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Outline

● Discrete weights: rare dense clusters of solutions (High-Local-
Entropy regions, HLE) exist (shallow networks, random patterns) 

● Continuous case: Wide Flat Minima (WFM)

● Replica theory: recovering the Local Entropy large-deviation analysis 
from the 1-RSB formalism

● Message Passing: BP to estimate local volumes, fBP to find WFM

● Practical algorithms for finding WFM

– Using Cross-Entropy helps (control the norm)

– Replication (e.g. from LAL to eLAL)

● Non-random patterns: WFM generalize better; correlation between 
volumes and hessians

● Randomized real-world dataset: not that much of a difference... 
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The network models that we studied

● Random input patterns
● The weights W can be 

continuous or discrete
● No need for 

differentiable losses 
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Throughout the talk
● Step transfer functions
● No bias
● Normalized weights
● 2nd layer weights fixed to 1



  

Local entropy measure

● Main idea: perform a large-deviation analysis, bias the statistical 
measure towards dense (wide, flat) regions

C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, R. Zecchina, PRL, 2015
C. Baldassi, F. Gerace, C. Lucibello, L. Saglietti, R. Zecchina, PRE, 2016
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C. Baldassi, E. Malatesta, R. Zecchina, PRL, 2019
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Local entropy measure

● Main idea: perform a large-deviation analysis, bias the statistical 
measure towards dense (wide, flat) regions

● In practice: define a "local (free) entropy" (basically the free energy 
of a region of the configuration space)

● Instead of minimizing the loss (the energy), minimize the negative 
local entropy

C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, R. Zecchina, PRL, 2015
C. Baldassi, F. Gerace, C. Lucibello, L. Saglietti, R. Zecchina, PRE, 2016

C. Baldassi, C. Borgs, J. Chayes, A. Ingrosso, C. Lucibello, L. Saglietti, R. Zecchina, PNAS, 2016
C. Baldassi, E. Malatesta, R. Zecchina, PRL, 2019

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019

"count all configurations below a certain loss and within a certain distance from a reference" 



  

Using real replicas to study the local entropy

C. Baldassi, C. Borgs, J. Chayes, A. Ingrosso, C. Lucibello, L. Saglietti, R. Zecchina, PNAS, 2016

Local free 
entropy

● Assume that the parameter y is integer and transform the partition 
function
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From the 1-RSB formalism to the large-deviations 
measure

● Start from the ergodicity-breaking scheme of Monasson, PRL (1995)

R. Monasson, PRL, 1995



  

From the 1-RSB formalism to the large-deviations 
measure

● Start from the ergodicity-breaking scheme of Monasson, PRL (1995)

– Our replicas however are real, not virtual

– Don't send the field g to zero; instead, fix it

– Send the number of real replicas m to infinity (or a large 
number, e.g. 5 or 10…)

● Also: the 1-RSB cavity method equations (Mézard and Montanari, 
Oxford Univ. Press 2009, ch. 19) can be used by slightly adapting 
them

– Binary weights → propagate only two quantities per message, 
reflecting the distribution of the magnetizations

– Doesn't work well as a solver though (symmetry-breaking effects). 
At least at zero temperature.

R. Monasson, PRL, 1995
M. Mézard, A. Montanari, Oxford Univ. Press, 2009

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019



  

From the 1-RSB formalism to the large-deviations 
measure

● In practice (general case):

– Compute the 1-RSB action (or look it up in the literature...)

– Express the overlap q1 in terms of a distance between replicas D 
(if necessary, change variables)

– Solve the usual saddle point equations, except for the one for q1
– Deduce the scalings for y→∞ and take the limit [note this surely 

neglects RSB effects...]

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019

RE QMC 1-RSB-like



  

WFM in continuous committee machines

● Study the normalized local volume as a function of the distance

– Start from the 1-RSB solution, fix q1, take y→∞, at 𝛽=0 (we're 
neglecting further RSB effects here). Compute

E. Barkai, D. Hansel, H. Sompolinsky, PRA, 1992
C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019

WFM!
𝐾=3
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Parity machines do not have WFM

● Replace the final output                                     with 

– These devices are intimately related to error-correcting codes. 
One does not want WFM when correcting codes!

● Repeat the previous computation: the curves are flat at 

● Claim: The existence of WFM is a structural property of a model

● Open question: How to characterize this better? Are NNs special?

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019



  

BP on the continuous committee machine

● Messages are distributions

● The tricky part is that the "factor→variable" messages are not 
Gaussian and not normalizable

● Yet, we only need to propagate two quantities per message 
(encoded as m/v and 1/v, such that message composition = 
addition) to close the equations in the large N limit

● Control the norms with a self-adjusting external field (one quantity, 
the same for all nodes)

● Adding an extra field: explore a region around a given 
configuration (weight-enumerator function)

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019



  

Focusing-BP (fBP): find WFM

● Write BP on the replicated (RE) factor graph; assume symmetry

● Effect: a "pseudo-factor-node" → self-reinforcement term

● (Joining variables, taking the magnetization → alternative derivation of a pseudo-1-RSB scheme) 

C. Baldassi, C. Borgs, J. Chayes, A. Ingrosso, C. Lucibello, L. Saglietti, R. Zecchina, PNAS, 2016
C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019



  

Focusing-BP (fBP): find WFM - results

● Highest capacity of all the algorithms tested (well within the 1-RSB 
phase), widest minima

● Only works for uncorrelated random patterns though (for now). Also, 
tree-like architectures are much easier (breaking the permutation 
symmetry is possible but fiddly).

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019
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The role of the Cross Entropy loss

● Replica study of the CE loss landscape on the binary perceptron case

● Usually 𝛾=1 → implicitly set by the norm. We control it explicitly

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019

● Small 𝛾 → robustness effect

● Large 𝛾 → tends to ReLU(-x)



  

The role of the Cross Entropy loss

● Replica analysis: The minima of the CE loss end up in the middle 
of HLE regions as long as the norm is within a certain range

● Checked numerically with Monte Carlo simulations

● For deeper networks, the effect is limited to the last layer (unless 
ReLUs are used, without batch-norm...)

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019



  

The role of the Cross Entropy loss

● There's an optimal gamma. The "good" range is rather wide though.

● Physical significance possibly tied to the detailed  geometry of the 
HLE region (not very clear so far… fractal?)

● Relevance for algorithms possibly mild, but also unclear

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019



  

Robust greedy algorithms: From LAL to entropic-
LAL (eLAL)

● Least Action Learning (LAL): extension of the perceptron algorithm to 
the committee machine

– apply perceptron rule to the most easily fixable hidden unit

– very greedy

– very fast, high capacity

– not gradient-based, doesn't require differentiability

– ends up in narrow minima (estimated with BP)

● Add an entropic component (eLAL)

– replicated system (RE-like)

– interaction between replicas

– still fast, much wider minima

● Unfortunately unclear how to extend it to deeper networks

G. Mitchison, R. Durbin, Biol. Cybernetics, 1989
C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019



  

Numerical experiments: random patterns

● Set up: tree committee machine with K=9, 𝛼=1 as close as possible 
to the theory

● 5 algorithms

– fBP

– LAL

– eLAL

– ceSGD-fast [use tanh(𝛽x) activations, polarize 𝛽 and 𝛾 gradually]

– ceSGD-slow [same, grow the norms ( ,𝛽 𝛾) more slowly]

● Comparison of the local volumes and the spectrum of the Hessians 
→ good correlation

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019
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Numerical experiments: reduced binarized 
Fashion-MNIST

● Set up: fully connected committee machine with K=9
● Two (hard but not impossible) classes (dress vs coat), binarized 

patterns (250 per class)

– Patterns are binary and balanced, but biased and correlated

● 4 algorithms (no fBP, correlated patterns)

● Local volumes and Hessians correlate with generalization scores

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019



  

Numerical experiments: randomized Fashion-
MNIST

● Shuffle the data across patterns at each pixel location

– keep biases

– destroy correlations

● Slightly harder problem

● Results are overall similar to the previous ones

– eLAL affected more than SGD (perhaps tuning?); still way better 
than LAL

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019



  

Numerical experiments: robustness to input 
perturbation

● Tested on Fashion-MNIST and randomized-Fashion-MNIST

● Add a colored (pixel-dependent) noise, measure the training error 
degradation [attempt to measure a "generalization precursor"]

● Consistent with the other measures (volume, generalization etc.)

C. Baldassi, F. Pittorino, R. Zecchina, arXiv:1905.07833, 2019



  

Conclusions, open problems, future directions

● Wide Flat Minima seem to be a structural property of NNs

● They seem to generalize better (other results on deeper networks 
from other groups)

● Some algorithmic techniques help finding WFM

– Some are well known and widely used (CE loss, ReLU, …)

– Some aren't (replication [Elastic-SGD], Entropy-SGD, eLAL, ...)

● Role of pattern structure still to be investigated more in detail

● Going deeper: WIP

● Also TODO: Detailed description of the geometrical structure of the 
HLE/WFM

● Which distance function to use? (unclear esp. for multi-layer 
networks)
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