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Talk Summary I

• No machine learning

• Instead an important(?) example which I suspect could
benefit from machine learning techniques

• Pattern/feature recognition in ensembles (millions or billions
of members) of multivariate (banded) Gaussian PDFs each in
dimension N (N of the order a few hundred to a few
thousand, band width 42)

• The ensembles of Gaussians are generated from a coarse-grain
equilibrium statistical mechanics model of DNA called
cgDNAloc that is used to scan over genomic length scales to
try to identify short sub-sequences with exceptional
mechanical properties. Enhance bioinformatics with
mechanics.

• Might consensus protein binding site sequences share common
mechanical properties?



Talk Summary II

• The cgDNA family of models have a machine learning flavour
in that they have up to 20K parameters to be fit.

• But have to predict 4n sequences with n of order a few 10s.
(Not just two types of elephant.)

• In the unlikely event of there being time at the end, make
some remarks about how to estimate dinucleotide dependent
parameter sets for the coarse-grain banded Gaussian from a
small library of long duration, atomistic (i.e. fine grain) MD
simulations of short DNA fragments.



Statistical mechanical modelling of DNA

We want a predictive coarse-grain model for the
sequence-dependent equilibrium distribution, including
ground-state structure and flexibility, of a dsDNA fragment of any
given sequence S and for a parameter set P modelling given
solvent conditions .

+

+

+

+

−

−

−−

+

−

−

+

−

+

+

+

+

−
+

−

−

ground−state

fluctuations
(measure of flexibility)

w   R 
N

ρ

DNA config space

ρ(w ;S ,P) =
1

Z
e−βU(w ;S,P)

w configuration coordinates
ρ probability density function
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Rigid-base configuration variables

cgDNA is a coarse-grain model in which each base is explicitly
described as a distinct rigid body; backbones are only considered
implicitly. cgDNA+ adds explicit treatment of phosphate groups.
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Rigid Base Configuration Coordinates

An oligomer with n basepairs has 6n intra-basepair and 6(n − 1)
inter-basepair degrees of freedom; a total of N = 12n − 6.
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(xa, ηa) =: ya ∈ R6 intra bp (va, ua) =: za ∈ R6 inter bp

The oligomer coordinate vector is w = (y1, z1, . . . , zn−1, yn) ∈ RN .
Concretely, use (small modifications of) Curves+ coordinates,
Lavery et al (NAR, 2009) implementation of Tsukuba embedding
of frames in atoms of each base, rotations via Cayley vectors.



The cgDNA model

The internal energy is approximated as quadratic so that the
equilibrium distribution is a (high-dimensional) Gaussian.
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2
(w − µ) · K (w − µ)

µ = µ(S ,P) ∈ RN ground-state configuration (N = 12n − 6)

K = K (S ,P) ∈ RN×N banded stiffness matrix K = KT > 0.

cgDNA provides a variety of parameter sets P that allow explicit
construction of µ(S ,P) and K (S ,P) for oligomers of arbitrary
length sequence S . Currently each parameter set P estimated from
a library of fine grain, large scale Molecular Dynamics simulations.
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The cgDNA model

Article and software download:
http://lcvmwww.epfl.ch/cgDNA/

• O. Gonzalez, D. Petkevicuite, jhm, J. Chem. Phys. (2013)
(basic model in gory detail)

• D. Petkevicuite, M. Pasi, Gonzalez, jhm, Nucleic Acids
Research (2014) (lite version plus cgDNA1.0 Matlab scripts)

• O. Gonzalez, M. Pasi, D. Petkeviciute, J. Glowacki, jhm,
Multiscale Model. Simul. (2017) (math stuff about parameter
estimation)

Web interface http://cgDNAweb.epfl.ch

• L. de Bruin, jhm, Nucleic Acids Research (2018, web server
issue), primarily for interactive visualisation of ground states

• cgDNA2.0 revision of Matlab scripts strictly compatible with
cgDNAweb along with a Python implementation (Patelli,
Zwahlen, Sharma).

http://lcvmwww.epfl.ch/research/cgDNA/
http://cgDNAweb.epfl.ch


Quick reminder of an elementary linear algebra
computation

If A and B are symmetric matrices with A + B invertible, and a
and b are vectors, then the sum of two shifted quadratic forms can
be written as a single shifted quadratic form plus a constant:

(x − a) ·A(x − a) + (x − b) ·B(x − b) = (x − c) ·C (x − c) + const.

where

C = A+B (xixj coefficients) c = C−1(Aa+Bb) (xi coefficients)

so that the value of the overall shift c involves the inversion of the
matrix sum (A + B) applied to Aa and Bb.
In our context, first average “forces” Aa and Bb, and then
compute an effective ground state displacement c .



The cgDNA2.0 dinucleotide step model

Based on localised interaction energies in each base-pair junction
each with localised sequence-dependence

Ten independent dinucleotide cross-junction interaction energies
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The cgDNA (2.0) model

Each dinucledotide-dependent parameter set P is estimated by
fitting first and second moment statistics to a library of (large
scale) Molecular Dynamics simulations:

P = {KXY ,K 5′XY , σXY , σ5′XY }, X ,Y ∈ {A,C ,G ,T ,M,N}.

Stiffness and shape reconstruction:

K (S ,P): 2  3

1  2

3  4

n−1  n

σ(S ,P):
12

32

34

n−1

n

µ(S ,P) = K (S ,P)−1σ(S ,P)

Formula comes from summing over junction energies. The matrix
inversion means that the oligomer ground state µ has a nonlocal
dependence on sequence. Linear algebra expression of frustration.



Two things to know: I. Epigenetic base modifications

The C base in a CG base pair are often methylated when they
occur in CpG dinucleotide steps

CpG steps generally under-represented in the genome except in
CpG islands documented in bioinformatics databases. They
frequently occur in promotor regions for genes, and whether or not
they are methylated is known to be very important for gene
expression.



Two things to know: II. Sequence logos, a standard tool in
bio-informatics

• Example: over 930 known CTCF transcription factor binding
sites from JASPAR 1 data base

WebLogo 3.6.0
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Identifying mechanically exceptional DNA sub-sequences
inside a chromosome

Typically a chromosome sequence S is of length 105 − 108 bp.
Way beyond the length scale where it is either feasible or sensible
to compute a cgDNA pdf. Instead aim to compute cgDNAloc
marginal PDFs for (short) sub-sequences Si ⊂ S . (PhD thesis T.
Zwahlen)

← Si

Picture source:https://cnx.org/contents/9TxHOD3O@4/The-Nucleus-and-DNA-Replicatio



Dealing with shape nonlocality

Computing (Gaussian) marginal PDFs of Gaussians is a standard
thing, and a marginal of a banded Gaussian is even itself also
banded, which means that computing cgDNA marginals is very
fast.

However, one of the strengths of the cgDNA model is the nonlocal
sequence-dependence of the ground state shape µ(S), and this has
to be accounted for by taking a marginal of a sub-sequence within
a sub-sequence with additional known flanking base pairs:

ρloc(w |Si ⊂ S ′i ⊂ S) =
1

Z
e−(w−µloc )·Kloc (w−µloc )



Application of cgDNAloc: locating mechanically
exceptional DNA sequences

Objective: given a long DNA sequence S , e.g. a chromosome, pick
a fixed length (say 10 - 200 bp) and locate sites/sub-sequences Si
of the given length with exceptional mechanical properties in the
sense that the PDF ρloc(w |Si ) is far from a sequence-averaged
PDF ρ̄loc(w) for a fragment of the same length.

• How to compare two probability distributions?

• How to compute the sequence-averaged PDF ρ̄loc(w)?
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Comparing two PDFs

One (but only one) standard way to compare two probability
distributions ρ1, ρ2 on Rn is to compute the Relative entropy or
Kullback-Leibler divergence between them, which is defined as

KL(ρ1, ρ2) =

∫
Rn

ρ1(x) ln

(
ρ1(x)

ρ2(x)

)
dx .

If both ρi are (multivariate) Gaussians with means µi and inverse
covariances or stiffnesses Ki , i = 1, 2 there is an explicit formula
for the integration (which is important for us for computational
time of evaluation):

KL(ρ1, ρ2) =
1

2

[
tr
(
K2K

−1
1

)
− ln

detK2

detK1
− n

]
+

1

2
(µ1−µ2)·K2(µ1−µ2)



Computing average PDFs

Given an ensemble {ρi} of PDFs with means and covariances µi ,
Ki , i = 1, . . . ,m, compute a Gaussian average ρav from the
ensemble mean and covariance µav , Kav by averaging shapes and
covariances:

µav =
1

m

m∑
i=1

µi , K−1
av =

1

m

(
m∑
i=1

K−1
i + µi ⊗ µi

)
− µav ⊗ µav .

For an ensemble of banded cgDNAloc PDFs {ρloc(Si )} (say along
a chromosome), define a banded cgDNAloc average ρbav (over
the ensemble Si ) by best fitting to a Gaussian with a banded
stiffness matrix. Know how to do this using a maximum entropy fit.
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Application of cgDNAloc: locating mechanically
exceptional DNA sequences, made precise

Objective: given a long DNA sequence S , find fixed length (10 -
200 bp) sub-sequences Si ⊂ S with exceptional mechanical
properties.

• In the sense for each Si ⊂ S , compute KL(ρiloc , ρbav ), where

• ρiloc is the cgDNA marginal pdf of Si ⊂ S ,
• ρbav is the reference (banded) sequence averaged cgDNA pdf

• Select Si with extreme high values of KL divergence.

• Plot sequence logos of the outliers to see if there is a pattern.
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S. cerevisiae genome, 10bp sites



S. cerevisiae chr II, 10bp sites outliers
Sequence logos of high outlier sites (3σ or KL' 0.33):

(Sequence logos show base composition frequencies at each
location with height weighted by information content. Sometimes
straight frequencies clearer.)



S. cerevisiae chr I-VIII, 10bp sites outliers



S. cerevisiae chr I, 11bp sites



S. cerevisiae chr I, 20bp sites



S. cerevisiae chr III, 147bp sites



S. cerevisiae chr I, 10bp sites outliers

A step further: look at dinucleotide sequence logos (because
cgDNA parameters are dimer-dependent)

Green= A, Blue = C, Yellow = G, Red = T
Reveals strong preference for AA/TT steps.



Are biological chromosomes very different from random
‘chromosomes’?

Analogous plots for 200K bp random sequnce.

Outliers noticeably lower KL' 0.29



Random sequence outlier dinucleotide sequence logo



What about epigenetics?

• Keep average PDF over unmethylated 200K bp random
sequence.

• Then all CpG steps are methylated

• outliers in sliding window at 99.7 percentile, KL' 0.47



Methylated CpG 10bp sites in random ’chromosome’

Each methylated CpG step increases ’distance’ to average.



Random chr, 10bp methylated sites outliers-sequence logo

Outlying sequence switches from being AA/AT rich to being
methylated CpG rich



Application II: Probing consensus protein binding sites (a
first stab)

• Instead of searching sites far from average, can look for sites
that are close (mechanically) to a particular sequence motif

• Example: CTCF transcription factor binding sites from
JASPAR 2 data base
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Application II: Probing consensus protein binding sites (a
first stab)

• 930 fragments (≈ 200 bp), each containing one CTCF binding
site

• Use pdf averaging over binding site sequences to construct a
‘consensus’ cgDNAloc distribution for CTCF binding site.
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first stab)

• 930 fragments (≈ 200 bp), each containing one CTCF binding
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• Use pdf averaging over binding site sequences to construct a
‘consensus’ cgDNAloc distribution for CTCF binding site.



Application II: Probing consensus protein binding sites (a
first stab)

Plot of KL divergences obtained by scanning one of the 930
fragments with each of the cgDNAloc PDFs for all of the 930
CTCF binding sites, plus the consensus averaged cgDNAloc.



Not entirely convincing

Perhaps potentials in the MD simulations not sufficiently accurate,
or presence of multi-valent ions important, or . . .

Can check whether cgDNA predictions of shape and stiffness are
close enough to MD predictions. Can do better by making the
coarse grain model less coarse. cgDNA+ a rigid-base plus
rigid-phosphates model (Patelli thesis, 2019)

Current conjecture is that asking that K-L divergence is small is
too strong a condition. Should instead try to identify the features
in common between binding site PDFs and non-binding site PDFs.
Machine learning?



Picking level of coarse-graining and estimating parameters



Coordinates for the base-phosphate group interaction

• For an interior dimer step:(
zCn−1, yn, z

W
n , xn, z

C
n , yn+1, z

W
n+1

)
∈ R42

• For the 5’-end dimer step:
(

y1, z
W
1 , x1, z

C
1 , y2, z

W
2

)
∈ R36



Pattern of the inverse covariance (stiffness matrix) (1/3)

Rigid basepair degrees of freedom

Figure: Inverse covariance observed from MD simulation.



Pattern of the inverse covariance (stiffness matrix) (2/3)

Rigid base degrees of freedom

Figure: Inverse covariance observed from MD simulation.



Pattern of the inverse covariance (stiffness matrix) (3/3)

Rigid base and rigid phosphate degrees of freedom

Figure: Inverse covariance observed from MD simulation.



The cgDNA+ dinucleotide model (1/2)
Ten independent interior dinucleotide cross-junction interaction
energies

UI (wI ) =
1

2
(wI − µXY ) · KXY (wI − µXY ),

µXY ∈ R42,KXY = [KXY ]T > 0 ∈ R42x42

Sixteen independent 5’-end dinucleotide cross-junction interaction
energies

UE (wE ) =
1

2
(wE − µ5′XY ) · K 5′XY (wE − µ5′XY ),

µ5′XY ∈ R36,K 5′XY = [K 5′XY ]T > 0 ∈ R36x36



The cgDNA+ dinucleotide model (2/2)

By summing the dinucleotide contributions over all junctions along
a DNA fragment of sequence S , we obtain the quadratic free
energy

U(w ;S ,P) =
1

2
(w − µ) · K (w − µ) + const,

µ = µ(S ,P) ∈ RN , K = KT = K (S ,P) > 0 ∈ RNxN

where P is the cgDNA+ model parameter set and N = 24n − 18.
Thus for any sequence the cgDNA+ model reconstructs the
following Gaussian PDF:

ρ(w ;S ,P) =
1

Z
exp {−βU(w ; S ,P)}



Now the fit to MD predictions of ground states (and
stiffness) is spectacularly good e.g. (3µs palindromic data)



And nonlocality is strong (intra/inter coordinates)



And nonlocality is strong (phosphate coordinates)



Can repeat all of above analyses

And signals are all equally or more strong, and conclusions are
unaltered, except . . .



CTCF binding site alignment signal remarkably unchanged.
Top cgDNA, bottom cgDNA+



How to get a cgDNA+ parameter set

We need data ...
Our parameter set is trained on MD simulation using AMBER and
the parambsc1 force field and the ABC protocol. Our training set
(so far) is composed by 16 palindromic 24 basepair long oligomers
each simulated for 3µs.

We need good numerics ...
The parameter set is the solution of a nonlinear optimization
problem involving Kullback-Leibler divergence in approximately
15K dimensions (cgDNA ‘only’ 1.5K dimensions)

We need Fisher Information matrix ...
We use a gradient flow pre-conditioned by an inverse Hessian of the
K-L divergence, ie the Fisher information evaluated at the training
set data. That is a quasi-Newton method pre-conditioned with the
(generalised) inverse of the Fisher information, that is evaluated
only once. Converges in about an hour on a desktop machine.
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Shapes comparison: MD vs cgDNA+ reconstructions
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Error from MD in shape: cgDNA vs cgDNA+
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Error from MD in shape: cgDNA vs cgDNA+
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Conclusions specific to coarse grain models of DNA

• Now have a hierarchy of coarse-grain models: rigid base pair,
rigid base, rigid base plus rigid phosphate

• The more fine grain, the more banded are the observed
precision matrices.

• The more fine grain, the (much) larger the associated
parameter set

• Provided a Fisher Information pre-conditioner is used can still
fit large cgDNA+ parameter sets.

• Taking marginals goes down the chain, and sequence
dependence becomes less localised—marginals of banded
Gaussians are not banded.

• Currently considering Bayesian and Akaike Information
Criteria for model selection, how fine grain is justified.



General and Classic Mathematical question

How to best estimate the observed ensemble mean and covariance
(ŵ ,C ) by a mean and structured covariance (ŵs ,Cs) where the
stiffness matrix Ks := C−1

s is restricted to have a prescribed
sparsity pattern?

Introduce the notation that [[·]] is a symmetric index set of a
square matrix, and [[·]]′ is the complementary index set.

And then write [[Ks ]]′ = 0 to indicate that the non vanishing
entries of Ks are constrained to be contained in the index set [[·]].

Motivated by DNA application, particularly interested in cases
where the index set [[·]] corresponds to overlapping diagonal
sub-blocks, possibly of differing sizes.



Reminder: entropy and relative entropy of PDFs

The (negative of) the entropy of a PDF ρ is∫
ρ(w) ln ρ(w) dw .

The relative entropy or Kullback-Leibler divergence (pre-distance)
between two PDFs ρ∗ and ρo is

D(ρ∗, ρo) =

∫
ρ∗(w) ln

[
ρ∗(w)

ρo(w)

]
dw .

For Gaussians there is the explicit formula (where : is the usual
matrix inner-product)

D(ρ∗, ρo) =
1

2

[{
K−1
∗ : Ko − I : I − ln

(
detKo

detK∗

)}
+ (µ∗ − µo) · Ko(µ∗ − µo)

]
.



Approach I: Impose sparsity pattern via a maximum
relative entropy fit

Take ρo(w) to be the previously described maximum
entropy/maximum likelihood Gaussian found by observing all
means and all covariances from the ensemble {wi}. Associated
stiffness matrix K will in general be dense.

Then can impose a stiffness sparsity pattern by minimising the
Kullback-Leibler divergence D(ρ∗, ρo) over all Gaussian PDFs ρ∗
with a banded stiffness matrices Ks (trivially ŵs = ŵ).



Approach I: Numerics (Gonzalez, Petkevicuite, jhm, J.
Chem.Phys., 2013)

The K-L objective functional can be written as an explicit function
of the entries in Ks . For our DNA examples approximately 4K
unknowns per oligomer. Numerically very robust, both to
optimisation algorithm and choice of initialisation, and we always
observed convergence to a unique optimiser for each oligomer.

However did not consider any general mathematical existence or
uniqueness result, in part because it is not evident that the
maximum relative entropy fit between two Gaussians is the ‘best’
characterisation. Could use other measures of distance between
two Gaussians, or another approach entirely.



Approach II: Enforcing a Prescribed Sparsity Pattern using
Maximum Entropy (O. Gonzalez et al, Multiscale Model.

Simul. (2017) )

Find the PDF ρm(w) of maximal entropy subject to the constraints
of a) all of its first moments being prescribed, but now b) only
some of its covariances [[C ]] being prescribed, where [[·]] is a given
index set.

There are related literatures in both statistics (Dempster 1960s,
and later Luenberger, Cover, . . . ) and matrix completion (Johnson
et al 1980s, . . . ).



Approach II: Known results

When C is positive definite, and [[·]] includes all diagonal entries,
then there is a unique entropy maximiser, the maximiser is
Gaussian, and its stiffness matrix Km satisfies the first order
necessary (and also sufficient) conditions

[[Km]]′ = 0 and [[K−1
m ]] = [[C ]].

If instead it is assumed that the desired distribution is a banded
Gaussian, then you arrive at the same necessary conditions on its
parameters starting from either Kullback-Leibler divergence, with
the Gaussian with sample mean and covariance in the first
argument, and the banded Gaussian to be fit as the second
argument, or from Maximum Likelihood for the banded Gaussian
directly from the ensemble of observations.



An explicit algorithm for computing the maximum absolute
entropy fit in the special case that [[·]] is overlapping blocks

For general imposed sparsity patterns [[·]] not aware of efficient
algorithms for high dimensional problems to be able to solve the
first order conditions to find Km.

[[Km]]′ = 0 and [[K−1
m ]] = [[C ]].

One easy case is when [[·]] is block diagonal, then everything
decouples and Km is block diagonal and the blocks of Km are just
the inverses of the sub-blocks of [[C ]]

As part of his Phd work Glowacki found an analogous explicit
algorithm to compute Km for the particular class of overlapping
block sparsity. Alas for us, the proof is same as appears in the
book Graphical Models by S. Lauritzen, but result couched in very
different language. Also a linear algebra result by Johnson et al.



An overlapping squares index set [[·]]



First pass: invert each sub-block of C and write to
corresponding block in K
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Second pass: correct for overlaps

Invert each overlap of adjacent sub-blocks of C and subtract from
corresponding block in K
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Second pass: correct for overlaps
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Proof

Is easy once you formulate the result. Schur complement formulas
for inverse of 2× 2 block partitioned symmetric matrix, combined
with induction.

Seems like result should be more widely known.



[[K−1
m ]]′ 6= [[C ]]′

The condition on a symmetric matrix C such that its inverse
satisfies [[C−1]]′ = 0 is that the off-diagonal blocks are minimal
possible rank (generalises a result of G. Strang for the tridiagonal
case). Can accordingly recursively modify entries of C outside the
stencil [[·]], but not as simple as algorithm to find K .



Covariances: MD vs. Maximum Entropy vs. Maximum
Relative Entropy



Stiffnesses: MD vs. Maximum Entropy vs. Maximum
Relative Entropy


