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1. Non-stationary time series analysis

• General talk about time series (polynomial regression, AIC,…)

• Non-stationary modeling

• K-means: unsupervised clustering algorithm

• FEM-H1, FEM-BV

2. Scalable Probabilistic Approximation (SPA) 

• Exact Law of the Total Probability

• Clustering = the cure for the curse of dimensionality?

• Soft (probabilistic) K-means without Jensen inequality

• Compressing the pipeline: 

the combination of optimal discretization with Markov model

Outline



Regime-based non-stationary time series analysis with 
regularization 

(FEM-H1, FEM-BV)



Time series analysis

• time series = data measured in intervals over a period of time



• time series = data measured in intervals over a period of time

black box time seriestime

external factors

noise

model function

Time series analysis

noise



• time series = data measured in intervals over a period of time

• choose model

• Example: linear regression

Time series analysis



• time series = data measured in intervals over a period of time

• choose model

• find parameters of (optimal) model

• Example: linear regression

Time series analysis



• more "sophisticated" parametric models:
– general polynomial regression

– autoregressive models

– Hidden Markov models

– Neural Networks

– ...
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• in general:

more parameters = lower modeling error  
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• in general:

more parameters = lower modeling error  

• noise reduction ?

• overfitting ?

• interpretation of results ?

Time series analysis



• in general:

more parameters = lower modeling error

more parameters = more unknowns 

• larger optimization problem

• harder to solve
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• in general:

more parameters = lower modeling error

more parameters = more unknowns 

• larger optimization problem

• harder to solve
Example - polynomial regression
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• in general:

more parameters = lower modeling error

more parameters = more unknowns 

complexity of model modeling error
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• in general:

more parameters = lower modeling error

more parameters = more unknowns 

complexity of model modeling error

Occam's razor:
Among competing hypotheses, the one with the fewest assumptions should be selected.

• Akaike H.: Information theory and an extension of the maximum likelihood 
principle, (1971)

Time series analysis



• H. Khan, D. Hounshell, E. Fuchs: Science and research policy at the end of 
Moore’s law, Nature Electronics, 1: 14–21, (2018)

Moore's law:
„the number of transistors in a dense integrated circuit doubles about every two years.“

Example: Moore’s law



Example



Example



• Pospíšil L., Gagliardini P., Sawyer W., Horenko I.: On a 
scalable nonparametric denoising of time series signals.
Communications in Applied Mathematics and 
Computational Science, 2018.

FEM-H1: demonstration by results



(non-stationary model)

"constant" regression in regimes

non-stationary locally stationary

From non-stationary models to clustering



regime indicator function:

"constant" regression in regimes

From non-stationary models to clustering
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• Lloyd, Stuart P. : Least squares quantization in PCM. Information Theory, IEEE 
Transactions on 28.2 (1982): 129-137.

K-means algorithm: unsupervised clustering



- we don't have any apriori classification for supervised learning 
- each cluster consists of similar points (points in cluster are close to each other)
- each cluster can be characterised by mean value (“centroid”) of points inside it
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K-means algorithm: unsupervised clustering



K-means algorithm
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K-means algorithm for time-series problem
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K-means algorithm for time-series problem
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K-means algorithm for time-series problem



- K-means ignores (doesn't take into account) the time

- we want to implement "rationality" of the cluster changes during time
(i.e. the time series is not jumping between clusters in crazy way)

caused by the change of cluster (model) typically caused by the noise

K-means algorithm for time-series problem



Assumption:

• enforce the persistency of underlying hidden switching process

FEM-H1

FEM-BV

Examples:

K-means algorithm for time-series problem



Assumption:

• Horenko I.: Finite Element Approach to Clustering of Multidimensional Time 
Series, SIAM J. Sci. Comp. 32(1), 62-83 (2010)

(probabilities)

From non-stationaty models to clustering



depends on model

Optimization: solving the problem



• Birgin E.G., Martínez J.M., Raydan M.: Nonmonotone spectral projected gradient methods on convex sets, (2000)
• Birgin E.G., Raydan M., Martínez J.M.: Spectral Projected Gradient Methods: Review and Perspectives, (2014)
• Pospíšil L.: Development of Algorithms for Solving Minimizing Problems with Convex Quadratic Function on Special 

Convex Sets and Applications, PhD thesis, supervised by Z. Dostál (2015)

Spectral Projected Gradient method for QP



T separable simplexes (hypertriangles) = fully parallel projection

Feasible set – separable simplexes



Regularization parameter



Regularization parameter: error curve



Regularization parameter: error curve



linear term = modeling error quadratic term = (non)smoothness

• Hansen P.C. and D. P. O'Leary D.P.: The use of the L-curve in the regularization of 
discrete ill-posed problems, SIAM J. Sci. Comp. 14, (1993)

Regularization parameter: L-curve



Regularization parameter: L-curve



• Gerber S., Horenko I.: Improving Clustering by Imposing Network Information,
Sciences Advances (AAAS), 1(7):e1500163, (2015)

t

timetn-2 tn-1 tn tn+1 tn+2

……

Regularization: parameter values of θ(t)
should be similar if they are close in time

time-persistent/metastable models

Regularization: parameter values of θ(s)
should be similar if they are close on the graph

graph-persistent/metastable models

Possible extension: spatial regularization



Piecewise linear regression

100 200 300 400 500 600 700 800 900 1000
-50

0

50

100

150

200

250

t

x
(t

)

100 200 300 400 500 600 700 800 900 1000
-50

0

50

100

150

200

250

t

x
(t

)

 

 

original

reconstructed P=1

100 200 300 400 500 600 700 800 900 1000
-50

0

50

100

150

200

250

t

x
(t

)

 

 

original

reconstructed P=50

100 200 300 400 500 600 700 800 900 1000
-50

0

50

100

150

200

250

t

x
(t

)

 

 

original

reconstructed

100 200 300 400 500 600 700 800 900 1000
-50

0

50

100

150

200

250

t

x
(t

)

 

 

original

reconstructed P=50

To compare: Polynomial regression

Possible extension: general non-stationary models



s.t.

TV-Entropy (regime-based non-stationary Entropy)

TV-Entropy identifies memoryless models 
that are simpler and better then the state-of-
the-art for all of the financial benchmark data 
considered.

• Marchenko G., Gagliardini P., Horenko I.:
Towards a Computationally Tractable 
Maximum Entropy Principle for Nonstationary 
Financial Time Series, SIAM J. Finan. Math., 
9(4), 1249–1285, (2018)

Possible extension: general non-stationary models



Scalable Probabilistic Approximation
(SPA)



Reduction of the data – K-means revisited



K-means?

Reduction of the data – K-means revisited



K-means?

Reduction of the data – K-means revisited



K-means?

• Gerber S., Pospíšil L., Navandar M., Horenko I.: Low-cost scalable discretization, prediction and 
feature selection for complex systems, accepted in Science Advances, (2019), 
http://www.biorxiv.org/content/10.1101/720441v1

Reduction of the data – K-means revisited



• Gerber S., Pospíšil L., Navandar M., Horenko I.: Low-cost scalable discretization, prediction and 
feature selection for complex systems, accepted in Science Advances, (2019), 
http://www.biorxiv.org/content/10.1101/720441v1

s.t.

Jensen inequality:

(K-means is suboptimal)

Scalable Probabilistic Approximation (SPA)



• Gerber S., Pospíšil L., Navandar M., Horenko I.: Low-cost scalable discretization, prediction and 
feature selection for complex systems, accepted in Science Advances, (2019), 
http://www.biorxiv.org/content/10.1101/720441v1

s.t.

General SPA:

Scalable Probabilistic Approximation (SPA)



• Gerber S., Pospíšil L., Navandar M., Horenko I.: Low-cost scalable discretization, prediction and 
feature selection for complex systems, accepted in Science Advances, (2019), 
http://www.biorxiv.org/content/10.1101/720441v1
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• Gerber S., Pospíšil L., Navandar M., Horenko I.: Low-cost scalable discretization, prediction and 
feature selection for complex systems, accepted in Science Advances, (2019), 
http://www.biorxiv.org/content/10.1101/720441v1

s.t.

Introducing regularization:

Scalable Probabilistic Approximation (SPA)



SPA in action



SPA in action



SPA in action



Results

• Gerber S., Pospíšil L., Navandar M., Horenko I.: Low-cost scalable discretization, prediction and 
feature selection for complex systems, accepted in Science Advances, (2019), 
http://www.biorxiv.org/content/10.1101/720441v1

• X(t) is continuous (and real valued) set 
of collected 32 image features 

• index t denotes patients and goes from 
1 to 569

• Y(t) is binary: ‘benign’ or ‘malignant’

• X(t) contains genetic expression levels 
for 25’000 genes

• index t goes from 1 to 300 (there are 
300 single cell probes), 

• Y(t) is a label denoting one of the 11 
cell types (e.g., ‘blood cell’, ‘glia 25 cell’, 
etc.)



• Gerber S., Pospíšil L., Navandar M., Horenko I.: Low-cost scalable discretization, prediction and 
feature selection for complex systems, accepted in Science Advances, (2019), 
http://www.biorxiv.org/content/10.1101/720441v1



SPA in action: compressing the pipeline
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• Horenko I.: Finite Element Approach to Clustering of Multidimensional Time Series, SIAM J. Sci. 
Comp. 32(1), 62-83 (2010)

• Metzner P., Putzig L., Horenko I. : Analysis of persistent non-stationary time series and 
applications. Communications in Applied Mathematics and Computational Science, 7(2):175-229, 
(2012)

• Gerber S., Horenko I.: Improving Clustering by Imposing Network Information, Sciences Advances 
(AAAS), 1(7):e1500163, (2015)

• Pospisil L., Gagliardini P., Sawyer W., Horenko I.: On a scalable nonparametric denoising of time 
series signals. Communications in Applied Mathematics and Computational Science, 13(1), (2018)

• Marchenko G., Gagliardini P., Horenko I.: Towards a Computationally Tractable Maximum Entropy
Principle for Nonstationary Financial Time Series, SIAM J. Finan. Math., 9(4), 1249–1285, (2018)

• Gerber S., Pospíšil L., Navandar M., Horenko I.: Low-cost scalable discretization, prediction and 
feature selection for complex systems, almost published in Science Advances, (2019), 
http://www.biorxiv.org/content/10.1101/720441v1

… thank you for your attention!


