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CNNs: state of the art in image processing

CNNs exploit local invariances of data (compositionality).

I locality

I stationarity

I local stationarity

I multi scale features

Data: low dimensional structure in high dimensional space
exploiting of symmetries allows for breaking of curse of dimension.

LeCun, Bengio, Hinton. 2015

Bronstein, Bruna, LeCun, Szlam, Vandergheynst. 2016
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Graphs: beyond Euclidean data

What about other types of data? manifolds, molecules, natural language

What are natural structures? graphs are a general abstraction

What are the relevant invariances? label permutations

What are natural neural network structures?

Bronstein, Bruna, LeCun, Szlam, Vandergheynst. 2016
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Graph neural networks

I Computational chemistry

I drug discovery

I Social networks

I community detection
I identifying fake news

I Natural language
processing

I Computer vision

I ...
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Types of GNNs

I Graph convolutional networks

I Spectral
I Spatial (message passing neural networks)

I Graph autoencoders

I Spatial-temporal graph neural networks

Input: G with A adjacency matrix, X node features, X e edge features.

Output: f (G ) graph embedding, or solution to optimization problem.

Fundamental property: f (π · G ) = π · f (G )
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Example: Classifier for IceCube neutrino observatory data

Task:
Neutrino detection (classifica-
tion neutrino/background)

Data:
Simulated data
(neutrino/background)
Simulated IceCube detector

Graph Convolutional Network:
Vertices: sensors
Edges: learned function of the
sensors’ spatial coordinates

GCN outperforms baseline
physical model and 3D CNN.

Choma, Monti, Gerhardt, Palczewski, Ronaghi, Prabhat, Bhimji, Bronstein, Klein, Bruna, IceCube
collaboration
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This talk

I Motivation / background on different types of GNN
(arguably inspired from methods in statistical physics).

I A “natural” way to compare their expressive power.

I Open problems.
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Spectral GNN. Motivating example from statistical physics
Clustering the stochastic block model

A ∼ SBM(p, q, n, 2) (two equal-sized communities):

P(Aij = 1) =

{
p if i , j in the same community
q if i , j in different communities
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Clustering the stochastic block model

A ∼ SBM(a/n, b/n, n, 2) sparse.
Statistical threshold for detection: (a− b)2 > 2(a + b).

Spectrum doesn’t concentrate (high degree vertices dominate it)
Laplacian is not useful for clustering

Other methods succeed. Example: semidefinite programming.

Krzakala, Moore, Mossel, Neeman, Sly, Zdeborová, Zhang, 2013

Deshpande, Abbe, Montanari, 2014

Abbe, Bandeira, Hall, 2014
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Spectral redemption

Consider the non-backtracking operator (from linearized BP)

B(i→j)(i ′→j ′) =

{
1 if j = i ′ and j ′ 6= i

0 otherwise

Second eigenvector of B reveals clustering structure

Krzakala, Moore, Mossel, Neeman, Sly, Zdeborová, Zhang, 2013

Bordenave, Lelarge, Massoulie, 2015
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Bethe Hessian

BH(r) = (r2 − 1)I − rA + D

Fixed points of BP ←→ Stationary points of Bethe free energy

Spectrum reveals clustering structure again.

Pitfalls: highly dependent in the model, hard to derive.

What if data doesn’t come from a nice model?
Goal: Combine graph operators I ,D,A, . . . to generate robust
“data-driven spectral methods” for problems in graphs

Saade, Krzakala, Zdeborová, 2014
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Graph neural networks
sGNN(M)

Power method: v t+1 = Mv t t = 1, . . . ,T .

A adjacency matrix. Set M = {In,D,A,min(1,A2), . . . ,min(1,A2J

)},

v t+1

l

=

ρ

( ∑
M∈M

Mv tθM

,l
t

)
,

l = 1, . . . , dt+1

with v t ∈ Rn×dt ,
Θ = {θt1, . . . , θt|M|}t , θ

t
M ∈ Rdt×dt+1 trainable parameters.

I Independent of the size of the graph.

I Extension to line graph (GNN with non-backtracking).

I Power graph min(1,At) encodes t-hop connectivity in binary matrix.

I Equivariant wrt permutations G 7→ φ(G ) then GΠ 7→ Πφ(G ).

Scarselli, Tsoi, Hagenbuchner, Monfardini, 2009

Chen, Li, Bruna, 2017
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Impressive performance

Overlap as function of SNR (SBM k = 2)

Theoretical result: Under simplifications and assumptions, for linear sGNN, the
loss-value gap between local and global minima of the loss function is controlled by
the concentration of relevant random matrices around their mean.

Chen, Li, Bruna, 2017
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Extension to unsupervised setting
Max-cut on random regular graphs.

G graph with adjacency A. Cut(G ) ∈ {±1}n

MaxCut(G ) = max
xi∈{±1}

1
2

∑
i<j

Aij(1− xixj)

Methods:
- Goemans Williamson SDP.

- Extremal optimization.

- Graph neural network.

- Adaptation of (asymptotically optimal) message passing for Sherrington-Kirkpatrick Hamilitonian?

GNN. Ground truth is not known (unsupervised learning).
Loss: weighted cut value or expected value over batch (policy gradient).

We can compare to asymptotically optimal value:

MaxCut(GReg(n, d)) = n

(
d

4
+ P∗

√
d

4
+ od

(√
d
))

+ o(n)

Yao, V., Bandeira, 2019 Zdeborová, Boettcher, 2010

Montanari 2018 Dembo, Montanari, Sen, 2017

Boettcher, Percus, 1999, 2000, 2001
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Another example
Quadratic assignment problem

A,B n × n matrices. Π : set of n × n permutation matrices.

Quadratic assignment : max
X∈Π

Trace(AXBX>)

It includes many relevant problem as particular cases:

I Graph matching: minX∈Π ‖AX − XB‖2
F = ‖AX‖2 + ‖XB‖2 − 2〈AX ,XB〉

I Graph isomorphism

Graph isomorphism.
Traveling salesman problem.
Gromov-Hausdorff distance of finite metric spaces.
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GNN approach to quadratic assignment

Siamese neural network:

G2 = π · G1 ⊕ N N ∼ i.i.d. bit flip
G1 ∼ Erdos-Renyi
G1 ∼ Random regular

Nowak, V., Bandeira, Bruna, 2017
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Performance at quadratic assignment

0.00 0.01 0.02 0.03 0.04 0.05
Noise

0.0

0.2

0.4

0.6

0.8

1.0
Re

co
ve
ry
 R
at
e

ErdosRenyi Graph Model

SDP
LowRankAlign(k=4)
GNN

0.00 0.01 0.02 0.03 0.04 0.05
Noise

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

ve
ry

 R
at

e

Random Regular Graph Model

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0
Target: 3.651

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0
Predicted: 3.724

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Target: 3.836

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Predicted: 3.860

Nowak, V., Bandeira, Bruna, 2017



19

Performance at quadratic assignment

0.00 0.01 0.02 0.03 0.04 0.05
Noise

0.0

0.2

0.4

0.6

0.8

1.0
Re

co
ve
ry
 R
at
e

ErdosRenyi Graph Model

SDP
LowRankAlign(k=4)
GNN

0.00 0.01 0.02 0.03 0.04 0.05
Noise

0.0

0.2

0.4

0.6

0.8

1.0

Re
co

ve
ry

 R
at

e

Random Regular Graph Model

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0
Target: 3.651

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1.0
Predicted: 3.724

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Target: 3.836

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

Predicted: 3.860

Nowak, V., Bandeira, Bruna, 2017



20

Recap

So far we have discussed
I Graph convolutional networks.

I Application in neutrino detection (IceCube observatory data).

I Spectral GNNs as generalized spectral operators.
I Clustering the stochastic block model.
I Max-cut
I Quadratic assignment (graph matching/traveling salesman).

Next

I Message passing neural Networks.

I Permutation invariant linear layers.

I Comparison of classes of graph neural networks.

I Open problems.



20

Recap

So far we have discussed
I Graph convolutional networks.

I Application in neutrino detection (IceCube observatory data).

I Spectral GNNs as generalized spectral operators.
I Clustering the stochastic block model.
I Max-cut
I Quadratic assignment (graph matching/traveling salesman).

Next

I Message passing neural Networks.

I Permutation invariant linear layers.

I Comparison of classes of graph neural networks.

I Open problems.



21

Message passing neural network (MPNN)
Another GNN formulation

a
(k)
v = AGGREGATE(k)

(
{h(k−1)

u : u ∈ N (u)}
)

h
(k)
v = COMBINE(k)

(
h

(k−1)
v , a

(k)
v

)

I GNN essential property:
I invariance or equivariance with respect to permutations
I node labels are not intrinsic

Hamilton, Ying, Leskovec, 2017
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How powerful are graph neural networks?

Q: How good are they at distinguishing non-isomorphic graphs?

A: MPNN can be as powerful as the Weisfeler-Leman test (1968).
W-L test is as powerful as the LP relaxation (Ullman et al 1994).

In particular MPNN cannot distinguish between non-isomorphic
regular graphs with the same degree.

Xu, Hu, Leskovec, Jekelga 2019
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Weisfeler-Leman test

Given (G ,X ) labeled graph

I L0(v) = X (v)

I At each iteration

Lt+1(v) = hash (Lt(v), {{Lt(w) : w ∼ v}})

Extension to labels in k-tuples (k-WL).

GNN formulation based on this test.
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Invariant and equivariant functions on graphs

I Linear case:
I If L : Rnk → R invariant, then vec(L) = π⊗kvec(L).
I If L : Rnk → Rnk equivariant, then vec(L) = π⊗2kvec(L)

I The space of invariant [equivariant] linear functions on
k-tensors has dimension b(k) [b(2k)].
(b(k) denotes Bell Number: number of partitions of a size k set).

I Universal approximation:
I Invariant graph networks (IGNs) constructed by composition of

linear invariant layers Lt : Rnk×a → Rb with ReLU or sigmoid
activation functions universally approximate the space of
invariant functions.

I Extension to equivariant functions.

Arbitrary high order tensors are needed (k-IGNs use k-tensors).

Approximation rates are not known.

Maron, Ben-Hamu, Shamir, Lipman, 2019

Maron, Fetaya, Segol, Lipman, 2019

Keriven, Peyré, 2019
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I If L : Rnk → Rnk equivariant, then vec(L) = π⊗2kvec(L)

I The space of invariant [equivariant] linear functions on
k-tensors has dimension b(k) [b(2k)].
(b(k) denotes Bell Number: number of partitions of a size k set).

I Universal approximation:
I Invariant graph networks (IGNs) constructed by composition of

linear invariant layers Lt : Rnk×a → Rb with ReLU or sigmoid
activation functions universally approximate the space of
invariant functions.

I Extension to equivariant functions.

Arbitrary high order tensors are needed (k-IGNs use k-tensors).

Approximation rates are not known.

Maron, Ben-Hamu, Shamir, Lipman, 2019

Maron, Fetaya, Segol, Lipman, 2019

Keriven, Peyré, 2019
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Recap

I We saw many families of (invariant) graph neural networks.

I MPNN not very expressive (cannot distinguish regular graphs).

I k-IGNs universally approximate if k arbitrary large.

I Spectral GNNs we don’t know.
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Graph isomorphism test

GIso-discriminating class of functions

A class C of permutation-invariant functions from X n×n to R so
that for all pairs G1 6' G2 ∈ X n×n, there exists h ∈ C such that
h(G1) 6= h(G2).

dd

ee

Chen, V., Chen, Bruna, 2019
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Graph isomorphism equivalence to universal approximation

Universally approximating

A class C of permutation-invariant functions from X n×n to R so
that for all permutation-invariant function f from X n×n to R, and
for all ε > 0, there exists hf ,ε ∈ C such that
‖f − hf ,ε‖∞ := supG∈X n×n |f (G )− hf ,ε(G )| < ε

Remark

Universally approximating classes of functions are also
GIso-discriminating.

Chen, V., Chen, Bruna, 2019
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Graph isomorphism equivalence to universal approximation

C+L

If C is a collection of functions from X n×n to R, consider the set of
functions from graphs G to NN ([h1(G ), ..., hd(G )]) for some
finite d and h1, ..., hd ∈ C, where NN is a feed-forward neural
network with ReLU and L layers.

Theorem

If C is GIso-discriminating C+2 is universally approximating.

Chen, V., Chen, Bruna, 2019
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Comparison of classes of functions through GIso

C ⊆ C′ if for all pairs of non-isomorphic graphs G1,G2, if there
exists h ∈ C so that h(G1) 6= h(G2) then there exists h′ ∈ C′ so
that h′(G1) 6= h′(G2).
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Comparison of classes of functions through GIso

I Order-2 graph G-invariant networks cannot distinguish
between regular graphs of the same degree.

I Extended the model to RingGNNs which succeed in
distinguishing these graphs
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Ring GNN

Input: Graph with n nodes and d features: A ∈ Rn×n×d .

Equivariant linear layer from Rn×n×d to Rn×n×d′
. For θ ∈ Rd×d′×17:

Lθ(A)·,·,k′ =
∑d

k=1

∑15
i=1 θk,k′,iLi (A·,·,i ) +

∑17
i=16 θk,k′,iLi .

Set A(0) = A.

B
(t)
1 = ρ(Lα(t) (A(t)))

B
(t)
2 = ρ(Lβ(t) (A(t)) · Lγ(t) (A(t)))

A(t+1) = k
(t)
1 B

(t)
1 + k

(t)
2 B

(t)
2

where k
(t)
1 , k

(t)
2 ∈ R, α(t), β(t), γ(t) ∈ Rd (t)×d′(t)×17 are learnable

parameters.

Scalar output: θS
∑

i,j A
(T )
ij + θD

∑
i,i A

(T )
ii +

∑
i θiλi (A

(T )), where

θS , θD , θ1, . . . , θn ∈ R are trainable parameters, and λi (A
(T )) is the i-th

eigenvalue of A(T ).
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Open problems

I Find a scalable GNN model that is invariant and expressive.
Connect GNN depth/architecture with classes of graphs they separate.

I Can k-IGNs implement k-WL test?

I Optimization landscape of GNNs:
Current analysis of optimization landscape relies in simplified models to

show that all local minima are confined in low-energy configurations.

Maron, Ben-Hamu, Lipman 2019
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Extensions

I Extension to fermion-symmetry invariant architectures.
Antisymmetric wave functions with smallest eigenvalue.

I Connection with Sum of Squares:
For some classes of “detecting hidden structures problems” existence of

degree-d SoS refutations implies success of certain (typically non-explicit)

spectral methods.

I Can we express such class of spectral methods with GNNs.
I Can we learn them?

Hopkins, Kothari, Potechin, Raghavendra, Schramm, Steurer, 2017
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