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Machine learning is important for the “quantum revolution”.
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Should AI researchers care about quantum computing?
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How can quantum computers improve machine learning?

#data

speed

output

robustness
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The “first wave of QML” wanted to speed up ML.

Problems QIP tools Applied to

Simulating linear algebra calculus with qubits

matrix inversion, inner products,
eigenvalue decomposition, singular
value decomposition

quantum phase estimation, postselec-
tive amplitude update, Hamiltonian
simulation, density matrix exponentia-
tion

support vector machines, Gaussian pro-
cesses, linear regression, discriminant anal-
ysis, recommendation systems, principal
component analysis

Optimisation with Grover search

finding closest neighbours,
Markov chains

amplitude amplification, quantum
walks

k-nearest neigbour, page ranking, cluster-
ing, associative memory, perceptrons, active
learning agents, natural language processing

Sampling from quantum states

sampling from model distribution quantum annealing, quantum rejection
sampling

Boltzmann machines, Bayesian nets,
Bayesian inference

Optimisation with ground states of Hamiltonians

combinatorial optimisation adiabatic quantum computing, quan-
tum annealing, quantum simulation

associative memory, boosting, debugging,
variational Bayes inference, Bayesian net-
works, perceptron, EM algorithm, clustering
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The “second wave of qml” trains quantum computations.

Quantum device
|0〉

Uθ
...

...

|0〉
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THE MATHEMATICS OF QML
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Quantum theory is a math. framework invented in the 1930s.

1900

Max Planck
discovers quantisation
of black-body radiation

1905

Albert Einstein
discovers quanti-

sation of light

1912

Max Born
applies quantisation
to atomic spectrum

1923

de Broglie
postulates the duality
of waves and particles

1926

Erwin Schrödinger
formulates wave

mechanics

1930

1932

Paul Dirac and
John von Neumann

unite approaches
& formulate modern

quantum theory

1925

Heisenberg, Jordan, Born
formulate matrix

mechanics

Quantum theory branches out
into physical subdisciplines

TIME
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Quantum theory calculates the expectations of measurements.

I A quantum state |ψ〉 lives in a Hilbert space H with scalar product 〈ψ| ψ〉.
I An observable is represented by a Hermitian operator O on H. The

eigenvectors of O form an orthonormal basis of H with real eigenvalues.
Every |ψ〉 ∈ CN can hence be expressed in O’s eigenbasis {|ψi〉}i=1...N,
|ψ〉 =

∑N
i=1 ai|ψi〉, where the ai ∈ C are the amplitudes.

I The effect of applying O to an element |ψ〉 ∈ CN is fully defined by the
eigenvalue equations O|ψi〉 = λi|ψi〉 with eigenvalues λi. Expectation values
of the observable property are calculated by E(O) = 〈ψ|O|ψ〉.

I The dynamic evolution of a quantum state is represented by a unitary
operator U = U(t2, t1) mapping |ψ(t1)〉 to U(t2, t1)|ψ(t1)〉 = |ψ(t2)〉 with
U†U = 1. U is the solution of the corresponding Schrödinger equation
i h∂t|ψ〉 = H|ψ〉 with Hamiltonian H.
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From probabilities to amplitudes.

Consider a set of N measurement outcomes X = {x1, ..., xN} occurring with
probability p1, ..., pN. The expectation of the measurement is given by:

〈X〉 =
N∑

i=1

pixi = ~pT~x
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From probabilities to amplitudes.

Consider

~q =

 √p1
...√pN

 =
√

p1

1
...
0

+ . . . +
√

pN

0
...
1

 , X =

x1 . . . 0
...

. . .
...

0 . . . xN

 .

The expectation value can now be written as

〈X〉 = ~qTX~q =

N∑
i=1

pixi.
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From probabilities to amplitudes.

Replace q with a complex amplitude vector ψ = (α1, ...,αN)
T ∈ CN.

Replace X by a complex, self-adjoint matrix O ∈ CN×N.

The eigenvalues oi of O correspond to the outcomes of measurements.
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Unitary transformations describe evolutions.

Time evolutions of a quantum system are described by unitary transformations of
the amplitude vector,u11 . . . u1N

...
. . .

...
uN1 . . . uNN


α1

...
αN

 =

α
′
1
...
α′N

 ,
N∑

i=1

|αi|
2 =

N∑
i=1

|α ′i |
2 = 1.
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Quantum computing is a special case.

Quantum system→ n qubits

Measurement outcomes→ X = {00...0, ..., 11...1}.

States→ ψ = (α1, ...,α2n)T

Evolution→ U = GL, ..., G1

Expectation of measuring first qubit→ ψ†(σz ⊗ 1(n−1))ψ
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VAR. QUANTUM MODELS
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Variational models are trainable circuits.

Quantum device
|0〉

Uθ
...

...

|0〉

Classical device

Cost(θ)

θ(t)

θ(t+1)θ(t+1)

update
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Variational models are trainable circuits.
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Variational models consist of three elements.

C
IR

C
U

IT

|0〉
...
|0〉

state prep. model circuit
measure-

ment
post-

process.

→ y
Sx Uθ

〈σz〉

FO
R

M
A

L

x→ ψ(x) → ψ ′ = Uθψ(x) → (−)qk |ψ ′k|
2

nonlin. map unitary transform. expectation

→ y
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LINKS TO NEURAL NETS
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Variational models are linear, symmetric neural networks.
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Variational models are linear, symmetric neural networks.
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Variational models are linear, symmetric neural networks.
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We can do gradient descent on variational models.

classical
node

hybrid computation

quantum
node

quantum 
device

Cost
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We can do gradient descent on variational models.

Quantum Natural Gradient.
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We can do gradient descent on variational models.

Stochastic gradient descent.

22 / 38

Sweke et al 1910.01155
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We are investigating the expressivity of variational models.
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We are investigating the expressivity of variational models.
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We are investigating the expressivity of variational models.
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LINKS TO KERNELS
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QC and kernel methods share the same basic idea.

Hilbert
space

|q1〉 . . . |qn〉

Feature
space

x1, . . . , xM
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Kernel methods use inner products in Hilbert space.

original space feature space

feature map

κ(x, x ′) = 〈φ(x),φ(x ′)〉
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Kernel methods use inner products in Hilbert space.

original space feature space

feature map

κ(x, x ′) = |〈φ(x)|φ(x ′)〉|2
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Variational QML models are similar to kernel methods.

C
IR

C
U

IT

|0〉
...
|0〉

state prep. model circuit
measure-

ment
post-

process.

→ y
Sx Uθ

〈σz〉
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Variational QML models are similar to kernel methods.
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Variational QML models are similar to kernel methods.

QC SVMpoly QC SVMpoly

1

0

d=
1

d=
2
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Variational QML models are similar to kernel methods.

Quantum 
device ML system
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Variational QML models are similar to kernel methods.

Quantum 
device ML system
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EXAMPLE OF A QUANTUM
EMBEDDING
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A Gaussian Boson Sampler can help to compute kernels.
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Schuld, Bradler, Israel, Su, Gupt 1905.12646
LINKS TO KERNEL METHODS



The covariance matrix encodes the graph.

A Gaussian state of M optical modes is fully described by a covariance matrix
σ ∈ R2M×2M as well as a displacement vector d ∈ R2M.

We can associate such a state with an adjacency matrix A via

σ = (1− XÃ)−1 −
1

2
, with X =

(
0 1

1 0

)
, Ã = c

(
A 0
0 A

)
.
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The features are probabilities of detecting certain photon events.

p(O[000000])
p(O[100000])
p(O[200000])
p(O[110000])
p(O[300000])
p(O[210000])
p(O[111000])
p(O[400000])
p(O[220000])
p(O[310000])
p(O[211000])
p(O[111100])
...
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An orbit is a set of photon click events which are permuta-
tions of each other.

i.e., O[111100] = {[111100], [111010], [010111], [100111], [001111], ...}
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Orbits count the number of r-matchings in subgraphs.

3 2

0 1

+

3 2

0 1

+

3 2

0 1

+

3 2

0 1

p(O[1,1,1,0]) = p([1, 1, 1, 0]) + p([1, 1, 0, 1]) + p([1, 0, 1, 1]) + p([0, 1, 1, 1])
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Orbits count the number of r-matchings in subgraphs.

3 2

00 ′ 10

+

3 2

0 1 1 ′1

+

3 23 ′

0 1

3

+ ...

p(O[2,1,1,0]) = p([2, 1, 1, 0]) + p([1, 2, 0, 1]) + p([1, 0, 1, 2]) + ...
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We can test the kernel on standard graph data sets.

number of 
graph nodes

number of
graph edges 

1728 [86%] 257 [84%] 118 [39%] 204 [34%] 357 [80%]

284 [81%]515 [46%]1836 [45%]179 [96%]806 [81%]1080 [38%*]
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The results are promising.

Dataset GBS (d = 0.0) GBS (d = 0.25) GS RW SM
AIDS 99.60± 0.05 99.62± 0.03 98.44± 0.09 56.95± 7.99 79.20± 0.68
BZR MD 62.73± 0.71 62.13± 1.44 60.60± 1.77 49.88± 3.74 61.90± 1.21
COX2 MD 44.98± 1.80 50.11± 0.97 55.04± 3.33 57.72± 3.26 66.94± 1.22
ENZYMES 22.29± 1.60 28.01± 1.83 35.87± 2.19 21.13± 1.91 36.70± 2.83
ER MD 70.36± 0.78 70.41± 0.47 65.65± 1.06 68.75± 0.53 68.21± 0.99
FINGERPRINT 65.42± 0.49 65.85± 0.36 64.10± 1.52 47.69± 0.21 47.14± 0.62
IMDB-BIN 64.09± 0.34 68.71± 0.59 68.37± 0.62 66.38± 0.21 out of time∗

MUTAG 86.41± 0.33 85.58± 0.59 81.08± 0.93 83.02± 1.08 83.14± 0.24
NCI1 63.61± 0.00 62.79± 0.00 49.96± 3.27 52.36± 2.63 51.36± 1.88
PROTEINS 66.88± 0.22 66.14± 0.48 65.91± 1.29 56.27± 1.23 63.03± 0.84
PTC FM 53.84± 0.96 52.45± 1.78 59.48± 1.95 51.97± 2.68 54.92± 2.94
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OPEN PROBLEMS
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This is only the beginning of the journey..

I How can we benchmark quantum models?

I Is there a connection between quantum theory and deep learning?
I Do quantum models inherently regularise?
I How does noise impact applications?
I What domains is QML good for?
I Do QML ideas scale?
I What optimization strategies work for variational circuits?
I Which circuit architectures are good for ML?
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Thank you!

www.pennylane.ai
www.xanadu.ai

@XanaduAI
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