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Schmid, J Fluid Mechanics 2010.

flow past a  
flexible membrane: 

velocity field of wake

Dynamic Mode Decomposition (DMD)



To compute DMD:

X = U⌃V⇤ Y = AU⌃V⇤

U⇤YV⌃�1 = U⇤AU ⌘ Ã
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Dynamic Mode Decomposition (DMD):
Dynamical system of coupled spatial-temporal modes

eigenvalues: growth/decay, oscillations
DMD modes: spatial correlations between 
measurements

Ŷ(t) = �⇤tz0

Rowley et al., J Fluid Mechanics 2009.
Schmid, J Fluid Mechanics 2010.

Tu et al., J Comp Dyn 2014.
Kutz, S. Brunton, BWB & Proctor SIAM 2016.



X =

2

4x0 x1 · · · xm�1

3

5

data 
snapshots 

in time

Principal 
component 

analysis (PCA)
Fourier

transform

DMD

http://dmdbook.com

Dynamic Mode Decomposition (DMD):
Dynamical system of coupled spatial-temporal modes



When the rank of X is insufficient to capture dynamics:
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shift and stack 
(delay coordinates)

(inspired by Hankel matrices  
as constructed in the 

Eigensystem Realization 
Algorithm ERA)
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spindles

Sleep spindle networks in ECoG
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Extracting spindle network stereotypes by clustering

BWB, Johnson, Ojemann & Kutz, J Neurosci Methods 2016.
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Kunert-Graf et al. Extracting RSNs With DMD

FIGURE 1 | A schematic of our method using DMD to analyze resting state BOLD fMRI data. (A) Spatiotemporal DMD modes are extracted from short sliding

windows of rs-fMRI data from 120 subjects from the Human Connectome Project. We use 23 s windows and slide in 3 s steps over each 15 min scan. (B)

Group-DMD (gDMD) clusters the full set of modes from all 120 subjects to extract group-averaged RSNs. (C) Subject-level DMD (sDMD) clusters only the subset of

modes from a single subject, which yields both individualized RSNs and their corresponding dynamics.

Frontiers in Computational Neuroscience | www.frontiersin.org 3 October 2019 | Volume 13 | Article 75

Kunert-Graf, … BWB, Frontiers Comp Neurosci 2019.
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Kunert-Graf et al. Extracting RSNs With DMD

FIGURE 4 | Results from gDMD using modes extracted from scans of 120 individuals, revealing clusters closely resembling known RSNs. (A) The hierarchically

clustered correlation matrix between gDMD modes. (B) Overlap of each mode with RSNs from Gordon et al. (2016). (C) Clusters automatically extracted from the

hierarchical clustering results. A different threshold can be chosen to derive finer or coarser sub-clusters. (D) Averaged modes within each of the 13 clusters, with the

corresponding DMD temporal frequencies. Several of the automatically identified DMD mode clusters visually correspond to canonical RSNs.

Every DMD spatial mode has a corresponding temporal
eigenvalue, which gives information about the oscillation
frequency of that mode in time. Although these eigenvalues
have not been used in the clustering process, they describe
the characteristic oscillation frequency of each cluster. The
mean and standard deviation for each cluster’s oscillation
frequency is shown in Figure 4D. As a validation that RSNs have
low frequencies of oscillation, these frequencies are generally
below or around 0.10 Hz. Further analysis of the frequency
content of extracted gDMD clusters is discussed in Appendix B
(Supplementary Material).

2.3. Subject-Level Modes and Dynamics
One key advantage of our approach using DMD followed by
unsupervised clustering is that it can be performed equally
well on any subset of modes. We are particularly interested in
performing the analysis on single scans, which we refer to as
sDMD. Figure 5 shows the results from hierarchically clustering
modes from a single 15 min scan. Similarly to the group
results, this similarity matrix is strongly block diagonal, and
the blocks correspond to different canonical RSNs (Figure 5A,
bottom, correlates these modes with the parcellation of Gordon
et al., 2016). Note that we use a slightly lower threshold on
the cophenetic distance than in Figure 4 (0.95 instead of 0.955),
yielding a larger number of finer-grained subclusters.

Importantly, in this single-scan analysis, the clusters are easily
interpreted temporally: each cluster shows temporal dynamics

defined by the time windows in which its constituent modes
are found, as shown in Figure 5B. Largely, clusters are active
over periods spanning many consecutive windows and extended
periods of time. Notably, many different clusters are observed
to co-occur in time. This overlap of modes in the same window
poses no problems for the sDMD approach, but it violates the
assumptions made by other time-resolved methods (such as
hiddenMarkovmodels) that require the system is in a single state
at any particular time.

2.4. Subject-Level Modes Capture Spatial
Heterogeneity
Clusters derived by sDMD are able to reliably capture individual
variability of RSNs. To quantify this feature, we compare one
particular resting state network, the default mode network
(DMN), as extracted by three different methods: sDMD, ICA,
and group-ICA with dual regression (gICA). The gICA networks
were computed by the HCP and are available on ConnectomeDB
as part of theHigh-level rfMRI Connectivity Analyses data release.
In short, this approach generates high-quality group ICA modes
using the dataset of 1,200 individuals then uses dual regression to
adapt each groupmode to the heterogenous structure seen within
a particular scan.

Figure 6 compares the DMNs extracted by ICA, sDMD, and
gICA. Specifically, we use spatial-ICA on the entire window
of scan data, as opposed to the sliding-window approach of
sDMD. ICA and sDMD were both run multiple times with

Frontiers in Computational Neuroscience | www.frontiersin.org 6 October 2019 | Volume 13 | Article 75

Kunert-Graf, … BWB, Frontiers Comp Neurosci 2019.



Dynamic Mode Decomposition (DMD):
Regression model on the dynamics
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… however, often we are interested in 
perturbations around fixed points or equilibria

CENTERING DATA IMPROVES THE DYNAMIC MODE DECOMPOSITION 3
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Figure 1: An illustration of the benefit of centering for one-dimensional regression, where the
data (xj , yj) is generated by an a�ne model with noise. a) Data fit to a�ne model y = ax+ b
yields a good fit. b) Data fit to linear model y = ax yields a poor fit. c) Centered data (x̄j ȳj)
fit to linear model ȳ = ax̄ yields a good fit.

generalizing previous results to the case where data may be low rank. Section 5 compares
DMD with and without centering, including theory and numerical examples. We find that,
in the case of linear dynamics about an equilibrium point, DMD with centering can always
extract the correct dynamics; however, DMD without centering sometimes produces an in-
accurate model. These results are summarized in Table 1. The work by Chen et al. [7] is
discussed in detail in Section 6, where we argue that DMD with centering is not equivalent
to a DFT. This notion of data centering is generalized in Section 7 to extract dynamics while
subtracting any known fixed frequencies. Finally, Section 8 demonstrates DMD with centering
and fixed frequency subtraction on three nonlinear examples, the Lorenz system, background-
foreground separation of a video, and brain recordings. As a practical recommendation, we
suggest centering data as a preprocessing step in DMD. All the code used to reproduce results
in the figures is openly available at https://github.com/sethhirsh/DMD with Centering.

2. Background. Initially developed in the fluid dynamics community, dynamic mode de-
composition (DMD) has become a popular tool for analyzing large-scale dynamical systems in
many di↵erent application domains [24, 41]. In this section we briefly review two formulations
of this problem.

Consider a set of T + 1 measurement snapshots xj 2 Rn for j = 1, . . . , T + 1, which are
generated by linear dynamics,

(2.1) xj+1 = Axj .

The goal of DMD is to characterize the dynamics of the system by the eigendecomposition of
the linear operator A 2 Rn⇥n:

(2.2) Avi = �ivi for i = 1, . . . , n.

The eigenvectors vi are typically refered to as the DMD modes. For our theoretical results,
we typically assume that the eigenvalues �i 6= 0 are distinct. For many systems of interest,

Model with affine term Model without affine term Model on centered data
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Table 1: Comparison of performance of DMD with and without centering. A 3 indicates that
the method does correctly extract the spectrum and modes of the system in each column.

many others).
For many systems of interest, the dynamics we want to model are perturbations about

equilibria. To name a few specific examples, in hydrodynamics we may model motion of a
fluid about a base flow [32, 44]; in video processing we may extract the foreground from a
static background [43]; and in climate science we may analyze anomalies that depart from
long-term averages [17, 12]. Further, linearizing about equilibria provides key information on
the stability of the system about these fixed points. In general, the mean of the measurement
data is a natural estimate of an unknown equilibrium point; therefore, it is natural to apply
DMD on mean-subtracted data.

In a complementary perspective, we may think of DMD computed over a short time
window as a multivariate Taylor expansion of the dynamics. It follows that the model should
include an a�ne, or bias, term (Fig. 1), which is usually not a part of the DMD model; if
DMD is computed on centered data, then this a�ne term is expected to be small (in fact, one
of our results is that it will be zero).

In this work, we show that centering data improves the performance of DMD. Previous
work has suggested that computing the DMD of centered data may be restrictive and have
undesirable consequences [7]. In particular, Chen et al. [7] show that DMD on mean-subtracted
data is equivalent to a temporal discrete Fourier transform (DFT) in time, restricting the
frequencies extracted to be independent of the dataset. This argument hinged on the mean-
subtracted data being full rank; however, here we show that, in linear systems that contain
a fixed point, mean-subtracted data will always have linearly dependent columns. Therefore,
DMD on centered data does not converge to the DFT. Furthermore, our proposed method of
centering the data successfully extracts the equilibrium and dynamics about this equilibrium.

In Section 2 we review the DMD algorithm, focusing on comparing the SVD-based ap-
proach to the companion matrix approach. We propose centering the data in Section 3,
showing that it is equivalent to incorporating an a�ne term in the DMD model. Section 4
concerns the uniqueness of the DMD modes and whether the DMD problem is well-posed,

24 S. M. HIRSH, K. DECKER HARRIS, J. N. KUTZ AND B. W. BRUNTON

a) b)

Figure 4: Comparison of performance of DMD with centering and the companion matrix
approach on mean subtracted data. a) DMD modes (green) match with the true modes
(black crosses). Since total mean subtracted data X1 � µ1| is low rank, the companion
matrix eigenvalues do not equal the true eigenvalues. b) Same system as a) but with added
measurement noise. DMD with centering yields the correct eigenvalues. Since the data is
full-rank, the companion matrix eigenvalues equal the roots of unity. However, since the data
has low e↵ective rank, these modes do not equal the true modes of the system.

fixed frequencies that correspond to known eigenvalues other than 1. As a concrete example,
electrical recordings taken in the presence of an alternating current power source are often
corrupted with a “background” signal at a fixed frequency (60 Hz in most countries). This
line noise corresponds to a mode with a precisely known eigenvalue that we want to subtract
from the measurements.

To subtract a mode of known frequency, note that in (3.1) the eigenvalue of 1 comes in
through the decision to use 1|. By adding this term we enforce that

(7.1) 1| =
⇥
1 1 · · · 1

⇤
,

appears in the rowspace of the data. We remove this mode by subtracting the mean from the
data or equivalently applying the orthogonal projection,

(7.2) I � 11|

1|1
,

to X1 and X2.
If we know that another eigenvalue � exists in the data, then we simply replace (7.1) with

�| =
⇥
1 � �2 �3 · · ·�T�1

⇤
.

Thus, (3.1) becomes

(7.3) X2 = AX1 + b�|.

Chen, Tu & Rowley, J Nonlinear Sci 2012.
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Figure 6: Comparison of performance of DMD with and without centering using Lorenz (1963)
attractor data. Top left: Reconstruction of z plotted against reconstruction of y for the two
methods. Top center: Reconstruction of x, y, and z as a function of t individually using
di↵erent methods. Both methods produce similar reconstructions. Top right: Eigenvalue
spectra for DMD with and without centering. Bottom row: Same as top row except simulation
has added Gaussian measurement noise. Note that all of the eigenvalues for DMD without
centering have magnitude less than one and decay to zero, causing the reconstructed trajectory
to decay to zero. However, some of the DMD with centering modes have magnitude greater
than one, yielding a better reconstruction. One eigenvalue equal to 0.8866 is not shown for
DMD with centering.

We apply these methods to surveillance video of highway tra�c from the CDNET dataset
[50]. In this case, the foreground is the cars and the background is the grass, road, trees, etc.
In Figure 7 we show a sample frame, the stationary mode from DMD without centering, the
fixed point c from DMD with centering, and the overall mean of the data. The stationary
mode and fixed point are visually identical but not equal to the overall mean of the data.
Additionally, as predicted by Theorem 5.2, the spectra for DMD with and without centering
are nearly identical except for the presence of the additional eigenvalue equal to 1 for DMD
without centering.

8.3. Fixed Frequency Subtraction for Brain Activity Recordings. As a final example,
we study an application of our methods to brain activity recordings. In particular, we study
intracranial electrocorticography (ECoG) measurements from electrodes placed on a human

Applications to nonlinear 
dynamical systems
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Figure 8: Application of fixed frequency subtraction to brain activity recordings . Top left:
Raw voltage signals from subset of channels. Center left: Corresponding discrete Fourier
transform power spectrum. Bottom left: Power spectrum computed using DMD. Right: Same
as left column after fixed frequency of 60 Hz has been subtracted.

is not equivalent to a temporal discrete Fourier transform (temporal DFT). In addition, we
showed that, in a special subset of cases, DMD without centering extracts the same spectra as
DMD with centering. However, in the case where the data are full rank, DMD with centering
can extract the underlying dynamics even when DMD without centering cannot. By thinking
of centering the data as subtracting a zero-frequency mode, we generalized this result to ex-
tracting non-zero, known frequencies in the data. Finally, we illustrated DMD with centering
on three real examples with nonlinear dynamics, namely a trajectory of the Lorenz system, a
surveillance video, and brain recordings.

Many of the Theorems in this work have depended on the assumption of sequential time
series sampled at a fixed frequency. In particular, the uniqueness of the DMD modes (Theo-
rem 4.5) is based on this assumption. However, exact DMD has been shown to successfully
extract modes from data that is not sequential. One potential starting point is the theory of

Brain recordings: subtract known 60Hz noise

Hirsh, Harris, Kutz & BWB, arXiv:1906.05973.
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Motivations Method Overview
• Goal: unsupervised discovery of di�erent dynamical regimes in timeseries data.
• Dynamical description of timeseries data x(t): build a model of forward dynamics.
• Allow time-varying linear dynamics, similar to structural VAR, windowed DMD,  
  and switching linear dynamical systems. Can combine with control theory.
• Easily incorporate priors on model structure, such as temporal smoothness/ 
  piecewise constant structure, or features of spatial modes.
• Scale to high-dimensional timeseries, many channels/sensors, or many time points.

Regularization and a General Algorithm

Test problem: low rank, switching linear dynamics

Mathematical Formulation
Snapshot matrices 
for window 1

Later ones are formed by 
shifting time by multiples of M

Solves for rank R tensor 
with no further priors

A simple algorithm, but only 
seems to work for synthetic 
data.

Assumption: we �t a linear model to the 
dynamics within each window.

Big idea #1: Consider the stack of system matrices as a tensor
Big idea #2: Low rank decomposition of the tensor
Note: In contrast to many existing methods, this is a tensor regression problem.

kth system matrix

Tensor rank (CP) 
decomposition: 
sum of rank-1 tensors

Notation:
N = # channels
M = # time steps per window
T = # windows

where

Regression problem:

Left spatial modes

Right spatial modes

Temporal modes

System tensor is decomposed into 
three di�erent matrices:

N x R

T x R

N x R

loss function C

In practice, we �nd that the previous regression problem is ill-conditioned for many real datasets.
In addition, we would like to incorporate prior knowledge about the structure of the modes.

Tikhonov regularization:
  Improves overall conditioning
  Prevents large modes

Temporal mode regularization:
  Forces temporal structure
  TV: piecewise constant
  Spline: smooth functions

The following algorithm allows us to exploit the linear structure of the problem for a very fast, 
scalable solution. However, we keep a copy of the temporal modes to facilitate their regularization.

Temporal regularization
parameter

Slackness parameter, controls 
relaxed variables W

Note: slackness dœs 
not need to be 
tuned, decrease on 
schedule and repeat

Linear system 1
Rank 2

Linear system 2
Rank 2

Recovered
modes           matrices

Left channels
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8
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Right channels
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Time
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• 1-step RMSE = 0.22 (noise �oor = 0.2)
• Method is able to recover the true 
rank of the system = 4 in this case
• With lower noise, will work without 
temporal smoothing

Electrocorticography (ECoG) dataset

Motion capture of monkey during reaching task
Paired with ECoG array over motor cortex
Dataset from http://neurotycho.org/food-tracking-task

Temporal modes from MOCAP, R=4
TV regularizer used
Movements easily identi�ed, smoothed 

Raw ECoG data 64 channels �ltered into
 low (2-32 Hz) and high frequency (32-200 Hz)

Band power was log-transformed and standardized
Sum of low and high frequency across channels

Neurotycho image

Temporal modes from ECoG, R=4
TV regularizer
Most modes show spikes after movements
High freq activity actually due to chewing artifacts
Largest signals occur during transitions

Conclusions & Questions

Acknowledgements
• Scalable method for timeseries decomposition
• Test data show excellent results
• Tuning regularization parameters is di�cult unless 
you know what you want to see

• How to separate mean e�ects? "A�ne" model
• How to evaluate quality of model, beyond RMSE?
• Test cases: provable recovery of low rank model?

This work was supported by a Washington 
Research Foundation postdoctoral fellowship as well 
as DARPA. Thank you to Nathan Kutz for 
discussions related to this topic.

Harris, Aravkin, Rao & BWB, arXiv:1905.08389.
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T windows

in N and T . We can optionally normalize the factors to have unit-length columns and capture their
relative scalings in a vector � 2 RR; we consider this a postprocessing step and explicitly state
when we do this.

In solving (TVART) for A, we work directly with the frontal slices

Ak = U(1)D(k)U(2)|
, where D(k) = diag

⇣
u(3)
k:

⌘
. (1)

Matrix D(k) is the R⇥R diagonal matrix formed from the kth row of U(3) [19]. We call the matrices
U(1), U(2), and U(3) the TVART dynamical modes. Specifically, we refer to U(1) and U(2) as the
left and right spatial modes, since they determine the loadings of Ak onto the channels in the data.
The matrix U(3), which determines D(k), we call the temporal modes, since it determines the time-
variation of the system matrix Ak across windows.

Equation (1) is similar to the singular value decomposition (SVD): each slice Ak is the product
of a low rank matrix U(1), a diagonal matrix D(k), and another low rank matrix U(2)|. How-
ever, in the SVD, the left and right singular vectors are orthogonal. Let U(1) = Q(1)R(1)

and U(2) = Q(2)R(2) be the QR decompositions of the left and right spatial modes, so that
Ak = Q(1)R(1)D(k)R(2)|Q(2)|. Thus, in order to calculate the SVD of Ak, we would have
to take the SVD of the R ⇥ R matrix R(1)D(k)R(2)|. This also illustrates that, in the CP decom-
position, slices Ak and Ak0 may have different left and right singular vectors (but they always lie in
the column spaces of Q(1) and Q(2)). This flexibility is important for allowing us to fit switching
models with different singular subspaces.

2.1 Extensions: affine dynamics and higher-order autoregressions

In many applications, the mean of the data may drift over time, and thus affine models x(t + 1) =
Akx(t)+bk are more appropriate than linear models. We can fit an affine model of this type within
the TVART framework by appending a row of ones to each Xk and extending U(2) by one row to
build in a bk term. In this case, we have that bk = U(1)D(k)c, where c is the extra row u(2)

N+1,:.

Furthermore, autoregressive models of higher order are often considered, where x(t+1) is predicted
from data with p lags x(t), . . . ,x(t � p + 1). In this case, the dimensions of X and A change to
NP ⇥M ⇥ T and N ⇥ NP ⇥ T , respectively, but otherwise the mathematics remain equivalent.
For simplicity, we focus on just the p = 1 case, but higher-order autoregressive models are likely
better-suited to certain applications.

2.2 Norm regularization

A natural approach to solving (TVART) is alternating least squares. However, we have found that
this is numerically unstable, in particular for a switching linear test problem (Sec. 3.1) with low
noise. Additive, independent noise adds a diagonal component to the data covariance, which sug-
gests we apply Tikhonov regularization to the problem. An additional motivation is that we do not
want the entries in the matrices U(1), U(2), and U(3) to become too large, but some might become
large due to the scaling indeterminancy of the CP decomposition [19]. We thus add a Tikhonov
regularization term

1

2⌘

⇣
kU(1)k2F + kU(2)k2F + kU(3)k2F

⌘

to the least-squares loss. The regularization parameter ⌘ controls the magnitude of this regular-
ization; as ⌘ ! 1, the constraint disappears. In matrix completion problems, a similar two-term
regularization is often added and can be seen as a convex relaxation of the matrix rank.

2.3 Temporal mode smoothing

We now consider a few possible regularizers on the time components U(3). Recall that the rows of
U(3) correspond to the loadings at different time windows. By forcing these rows to be correlated,
we keep the system matrices Ak from varying too much from window to window. This is a form of
temporal smoothing. The first regularizer we consider is a total variation (TV) penalty:

TV(U(3)) =
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Figure 1: Schematic of the TVART method. Time series data are windowed, and a linear model is
fit in each window. The system matrices across windows are assumed to arise from a tensor which is
low rank. This couples together the different matrices in time, and factors as a spatiotemporal modal
decomposition. Additionally, we allow the possibility of smoothing of the temporal modes in order
to stabilize the model fit with small window size.

The key ingredient of our model is to parametrize the dynamics by a low rank tensor for com-
putational tractability, ease of identification, and interpretation. Tensor decompositions [19] are a
powerful technique for summarizing multivariate data and an area of ongoing research in theory
[16, 3, among others] and applications [e.g., to improve neural networks 26, 18]. In our problem the
system tensor representing the DLM is regressed against the data. In this aspect, our method is most
similar to the work of Yu and colleagues who considered spatiotemporal forecasting with spatial
smoothness regularization [4, 38, 37]. However, our work differs in the algorithm as well as the
emphasis on non-smooth regularization to find switching or other temporally structured behavior.

2 The TVART model

We now introduce our time-varying autoregressive model with low rank tensors (TVART). Assume
we have sampled the trajectory of an N -dimensional dynamical system x(t) for t = 1, . . . , ⌧ + 1.
We split this trajectory into T non-overlapping windows of length M , so that TM = ⌧ . Let X be
the N ⇥M ⇥ T tensor with entries xijk = xi((k� 1)M + j), and similarly let Y be a tensor of the
same size with entries shifted by one time point, yijk = xi((k�1)M+ j+1). (See Appendix A for
the notation conventions.) We call the frontal slices Xk and Yk the snapshot matrices for window
k. The first of these are

X1 =

" | | |
x(1) x(2) . . . x(M)
| | |

#
and Y1 =

" | | |
x(2) x(3) . . . x(M + 1)
| | |

#
.

The subsequent snapshots Xk,Yk for k > 1 are each shifted by (k � 1)M .

The goal of TVART is to fit an N ⇥N ⇥ T tensor of system matrices A, so that Yk ⇡ AkXk for
k = 1, . . . , T , where Ak is the kth frontal slice of A. The assumption underlying this goal is that
x(t + 1) ⇡ A(t)x(t) where A(t) is constant within a window. This motivates the least squares
optimization problem (uncorrelated Gaussian assumption on approximation error)

min
A: rank(A)=R

1

2

TX

k=1

kYk �AkXkk2F . (TVART)

Without the rank constraint, (TVART) factors into decoupled problems for each window Ak. In
order to constraining the number of parameters in the tensor A, we work with a low rank constraint.
We represent A using the canonical polyadic (CP) decomposition [19] of rank R as

A =
RX

r=1

u(1)
r � u(2)

r � u(3)
r

in terms of the factor matrices U(1) 2 RN⇥R, U(2) 2 RN⇥R, and U(3) 2 RT⇥R, where u(i)
r is

the rth column of U(i). The number of parameters is reduced to (2N + T )R, which is now linear
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fit in each window. The system matrices across windows are assumed to arise from a tensor which is
low rank. This couples together the different matrices in time, and factors as a spatiotemporal modal
decomposition. Additionally, we allow the possibility of smoothing of the temporal modes in order
to stabilize the model fit with small window size.
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putational tractability, ease of identification, and interpretation. Tensor decompositions [19] are a
powerful technique for summarizing multivariate data and an area of ongoing research in theory
[16, 3, among others] and applications [e.g., to improve neural networks 26, 18]. In our problem the
system tensor representing the DLM is regressed against the data. In this aspect, our method is most
similar to the work of Yu and colleagues who considered spatiotemporal forecasting with spatial
smoothness regularization [4, 38, 37]. However, our work differs in the algorithm as well as the
emphasis on non-smooth regularization to find switching or other temporally structured behavior.
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the N ⇥M ⇥ T tensor with entries xijk = xi((k� 1)M + j), and similarly let Y be a tensor of the
same size with entries shifted by one time point, yijk = xi((k�1)M+ j+1). (See Appendix A for
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k. The first of these are

X1 =

" | | |
x(1) x(2) . . . x(M)
| | |

#
and Y1 =

" | | |
x(2) x(3) . . . x(M + 1)
| | |

#
.

The subsequent snapshots Xk,Yk for k > 1 are each shifted by (k � 1)M .
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k = 1, . . . , T , where Ak is the kth frontal slice of A. The assumption underlying this goal is that
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Without the rank constraint, (TVART) factors into decoupled problems for each window Ak. In
order to constraining the number of parameters in the tensor A, we work with a low rank constraint.
We represent A using the canonical polyadic (CP) decomposition [19] of rank R as
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in terms of the factor matrices U(1) 2 RN⇥R, U(2) 2 RN⇥R, and U(3) 2 RT⇥R, where u(i)
r is

the rth column of U(i). The number of parameters is reduced to (2N + T )R, which is now linear
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T windows

Regularized cost function:

Harris, Aravkin, Rao & BWB, arXiv:1905.08389.

Algorithm 1 Alternating minimization
1: initialize U(1)

,U(2)
,U(3) and regularization parameters 0 < ⌘ <1, 0  � <1

2: repeat

3: U(1)  argminU C
�
U,U(2)

,U(3)
�

R⇥R linear system solve
4: U(2)  argminU C

�
U(1)

,U,U(3)
�

conjugate gradient
5: U(3)  argminU C

�
U(1)

,U(2)
,U

�
conjugate gradient (Spline)
or proximal gradient (TV)

6: until convergence criteria
7: return U(1)

,U(2)
,U(3)

Matrix D is the (T � 1) ⇥ T first difference matrix (-1s on the principal diagonal and 1s on the
lower diagonal). TV prefers piecewise constant time components u(3)

:r since it penalizes nonzero
first-differences with an `

1 penalty to enforce sparsity, appropriate for an SLDS. We also consider a
spline penalty:

Spline(U(3)) =
1

2

RX

r=1

TX

k=2

�
u
(3)
kr � u

(3)
k�1,r

�2
=

1

2
kDU(3)k2F . (3)

This linear smoother penalizes the `
2-norm of the first derivative, leading to smoothly varying solu-

tions.

2.4 Regularized cost function

We modify the problem (TVART), adding the Tikhonov and smoothing penalties to the loss function.
These additions result in the regularized cost function

C =
1

2

TX

k=1

kYk �AkXkk2F +
1

2⌘

⇣
kU(1)k2F + kU(2)k2F + kU(3)k2F

⌘
+ �R(U(3)), (4)

where Ak follows equation (1) as before. Here, R(·) is either TV(·) or Spline(·). Increasing the
temporal smoothing strength � leads to stronger regularization, as does decreasing ⌘.

2.5 Alternating minimization algorithm

We minimize the regularized cost (4) using alternating minimization, also known as block coordi-
nate descent. In Algorithm 1, we give the full alternating minimization procedure for solving the
regularized problem. The subroutines that minimize for U(1)

,U(2) and U(3) require different ap-
proaches. Since the objective (4) is quadratic in U(1) and U(2), we find these by solving a linear
matrix equation either directly or using the method of conjugate gradients (CG); this is what we find
works best for solving the Sylvester equation in U(2). For U(3), with the Spline penalty, the cost is
again quadratic so we also use CG. However, the TV penalty is convex but not smooth, so in this
case we use the proximal gradient method with Nesterov acceleration. See Appendix B for further
algorithm details. Our code will be available at the time of publication.
Theorem 2.1. The sequence of iterates generated by Algorithm 1 is defined, bounded, and every
cluster point is a coordinatewise minimum (Nash point) of the regularized cost (4).

Proof. We split the cost into smooth and non-smooth parts

C(U(1)
,U(2)

,U(3)) = f0(U
(1)

,U(2)
,U(3)) + f1(U

(3)),

where f1(U(3)) = �R(U(3)) and f0 contains the remaining loss and Tikhonov terms. The function
f0 is continuous and differentiable, and it is 1

⌘ -strongly convex in each of its blocks U(1)
,U(2),

and U(3). However, f0 is not a convex function. Also, f1 is convex and continuous. Let
(U(1)

0 ,U(2)
0 ,U(3)

0 ) be the initialization and a = C(U(1)
0 ,U(2)

0 ,U(3)
0 ). Denote the level set

Sa = {(U(1)
,U(2)

,U(3)) : C(U(1)
,U(2)

,U(3))  a}.

4

Least squares error Tikhonov regularizer Temporal 
smoothing 
regularizer

� window k

u(3)
r
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Smoothly varying: 
Use spline penalty

Switching: 
Use Total-Variation penalty
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Harris, Aravkin, Rao & BWB, arXiv:1905.08389.
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Kernel methods

Lusch et al., 2018.

Koopman operator

Koopman 1931.

Networks of neurons and networks of brain 
areas expand and contract the effective 
dimensionality of their inputs, potentially 
making their representations more linear.

Linearity in representation makes many tasks 
easier, including classification, 


modeling of dynamics, and control.
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3.2 The Koopman operator
With spectral theory in hand, we can proceed to posit the fundamental
concept behind the Koopman operator. The original work of Koop-
man in 1931 [163] considered Hamiltonian systems and formulated the
Koopman operator in discrete-time; however, we begin with continu-
ous time and then derive the associated discrete-time formulation.

Definition: Koopman Operator: Consider a continuous-time dynami-
cal system

dx
d t
= f(x) , (3.17)

where x 2 M is a state on a smooth n-dimensional manifoldM . The
Koopman operatorK is an infinite-dimensional linear operator that acts
on all observable functions g :M !C so that:

K g (x) = g (f(x)) . (3.18)

Soon after the original paper, Koopman and von Neumann extended
these results to dynamical systems with continuous spectra [?].

By definition, the Koopman operator is a linear operator that acts
on the HilbertH space of all scalar measurement functions g . As such,
it is an infinite dimensional operator. Thus the transformation from
the state space representation of the dynamical system to the Koopman
representation trades nonlinear, finite-dimensional dynamics for linear,
infinite-dimensional dynamics. The advantage of such a trade-off is that
we can solve linear differential equations using the spectral representa-
tion of the last section. Of course, an infinite dimensional representa-
tion can be problematic, but in practice a sufficiently large, but finite,
sum of modes is used to approximate the Koopman spectral solution.
It should be noted that the definition (3.18) can be alternatively repre-
sented by a composition of the observables with the nonlinear evolu-
tion: K g = g � f.

The Koopman operator may also be defined for discrete-time dy-
namical systems, which are more general than continuous-time sys-
tems. In fact, the dynamical system in (3.17) will induce a discrete-time
dynamical system given by the flow map Ft :M !M , which maps
the state x(t0) to a future time x(t0+ t ):

Ft (x(t0)) = x(t0+ t ) = x(t0)+
Z t0+t

t0

f(x(⌧))d⌧ . (3.19)

This induces the discrete-time dynamical system

xk+1 = Ft (xk ), (3.20)

Data Dynamics

Caption: Schematic of how to use data to generate dynamical systems models of an unknown complex system 
in the DMD/Koopman framework. In standard DMD, we take measurements of the states of the system and 
construct a model that maps $\bX$ to $\bX’$. Koopman spectral analysis enriches the measurements with 
nonlinear observations $\by = \bg(\bx)$ to provide a better mapping from $\bY$ to $\bY’$ that approximates the 
infinite-dimensional Koopman mapping. The prediction of the observables in the future from the Koopman model 
may be used to recover the future state $\bx_{m+1}$, provided that the observation function $\bg$ is injective. 
Both the DMD and Koopman approaches are equation-free, in that they do not rely on knowing $\bF_{t}$.

g(xk+1) ⇡ Kg(xk)

K = AY

xk+1 ⇡ Axk

A = AX

Kutz, Brunton, BWB, & Proctor, SIAM 2016.
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Hankel alternative view of Koopman (HAVOK) Representations and Time-Delays

(SVD) of the following Hankel matrix H:
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The columns of U and V from the SVD are arranged
hierarchically by their ability to model the columns and rows of
H, respectively. Often, H may admit a low-rank approximation
by the first r columns of U and V. Note that the Hankel matrix in
(4) is the basis of ERA32 in linear system identification and SSA33

in climate time series analysis. Interestingly, a connection
between the Koopman operator and the Takens embedding was
explored as early as 200445.

The low-rank approximation to (4) provides a data-driven
measurement system that is approximately invariant to the
Koopman operator for states on the attractor. By definition, the
dynamics map the attractor onto itself, making it invariant to the

flow. We may re-write (4) with the Koopman operator K:

H ¼

xðt1Þ Kxðt1Þ $ $ $ Kp'1xðt1Þ

Kxðt1Þ K2xðt1Þ $ $ $ Kpxðt1Þ
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The columns of (4), and thus (5), are well-approximated by the
first r columns of U, so these eigen-time-series provide a
Koopman-invariant measurement system. The first r columns
of V provide a time series of the magnitude of each of the
columns of UΣ in the data. By plotting the first three columns of
V, we obtain an embedded attractor for the Lorenz system, shown
in Fig. 1e.

The connection between eigen-time-delay coordinates from (4)
and the Koopman operator motivates a linear regression model
on the variables in V. Even with an approximately Koopman-
invariant measurement system, there remain challenges to
identifying a linear model for a chaotic system. A linear model,
however detailed, cannot capture multiple fixed points or the
unpredictable behavior characteristic of chaos with a positive
Lyapunov exponent39. Instead of constructing a closed linear
model for the first r variables in V, we build a linear model on the
first r−1 variables and allow the last variable, vr, to act as a forcing
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Fig. 1 Decomposition of chaos into a linear dynamical system with forcing. A time series x(t) is stacked into a Hankel matrix H. The SVD of H yields a
hierarchy of eigen time series that produce a delay-embedded attractor. A best-fit linear regression model is obtained on the delay coordinates v; the
linear fit for the first r−1 variables is excellent, but the last coordinate vr is not well-modeled as linear. Instead, vr(t) is a stochastic input that forces the
first r−1 variables. The rare events in the forcing correspond to lobe switching in the chaotic dynamics. This architecture is called the Hankel alternative
view of Koopman (HAVOK) analysis
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Hankel alternative view of Koopman (HAVOK) Representations and Time-Delays
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The columns of U and V from the SVD are arranged
hierarchically by their ability to model the columns and rows of
H, respectively. Often, H may admit a low-rank approximation
by the first r columns of U and V. Note that the Hankel matrix in
(4) is the basis of ERA32 in linear system identification and SSA33

in climate time series analysis. Interestingly, a connection
between the Koopman operator and the Takens embedding was
explored as early as 200445.

The low-rank approximation to (4) provides a data-driven
measurement system that is approximately invariant to the
Koopman operator for states on the attractor. By definition, the
dynamics map the attractor onto itself, making it invariant to the

flow. We may re-write (4) with the Koopman operator K:

H ¼
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The columns of (4), and thus (5), are well-approximated by the
first r columns of U, so these eigen-time-series provide a
Koopman-invariant measurement system. The first r columns
of V provide a time series of the magnitude of each of the
columns of UΣ in the data. By plotting the first three columns of
V, we obtain an embedded attractor for the Lorenz system, shown
in Fig. 1e.

The connection between eigen-time-delay coordinates from (4)
and the Koopman operator motivates a linear regression model
on the variables in V. Even with an approximately Koopman-
invariant measurement system, there remain challenges to
identifying a linear model for a chaotic system. A linear model,
however detailed, cannot capture multiple fixed points or the
unpredictable behavior characteristic of chaos with a positive
Lyapunov exponent39. Instead of constructing a closed linear
model for the first r variables in V, we build a linear model on the
first r−1 variables and allow the last variable, vr, to act as a forcing
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Fig. 1 Decomposition of chaos into a linear dynamical system with forcing. A time series x(t) is stacked into a Hankel matrix H. The SVD of H yields a
hierarchy of eigen time series that produce a delay-embedded attractor. A best-fit linear regression model is obtained on the delay coordinates v; the
linear fit for the first r−1 variables is excellent, but the last coordinate vr is not well-modeled as linear. Instead, vr(t) is a stochastic input that forces the
first r−1 variables. The rare events in the forcing correspond to lobe switching in the chaotic dynamics. This architecture is called the Hankel alternative
view of Koopman (HAVOK) analysis
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invariant measurement system, there remain challenges to
identifying a linear model for a chaotic system. A linear model,
however detailed, cannot capture multiple fixed points or the
unpredictable behavior characteristic of chaos with a positive
Lyapunov exponent39. Instead of constructing a closed linear
model for the first r variables in V, we build a linear model on the
first r−1 variables and allow the last variable, vr, to act as a forcing
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The columns of U and V from the SVD are arranged
hierarchically by their ability to model the columns and rows of
H, respectively. Often, H may admit a low-rank approximation
by the first r columns of U and V. Note that the Hankel matrix in
(4) is the basis of ERA32 in linear system identification and SSA33

in climate time series analysis. Interestingly, a connection
between the Koopman operator and the Takens embedding was
explored as early as 200445.

The low-rank approximation to (4) provides a data-driven
measurement system that is approximately invariant to the
Koopman operator for states on the attractor. By definition, the
dynamics map the attractor onto itself, making it invariant to the

flow. We may re-write (4) with the Koopman operator K:
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The columns of (4), and thus (5), are well-approximated by the
first r columns of U, so these eigen-time-series provide a
Koopman-invariant measurement system. The first r columns
of V provide a time series of the magnitude of each of the
columns of UΣ in the data. By plotting the first three columns of
V, we obtain an embedded attractor for the Lorenz system, shown
in Fig. 1e.

The connection between eigen-time-delay coordinates from (4)
and the Koopman operator motivates a linear regression model
on the variables in V. Even with an approximately Koopman-
invariant measurement system, there remain challenges to
identifying a linear model for a chaotic system. A linear model,
however detailed, cannot capture multiple fixed points or the
unpredictable behavior characteristic of chaos with a positive
Lyapunov exponent39. Instead of constructing a closed linear
model for the first r variables in V, we build a linear model on the
first r−1 variables and allow the last variable, vr, to act as a forcing
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The columns of U and V from the SVD are arranged
hierarchically by their ability to model the columns and rows of
H, respectively. Often, H may admit a low-rank approximation
by the first r columns of U and V. Note that the Hankel matrix in
(4) is the basis of ERA32 in linear system identification and SSA33

in climate time series analysis. Interestingly, a connection
between the Koopman operator and the Takens embedding was
explored as early as 200445.

The low-rank approximation to (4) provides a data-driven
measurement system that is approximately invariant to the
Koopman operator for states on the attractor. By definition, the
dynamics map the attractor onto itself, making it invariant to the

flow. We may re-write (4) with the Koopman operator K:
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The columns of (4), and thus (5), are well-approximated by the
first r columns of U, so these eigen-time-series provide a
Koopman-invariant measurement system. The first r columns
of V provide a time series of the magnitude of each of the
columns of UΣ in the data. By plotting the first three columns of
V, we obtain an embedded attractor for the Lorenz system, shown
in Fig. 1e.

The connection between eigen-time-delay coordinates from (4)
and the Koopman operator motivates a linear regression model
on the variables in V. Even with an approximately Koopman-
invariant measurement system, there remain challenges to
identifying a linear model for a chaotic system. A linear model,
however detailed, cannot capture multiple fixed points or the
unpredictable behavior characteristic of chaos with a positive
Lyapunov exponent39. Instead of constructing a closed linear
model for the first r variables in V, we build a linear model on the
first r−1 variables and allow the last variable, vr, to act as a forcing
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term:

d
dt

vðtÞ ¼ AvðtÞ þ BvrðtÞ: ð6Þ

Here v ¼ ½v1 v2 & & & vr'1 (T is a vector of the first r−1

eigen-time-delay coordinates. In all of the examples below, the
linear model on the first r−1 terms is accurate, while no linear
model represents vr. Instead, vr is an input forcing to the linear
dynamics in (6), which approximate the nonlinear dynamics in
(1). The statistics of vr(t) are non-Gaussian, as seen in Fig. 1h. The
long tails correspond to rare-event forcing that drives lobe
switching in the Lorenz system; this is related to rare-event
forcing observed and modeled by others12, 13, 46. However, the
statistics of the forcing alone is insufficient to characterize the
switching dynamics, as the timing is crucial. The long-tail forcing
comes in high-frequency bursts, which are not captured in the
statistics alone. In fact, forcing the system in (6) with other
forcing signatures from the same statistics, for example by
randomly shuffling the forcing time series, does not result in the
same dynamics. Thus, the timing of the forcing is as important as
the distribution. In principle, it is also possible to split the
variables into r−s high-energy modes for the linear model and s
low-energy forcing modes, although this is not explored in the
present work. The splitting of dynamics into deterministic linear
and chaotic stochastic dynamics was proposed in ref. 35. Here we
extend this concept to fully chaotic systems where the Koopman
operators have continuous spectra and develop a robust
numerical algorithm for the splitting.

The forced linear system in (6) was discovered after applying
the sparse identification of nonlinear dynamics (SINDy)19

algorithm to delay coordinates of the Lorenz system. Even when
allowing for the possibility of nonlinear dynamics in v, the most
parsimonious model is linear (shown in Fig. 2). This strongly
suggests a connection with the Koopman operator, motivating the
present work. The last term vr is not accurately represented by
either linear or polynomial nonlinear models19, as is shown in
Supplementary Fig. 18.

The structure of the HAVOK model for the Lorenz system is
shown in Fig. 2. There is a dominant skew-symmetric structure in
the A matrix, and the entries are nearly integer valued. In
Supplementary Note 4, we demonstrate that the dynamics of a
nearby model with exact integer entries qualitatively matches the
dynamics of the Lorenz model, including the lobe switching
events. This off-diagonal structure and near integrability is
the subject of current investigation by colleagues. It was argued in
ref. 35 that on an example deterministic chaotic system, there is a
random dynamical system representation that has the same
spectrum and may be used for long-term prediction. The Lorenz
system is mixing and does not have a simple spectrum47,
although it appears that there are functions in the pseudo
spectrum that are nearly eigenfunctions of the Koopman
operator. Indeed, in the system in ref. 35, the Koopman
representation has a similar off-diagonal structure to the Lorenz
example here.

HAVOK analysis and prediction in the Lorenz system. In the
case of the Lorenz system, the long tails in the statistics of the
forcing signal vr(t) correspond to bursting behavior that precedes
lobe switching events. It is possible to directly test the power of
the forcing signature vr(t) to predict lobe switching in the Lorenz
system. First, a HAVOK model is trained using data from 200
time units of a trajectory; this results in the basis U and the model
matrices A and B. Next, the prediction of lobe switching is tested
on a new validation (test) trajectory consisting of the next 1,000

time units (i.e., time t= 200 to t= 1200). Figure 3 shows 20 time
units of this test trajectory. Regions where the forcing term vr is
active are isolated when jvrj is larger than a threshold value; in
this case, we choose r= 11 and the threshold is 0.002. These
regions are colored red in Fig. 3 for v1 and vr. The remaining
portions of the trajectory, when the forcing is small, are colored in
dark gray. It is clear by eye that the activity of the forcing precedes
lobe switching by nearly one period. During the 1,000 time units
of test data there are 605 lobe switching events, of which the
HAVOK model correctly identifies 604, for a accuracy of 99.83%.
There are likewise 2,047 lobe orbits that do not precede lobe
switching, and the HAVOK model identifies 54 false positives at a
rate of 2.64%. Note that in this example, both v1(t) and vr(t) are
computed directly from the time-series using U, and are not
simulated using the dynamic model. Computing vr using U
introduces a short delay of qΔt= 0.1 time units; however, forcing
activity precedes lobe switching by considerably more than 0.1
time units, so that it is still predictive.

It is important to note that when the forcing term is small,
corresponding to the gray portions of the trajectory, the dynamics
are largely governed by linear dynamics. Thus, the forcing term in
effect distills the essential nonlinearity of the system, indicating
when the dynamics are about to switch lobes of the attractor. The
same trajectories are plotted in three-dimensions in Fig. 4a, where
it can be seen that the nonlinear forcing is active precisely when
the trajectory is on the outer portion of the attractor lobes. A
single lobe switching event is shown in Fig. 4b, illustrating the
geometry of the trajectories.

Figure 5 shows that the dynamic HAVOK model in (6)
generalizes to predict behavior in test data that was not used to
train the model. In this figure, a HAVOK model of order r= 15 is
trained on data from t= 0 to t= 50, and then simulated on test
data from t= 50 to t= 100. The model captures the main features
and lobe transitions, although small errors gradually increase for
long times. This model prediction must be run on-line, as it
requires access to the forcing signature vr, which may be obtained
by multiplying a sliding window of v(t) with the basis U.

Connection to almost-invariant sets and Perron-Frobenius.
The Koopman operator is the dual, or left-adjoint, of the
Perron-Frobenius operator, which is also called the transfer
operator on the space of probability densities. Thus, Koopman
analysis is typically concerned with measurements from a single
trajectory, while Perron-Frobenius analysis is concerned with an
ensemble of trajectories. Because of the close relationship of the
two operators, it is interesting to compare the HAVOK analysis
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Fig. 2 The regression model obtained for the Lorenz system is sparse,
having a dominant off-diagonal structure. This HAVOK model is highly
structured, with skew symmetric entries that are nearly integer multiples of
five; this fascinating structure is explored more in Supplementary Note 4
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Model predicts lobe switching

with the almost-invariant sets from the Perron-Frobenius
operator. Almost-invariant sets represent dynamically isolated
phase space regions, in which the trajectory resides for a long
time. These sets are almost invariant under the action of the
dynamics and are related to dominant eigenvalues and eigen-
functions of the Perron-Frobenius operator. They can be
numerically determined from its finite-rank approximation by
discretizing the phase space into small boxes and computing a
large, but sparse, transition probability matrix of how initial
conditions in the various boxes flow to other boxes in a fixed
amount of time; for this analysis, we use the same q= 100 for the
length of the U vectors as in the HAVOK analysis. Following the
approach proposed by ref. 48, almost-invariant sets can then be

estimated by computing the associated reversible transition
matrix and level-set thresholding its right eigenvectors.

The almost-invariant sets of the Perron-Frobenius operator are
shown in Fig. 6 for the Lorenz system. There are two sets, each
corresponding to the near basin of one attractor lobe as well as the
outer basin of the opposing attractor lobe and the bundle of
trajectories that connect them. These two almost-invariant sets
dovetail to form the complete Lorenz attractor. Underneath the
almost-invariant sets, the Lorenz attractor is colored by the
thresholded magnitude of the nonlinear forcing term in the HAVOK
model, which partitions the attractor into two sets corresponding to
regions where the flow is approximately linear (inner black region)
and where the flow is strongly nonlinear (outer red region). The
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where the forcing is small and the dynamics are well approximated by Koopman linear dynamics. The trajectories in red indicate that lobe switching is
about to occur. b Illustration of one intermittent lobe switching event. The trajectory starts at point A, and resides in the basin of the right lobe for six
revolutions until B, when the forcing becomes large, indicating an imminent switching event. The trajectory makes one final revolution (red) and switches to
the left lobe C, where it makes three more revolutions. At point D, the activity of the forcing signal v11 will increase, indicating that switching is imminent
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operator. Almost-invariant sets represent dynamically isolated
phase space regions, in which the trajectory resides for a long
time. These sets are almost invariant under the action of the
dynamics and are related to dominant eigenvalues and eigen-
functions of the Perron-Frobenius operator. They can be
numerically determined from its finite-rank approximation by
discretizing the phase space into small boxes and computing a
large, but sparse, transition probability matrix of how initial
conditions in the various boxes flow to other boxes in a fixed
amount of time; for this analysis, we use the same q= 100 for the
length of the U vectors as in the HAVOK analysis. Following the
approach proposed by ref. 48, almost-invariant sets can then be

estimated by computing the associated reversible transition
matrix and level-set thresholding its right eigenvectors.

The almost-invariant sets of the Perron-Frobenius operator are
shown in Fig. 6 for the Lorenz system. There are two sets, each
corresponding to the near basin of one attractor lobe as well as the
outer basin of the opposing attractor lobe and the bundle of
trajectories that connect them. These two almost-invariant sets
dovetail to form the complete Lorenz attractor. Underneath the
almost-invariant sets, the Lorenz attractor is colored by the
thresholded magnitude of the nonlinear forcing term in the HAVOK
model, which partitions the attractor into two sets corresponding to
regions where the flow is approximately linear (inner black region)
and where the flow is strongly nonlinear (outer red region). The
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term:

d
dt

vðtÞ ¼ AvðtÞ þ BvrðtÞ: ð6Þ

Here v ¼ ½v1 v2 & & & vr'1 (T is a vector of the first r−1

eigen-time-delay coordinates. In all of the examples below, the
linear model on the first r−1 terms is accurate, while no linear
model represents vr. Instead, vr is an input forcing to the linear
dynamics in (6), which approximate the nonlinear dynamics in
(1). The statistics of vr(t) are non-Gaussian, as seen in Fig. 1h. The
long tails correspond to rare-event forcing that drives lobe
switching in the Lorenz system; this is related to rare-event
forcing observed and modeled by others12, 13, 46. However, the
statistics of the forcing alone is insufficient to characterize the
switching dynamics, as the timing is crucial. The long-tail forcing
comes in high-frequency bursts, which are not captured in the
statistics alone. In fact, forcing the system in (6) with other
forcing signatures from the same statistics, for example by
randomly shuffling the forcing time series, does not result in the
same dynamics. Thus, the timing of the forcing is as important as
the distribution. In principle, it is also possible to split the
variables into r−s high-energy modes for the linear model and s
low-energy forcing modes, although this is not explored in the
present work. The splitting of dynamics into deterministic linear
and chaotic stochastic dynamics was proposed in ref. 35. Here we
extend this concept to fully chaotic systems where the Koopman
operators have continuous spectra and develop a robust
numerical algorithm for the splitting.

The forced linear system in (6) was discovered after applying
the sparse identification of nonlinear dynamics (SINDy)19

algorithm to delay coordinates of the Lorenz system. Even when
allowing for the possibility of nonlinear dynamics in v, the most
parsimonious model is linear (shown in Fig. 2). This strongly
suggests a connection with the Koopman operator, motivating the
present work. The last term vr is not accurately represented by
either linear or polynomial nonlinear models19, as is shown in
Supplementary Fig. 18.

The structure of the HAVOK model for the Lorenz system is
shown in Fig. 2. There is a dominant skew-symmetric structure in
the A matrix, and the entries are nearly integer valued. In
Supplementary Note 4, we demonstrate that the dynamics of a
nearby model with exact integer entries qualitatively matches the
dynamics of the Lorenz model, including the lobe switching
events. This off-diagonal structure and near integrability is
the subject of current investigation by colleagues. It was argued in
ref. 35 that on an example deterministic chaotic system, there is a
random dynamical system representation that has the same
spectrum and may be used for long-term prediction. The Lorenz
system is mixing and does not have a simple spectrum47,
although it appears that there are functions in the pseudo
spectrum that are nearly eigenfunctions of the Koopman
operator. Indeed, in the system in ref. 35, the Koopman
representation has a similar off-diagonal structure to the Lorenz
example here.

HAVOK analysis and prediction in the Lorenz system. In the
case of the Lorenz system, the long tails in the statistics of the
forcing signal vr(t) correspond to bursting behavior that precedes
lobe switching events. It is possible to directly test the power of
the forcing signature vr(t) to predict lobe switching in the Lorenz
system. First, a HAVOK model is trained using data from 200
time units of a trajectory; this results in the basis U and the model
matrices A and B. Next, the prediction of lobe switching is tested
on a new validation (test) trajectory consisting of the next 1,000

time units (i.e., time t= 200 to t= 1200). Figure 3 shows 20 time
units of this test trajectory. Regions where the forcing term vr is
active are isolated when jvrj is larger than a threshold value; in
this case, we choose r= 11 and the threshold is 0.002. These
regions are colored red in Fig. 3 for v1 and vr. The remaining
portions of the trajectory, when the forcing is small, are colored in
dark gray. It is clear by eye that the activity of the forcing precedes
lobe switching by nearly one period. During the 1,000 time units
of test data there are 605 lobe switching events, of which the
HAVOK model correctly identifies 604, for a accuracy of 99.83%.
There are likewise 2,047 lobe orbits that do not precede lobe
switching, and the HAVOK model identifies 54 false positives at a
rate of 2.64%. Note that in this example, both v1(t) and vr(t) are
computed directly from the time-series using U, and are not
simulated using the dynamic model. Computing vr using U
introduces a short delay of qΔt= 0.1 time units; however, forcing
activity precedes lobe switching by considerably more than 0.1
time units, so that it is still predictive.

It is important to note that when the forcing term is small,
corresponding to the gray portions of the trajectory, the dynamics
are largely governed by linear dynamics. Thus, the forcing term in
effect distills the essential nonlinearity of the system, indicating
when the dynamics are about to switch lobes of the attractor. The
same trajectories are plotted in three-dimensions in Fig. 4a, where
it can be seen that the nonlinear forcing is active precisely when
the trajectory is on the outer portion of the attractor lobes. A
single lobe switching event is shown in Fig. 4b, illustrating the
geometry of the trajectories.

Figure 5 shows that the dynamic HAVOK model in (6)
generalizes to predict behavior in test data that was not used to
train the model. In this figure, a HAVOK model of order r= 15 is
trained on data from t= 0 to t= 50, and then simulated on test
data from t= 50 to t= 100. The model captures the main features
and lobe transitions, although small errors gradually increase for
long times. This model prediction must be run on-line, as it
requires access to the forcing signature vr, which may be obtained
by multiplying a sliding window of v(t) with the basis U.

Connection to almost-invariant sets and Perron-Frobenius.
The Koopman operator is the dual, or left-adjoint, of the
Perron-Frobenius operator, which is also called the transfer
operator on the space of probability densities. Thus, Koopman
analysis is typically concerned with measurements from a single
trajectory, while Perron-Frobenius analysis is concerned with an
ensemble of trajectories. Because of the close relationship of the
two operators, it is interesting to compare the HAVOK analysis
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Fig. 2 The regression model obtained for the Lorenz system is sparse,
having a dominant off-diagonal structure. This HAVOK model is highly
structured, with skew symmetric entries that are nearly integer multiples of
five; this fascinating structure is explored more in Supplementary Note 4
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