{\mathbb{1}}{2}$$
, with  $X = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}$ ,  $\tilde{A} = c \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix}$ .

# The features are probabilities of detecting certain photon events.





An *orbit* is a set of photon click events which are permutations of each other.

 $i.e., O_{[111100]} = \{[111100], [111010], [010111], [100111], [001111], ...\}$ 

### Orbits count the number of *r*-matchings in subgraphs.



 $p(O_{[1,1,1,0]}) = p([1,1,1,0]) + p([1,1,0,1]) + p([1,0,1,1]) + p([0,1,1,1])$ 

### Orbits count the number of *r*-matchings in subgraphs.



 $p(O_{[2,1,1,0]}) = p([2,1,1,0]) + p([1,2,0,1]) + p([1,0,1,2]) + \dots$ 

### We can test the kernel on standard graph data sets.



### The results are promising.

| Dataset     | GBS ( $d = 0.0$ )         | GBS ( $d = 0.25$ )        | GS                        | RW               | SM                        |
|-------------|---------------------------|---------------------------|---------------------------|------------------|---------------------------|
| AIDS        | $99.60\pm0.05$            | $99.62 \pm 0.03$          | $98.44 \pm 0.09$          | $56.95 \pm 7.99$ | $79.20\pm0.68$            |
| BZR_MD      | $62.73 \pm 0.71$          | $62.13 \pm 1.44$          | $60.60 \pm 1.77$          | $49.88 \pm 3.74$ | $61.90 \pm 1.21$          |
| COX2_MD     | $44.98 \pm 1.80$          | $50.11 \pm 0.97$          | $55.04 \pm 3.33$          | $57.72 \pm 3.26$ | $\textbf{66.94} \pm 1.22$ |
| ENZYMES     | $22.29 \pm 1.60$          | $28.01 \pm 1.83$          | $35.87 \pm 2.19$          | $21.13 \pm 1.91$ | $\textbf{36.70} \pm 2.83$ |
| ER_MD       | $70.36\pm0.78$            | $\textbf{70.41} \pm 0.47$ | $65.65 \pm 1.06$          | $68.75 \pm 0.53$ | $68.21 \pm 0.99$          |
| FINGERPRINT | $65.42 \pm 0.49$          | $\textbf{65.85} \pm 0.36$ | $64.10 \pm 1.52$          | $47.69 \pm 0.21$ | $47.14\pm0.62$            |
| IMDB-BIN    | $64.09\pm0.34$            | $68.71 \pm 0.59$          | $68.37 \pm 0.62$          | $66.38 \pm 0.21$ | out of time*              |
| MUTAG       | $\textbf{86.41} \pm 0.33$ | $85.58 \pm 0.59$          | $81.08 \pm 0.93$          | $83.02 \pm 1.08$ | $83.14\pm0.24$            |
| NCI1        | $63.61 \pm 0.00$          | $62.79 \pm 0.00$          | $49.96 \pm 3.27$          | $52.36 \pm 2.63$ | $51.36 \pm 1.88$          |
| PROTEINS    | $\textbf{66.88} \pm 0.22$ | $66.14 \pm 0.48$          | $65.91 \pm 1.29$          | $56.27 \pm 1.23$ | $63.03\pm0.84$            |
| PTC_FM      | $53.84 \pm 0.96$          | $52.45 \pm 1.78$          | $\textbf{59.48} \pm 1.95$ | $51.97 \pm 2.68$ | $54.92 \pm 2.94$          |

# **OPEN PROBLEMS**

How can we benchmark quantum models?

- How can we benchmark quantum models?
- ▶ Is there a connection between quantum theory and deep learning?

- How can we benchmark quantum models?
- ▶ Is there a connection between quantum theory and deep learning?
- Do quantum models inherently regularise?

- How can we benchmark quantum models?
- ▶ Is there a connection between quantum theory and deep learning?
- Do quantum models inherently regularise?
- How does noise impact applications?

- How can we benchmark quantum models?
- ▶ Is there a connection between quantum theory and deep learning?
- Do quantum models inherently regularise?
- How does noise impact applications?
- What domains is QML good for?

- How can we benchmark quantum models?
- ▶ Is there a connection between quantum theory and deep learning?
- Do quantum models inherently regularise?
- How does noise impact applications?
- What domains is QML good for?
- ► Do QML ideas scale?

- How can we benchmark quantum models?
- ▶ Is there a connection between quantum theory and deep learning?
- Do quantum models inherently regularise?
- How does noise impact applications?
- What domains is QML good for?
- Do QML ideas scale?
- What optimization strategies work for variational circuits?

- How can we benchmark quantum models?
- ▶ Is there a connection between quantum theory and deep learning?
- Do quantum models inherently regularise?
- How does noise impact applications?
- What domains is QML good for?
- Do QML ideas scale?
- What optimization strategies work for variational circuits?
- ▶ Which circuit architectures are good for ML?

# Thank you!

www.pennylane.ai www.xanadu.ai @XanaduAI