Overcoming gradient pathologies in constrained neural networks

Paris Perdikaris
Department of Mechanical Engineering
University of Pennsylvania
e-mail: pgp@seas.upenn.edu

Sifan Wang
Graduate Program in Applied Mathematics
University of Pennsylvania
e-mail: sifanw@sas.upenn.edu
1. Physics is implicitly baked in specialized neural architectures with strong inductive biases (e.g. invariance to simple group symmetries).

2. Physics is explicitly imposed by constraining the output of conventional neural architectures with weak inductive biases.

Psychogios & Ungar, 1992
Lagaris et. al., 1998
Raissi et. al., 2019
Lu et. al., 2019
Zhu et. al., 2019

Physics-informed Neural Networks

\[f \left(\mathbf{x}; \frac{\partial u}{\partial x_1}, \ldots, \frac{\partial u}{\partial x_d}; \frac{\partial^2 u}{\partial x_1 \partial x_1}, \ldots, \frac{\partial^2 u}{\partial x_1 \partial x_d}; \ldots; \lambda \right) = 0, \quad \mathbf{x} \in \Omega. \]

The algorithm of PINN [19, 30] is shown in Procedure 2.1, and visually in the Schematic of a PINN for solving the diffusion equation.

Physics-informed Neural Networks

Example: Burgers’ equation in 1D

\[
 u_t + u u_x - (0.01/\pi) u_{xx} = 0, \quad x \in [-1, 1], \quad t \in [0, 1],
\]

\[
 u(0, x) = -\sin(\pi x),
\]

\[
 u(t, -1) = u(t, 1) = 0.
\]

Let us define \(f(t, x) \) to be given by

\[
 f := u_t + u u_x - (0.01/\pi) u_{xx},
\]

```python
def u(t, x):
    u = neural_net(tf.concat([t, x], 1), weights, biases)
    return u
```

Correspondingly, the *physics informed neural network* \(f(t, x) \) takes the form

```python
def f(t, x):
    u = u(t, x)
    u_t = tf.gradients(u, t)[0]
    u_x = tf.gradients(u, x)[0]
    u_xx = tf.gradients(u_x, x)[0]
    f = u_t + u*u_x - (0.01/tf.pi)*u_xx
    return f
```
Physics-informed Neural Networks

The shared parameters between the neural networks $u(t, x)$ and $f(t, x)$ can be learned by minimizing the mean squared error loss

$$MSE = MSE_u + MSE_f,$$

(4)

where

$$MSE_u = \frac{1}{N_u} \sum_{i=1}^{N_u} |u(t^i_u, x^i_u) - u^i|^2,$$

and

$$MSE_f = \frac{1}{N_f} \sum_{i=1}^{N_f} |f(t^i_f, x^i_f)|^2.$$

Here, $\{t^i_u, x^i_u, u^i\}_{i=1}^{N_u}$ denote the initial and boundary training data on $u(t, x)$ and $\{t^i_f, x^i_f\}_{i=1}^{N_f}$ specify the collocations points for $f(t, x)$. The loss MSE_u corresponds to the initial and boundary data while MSE_f enforces the structure imposed by equation (3) at a finite set of collocation points.
Physics-informed Neural Networks

Figure 1: Burgers’ equation: Top: Predicted solution $u(t, x)$ along with the initial and boundary training data. In addition we are using 10,000 collocation points generated using a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact solutions corresponding to the three temporal snapshots depicted by the white vertical lines in the top panel. The relative L_2 error for this case is $6.7 \cdot 10^{-4}$. Model training took approximately 60 seconds on a single NVIDIA Titan X GPU card.
Recent advances

Discovery of ODEs

High-dimensional PDEs

Discovery of PDEs

Stochastic PDEs

Physics as a regularizer/prior

\[\mathcal{L}(\theta) := \frac{1}{N_u} \sum_{i=1}^{N_u} [u_i - f_\theta(x_i)]^2 + \frac{1}{\lambda} \mathcal{R}[f_\theta(x)] \]

Data fit \hspace{2cm} \text{Physics regularization}

Results showcase remarkable promise, but failure looms even for the simplest problems…

A simple benchmark:
\[
\begin{align*}
\Delta u(x_1, x_2) &= f(x_1, x_2) \\
u(x_1, x_2) &= \sin(a_1 \pi x_1) \cos(a_2 \pi x_2) \\
f(x_1, x_2) &= -(a_1^2 \pi^2 + a_2^2 \pi^2) u(x_1, x_2)
\end{align*}
\]

59% error in the prediction of a dense, 4-layer deep physics-informed neural network

An “unconventional” regularizer/prior that requires us to revisit standard deep learning practices:
- loss function
- network initialization
- data normalization
- optimization
- network architecture

This talk \{ Overcoming gradient pathologies in PINNs via:
- Adaptive learning rate strategies
- Resilient neural architectures \}
Gradient pathologies in physics-informed neural networks

$$\mathcal{L}(\theta) := \mathcal{L}_u(\theta) + \mathcal{L}_r(\theta) + \mathcal{L}_{u_0}(\theta) + \mathcal{L}_{u_b}(\theta)$$

Data fit PDE residual ICs fit BCs fit

Hypothesis: Constraints alter the loss landscape of neural networks. Different terms in such composite loss functions may have different nature and magnitudes, leading to *imbalanced gradients* during back-propagation.

Gradient descent update:

$$\theta_{n+1} = \theta_n - \eta \nabla_\theta \mathcal{L}(\theta_n)$$

$$= \theta_n - \eta \{ \nabla_\theta \mathcal{L}_u(\theta_n) + \nabla_\theta \mathcal{L}_r(\theta_n) + \nabla_\theta \mathcal{L}_{u_0}(\theta_n) + \nabla_\theta \mathcal{L}_{u_b}(\theta_n) \}$$

A simple benchmark:

$$\Delta u(x_1, x_2) = f(x_1, x_2)$$

$$u(x_1, x_2) = \sin(a_1 \pi x_1) \cos(a_2 \pi x_2)$$

$$f(x_1, x_2) = -(a_1^2 \pi^2 + a_2^2 \pi^2) u(x_1, x_2)$$

59% error in the prediction of a dense, 4-layer deep physics-informed neural network
Some intuition

A pedagogical example:
Minimization of an additive objective with multi-scale behavior: \(\min f_1(x) + f_2(x) \)

\[
x_{n+1} = x_n - \eta \left\{ \nabla_x f_1(x) + \nabla_x f_2(x) \right\}
\]

Hypothesis: Adaptively selecting different learning rates that balance the interplay between the different loss terms can lead to improved solutions:

\[
x_{n+1} = x_n - \eta_1^{(n)} \nabla_x f_1(x) - \eta_2^{(n)} \nabla_x f_2(x)
\]
Gradient pathologies in physics-informed neural networks

A simple benchmark (2D Helmholtz equation):

\[\Delta u + k^2 u = q(x, y) \quad (x, y) \in [-1, 1] \]
\[u(x, y) = (x + y) \sin(\pi x) \sin(6\pi y) \]

Loss function:
\[\mathcal{L}(\theta) := \mathcal{L}_r(\theta) + \mathcal{L}_{ub}(\theta) \]

PDE residual \quad BCs fit

Prediction of a fully connected 4-layer deep physics-informed neural network (10% relative error)

Histograms of back-propagated gradients \(\nabla_{\theta} \mathcal{L}_{ub}(\theta), \nabla_{\theta} \mathcal{L}_r(\theta) \) at each hidden layer
Gradient pathologies in physics-informed neural networks

A simple benchmark (2D Helmholtz equation):

\[\Delta u + k^2 u = q(x, y) \quad (x, y) \in [-1, 1] \]

\[u(x, y) = (x + y) \sin(\pi x) \sin(6\pi y) \]

Loss function:

\[\mathcal{L}(\theta) := \lambda_1 \underbrace{\mathcal{L}_r(\theta)}_{\text{PDE residual}} + \lambda_2 \underbrace{\mathcal{L}_{ub}(\theta)}_{\text{BCs fit}} \]

Prediction of a fully connected 4-layer deep physics-informed neural network (0.5% relative error)

Histograms of back-propagated gradients \(\nabla_\theta \mathcal{L}_{ub}(\theta), \nabla_\theta \mathcal{L}_r(\theta) \) at each hidden layer
\[\mathcal{L}(\theta) := \lambda_1 \underbrace{\mathcal{L}_u(\theta)}_{\text{Data fit}} + \lambda_2 \underbrace{\mathcal{L}_r(\theta)}_{\text{PDE residual}} + \lambda_3 \underbrace{\mathcal{L}_{u_0}(\theta)}_{\text{ICs fit}} + \lambda_4 \underbrace{\mathcal{L}_{u_b}(\theta)}_{\text{BCs fit}} \]

…but how to choose the weights/learning rates?
Adaptive moment estimation

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details, and for a slightly more efficient (but less clear) order of computation. g_t^2 indicates the elementwise square $g_t \odot g_t$. Good default settings for the tested machine learning problems are $\alpha = 0.001$, $\beta_1 = 0.9$, $\beta_2 = 0.999$ and $\epsilon = 10^{-8}$. All operations on vectors are element-wise. With β_1^t and β_2^t we denote β_1 and β_2 to the power t.

Require:
- α: Stepsize
- $\beta_1, \beta_2 \in [0, 1)$: Exponential decay rates for the moment estimates
- $f(\theta)$: Stochastic objective function with parameters θ
- θ_0: Initial parameter vector

1. $m_0 \leftarrow 0$ (Initialize 1st moment vector)
2. $v_0 \leftarrow 0$ (Initialize 2nd moment vector)
3. $t \leftarrow 0$ (Initialize timestep)

while θ_t not converged do

- $t \leftarrow t + 1$
- $g_t \leftarrow \nabla_\theta f_t(\theta_{t-1})$ (Get gradients w.r.t. stochastic objective at timestep t)
- $m_t \leftarrow \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$ (Update biased first moment estimate)
- $v_t \leftarrow \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g_t^2$ (Update biased second raw moment estimate)
- $\hat{m}_t \leftarrow m_t / (1 - \beta_1^t)$ (Compute bias-corrected first moment estimate)
- $\hat{v}_t \leftarrow v_t / (1 - \beta_2^t)$ (Compute bias-corrected second raw moment estimate)
- $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot \hat{m}_t / (\sqrt{\hat{v}_t} + \epsilon)$ (Update parameters)

end while

return θ_t (Resulting parameters)

...i.e. use the gradient statistics during training to adaptively adjust the learning rate.
A learning rate annealing algorithm for PINNs

Algorithm 1: Learning rate annealing for physics-informed neural networks

Consider a physics-informed neural network $f_\theta(x)$ with parameters θ, and a loss function

$$\mathcal{L}(\theta) = \mathcal{L}_r(\theta) + \sum_{i=1}^{M} \lambda_i \mathcal{L}_i(\theta),$$

where $\mathcal{L}_r(\theta)$ denotes the PDE residual loss, the $\mathcal{L}_i(\theta)$ correspond to data-fit terms (e.g., measurements, initial or boundary conditions, etc.), and $\lambda_i = 1$, $i = 1, \ldots, M$.

Use N steps of a gradient descent algorithm to update the parameters θ as:

```plaintext
for n = 1, \ldots, N do

(a) Compute $\hat{\lambda}_i$ by

$$\hat{\lambda}_i = \frac{\max_{\theta}\{\nabla_\theta \mathcal{L}_r(\theta_n)\}}{|\nabla_\theta \mathcal{L}_i(\theta_n)|_{.k}}, \quad i = 1, \ldots, M,$$

where $|\nabla_\theta \mathcal{L}_i(\theta_n)|_{.k}$ denotes the $k$-th percentile of the set $\{|\nabla_\theta \mathcal{L}_i(\theta_n)|\}$.

(b) Update the weights $\lambda_i$ using a moving average of the form

$$\lambda_i = (1 - \alpha)\lambda_i + \alpha\hat{\lambda}_i, \quad i = 1, \ldots, M.$$

(c) Update the parameters $\theta$ via gradient descent

$$\theta_{n+1} = \theta_n - \eta \nabla_\theta \mathcal{L}_r(\theta_n) - \eta \sum_{i=1}^{M} \lambda_i \nabla_\theta \mathcal{L}_i(\theta_n)$$

end
```

The recommended hyper-parameter values are: $\eta = 10^{-3}$, $k = 0.05$ and $\alpha = 0.9$.

Systematic comparison

M1: Baseline PINN model (Raissi et. al., 2019)
M2: PINN with the proposed learning rate annealing

<table>
<thead>
<tr>
<th>Architecture</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 units / 3 hidden layers</td>
<td>2.44E-01</td>
<td>3.98E-02</td>
</tr>
<tr>
<td>50 units / 3 hidden layers</td>
<td>1.06E-01</td>
<td>1.58E-02</td>
</tr>
<tr>
<td>100 units / 3 hidden layers</td>
<td>9.07E-02</td>
<td>2.39E-03</td>
</tr>
<tr>
<td>30 units / 5 hidden layers</td>
<td>2.47E-01</td>
<td>8.91E-03</td>
</tr>
<tr>
<td>50 units / 5 hidden layers</td>
<td>1.40E-01</td>
<td>8.08E-03</td>
</tr>
<tr>
<td>100 units / 5 hidden layers</td>
<td>1.15E-01</td>
<td>3.25E-03</td>
</tr>
<tr>
<td>30 units / 7 hidden layers</td>
<td>3.10E-01</td>
<td>7.86E-03</td>
</tr>
<tr>
<td>50 units / 7 hidden layers</td>
<td>1.98E-01</td>
<td>3.66E-03</td>
</tr>
<tr>
<td>100 units / 7 hidden layers</td>
<td>8.14E-02</td>
<td>2.57E-03</td>
</tr>
</tbody>
</table>

Relative prediction error (L2 norm) averaged over 10 independent trials for the 2D Helmholtz benchmark.
Soft physics-informed learning, a recap

\[\mathcal{L}(\theta) := \frac{1}{N_u} \sum_{i=1}^{N_u} [u_i - f_{\theta}(x_i)]^2 + \frac{1}{\lambda} R[f_{\theta}(x)] \]

An “unconventional” regularizer/prior that requires us to revisit standard deep learning practices:

- loss functions (e.g., square residual, variational principle, Hamiltonian, etc.)
- network initialization (e.g., Glorot, adaptive?)
- normalization (e.g., zero-mean/unit-variance, PDE solution bounds?)
- optimization (e.g., Adam, adaptive learning rates, proximal algorithms, meta-learning?)
- network architecture (e.g., fully connected, residual/recurrent/convolutional layers, attention?)
An improved neural architecture

\[U = \phi(W^1 \vec{x} + b^1), \quad V = \phi(W^2 \vec{x} + b^2) \]
\[H^{(1)} = \phi(W^{z,1} \vec{x} + b^{z,1}) \]
\[Z^{(k)} = \phi(W^{z,k} H^{(k)} + b^{z,k}), \quad k = 1, \ldots, L \]
\[H^{(k+1)} = (1 - Z^{(k)}) \odot U + Z^{(k)} \odot V, \quad k = 1, \ldots, L \]
\[f(x; \theta) = W H^{(L+1)} + b \]

Key points:
- Account for multiplicative interactions of the inputs, similar to attention mechanisms.
- Residual connections improve resilience against vanishing gradient pathologies.
Systematic comparison

M1: Baseline PINN model (Raissi et al., 2019)
M2: PINN with the proposed learning rate annealing
M3: PINN with the proposed neural architecture
M4: PINN with the proposed learning rate annealing and improved neural architecture

<table>
<thead>
<tr>
<th>Architecture</th>
<th>M1 (L2 norm)</th>
<th>M2 (L2 norm)</th>
<th>M3 (L2 norm)</th>
<th>M4 (L2 norm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 units / 3 hidden layers</td>
<td>2.44E-01</td>
<td>3.98E-02</td>
<td>5.31E-02</td>
<td>2.56E-03</td>
</tr>
<tr>
<td>50 units / 3 hidden layers</td>
<td>1.06E-01</td>
<td>1.58E-02</td>
<td>2.46E-02</td>
<td>1.81E-03</td>
</tr>
<tr>
<td>100 units / 3 hidden layers</td>
<td>9.07E-02</td>
<td>2.39E-03</td>
<td>1.17E-02</td>
<td>1.28E-03</td>
</tr>
<tr>
<td>30 units / 5 hidden layers</td>
<td>2.47E-01</td>
<td>8.91E-03</td>
<td>4.12E-02</td>
<td>1.96E-03</td>
</tr>
<tr>
<td>50 units / 5 hidden layers</td>
<td>1.40E-01</td>
<td>8.08E-03</td>
<td>1.97E-02</td>
<td>1.86E-03</td>
</tr>
<tr>
<td>100 units / 5 hidden layers</td>
<td>1.15E-01</td>
<td>3.25E-03</td>
<td>1.08E-02</td>
<td>1.22E-03</td>
</tr>
<tr>
<td>30 units / 7 hidden layers</td>
<td>3.10E-01</td>
<td>7.86E-03</td>
<td>3.17E-02</td>
<td>1.98E-03</td>
</tr>
<tr>
<td>50 units / 7 hidden layers</td>
<td>1.98E-01</td>
<td>3.66E-03</td>
<td>2.37E-02</td>
<td>1.54E-03</td>
</tr>
<tr>
<td>100 units / 7 hidden layers</td>
<td>8.14E-02</td>
<td>2.57E-03</td>
<td>9.36E-03</td>
<td>1.40E-03</td>
</tr>
</tbody>
</table>

Relative prediction error (L2 norm) averaged over 10 independent trials for the 2D Helmholtz benchmark.
Wave equation

\[u_{tt} = 4u_{xx}, \quad (t, x) \in [0, 1] \]
\[u(0, x) = h(x), \]
\[u(t, 0) = u(t, 1), \]
\[u(t, 0) = u(t, 1), \]

Top: Imbalanced gradients in a dense, 5-layer deep physics-informed neural network lead to large prediction errors (76%).

Bottom: Accurate predictions can be obtained using the proposed learning rate annealing and improved neural architecture strategy (relative prediction error: 0.6%).
Klein Gordon equation

\[u_{tt} + \alpha u_{xx} + \beta u + \gamma u^k = f(x, t), \quad (x, t) \in \Omega \times [0, T] \]

\[u(x, 0) = g_1(x), \quad x \in \Omega \]

\[u_t(x, 0) = g_2(x), \quad x \in \Omega \]

\[u(x, t) = h(x, t), \quad (x, t) \in \partial \Omega \times [0, T] \]

Top: Imbalanced gradients in a dense, 5-layer deep physics-informed neural network lead to considerable prediction errors (6.7%).

Bottom: Accurate predictions can be obtained using the proposed learning rate annealing and improved neural architecture strategy (relative prediction error: 0.1%).
Lid-driven cavity flow in 2D

\[
\partial_t U + (U \cdot \Delta) U + \Delta p - \frac{1}{Re} \Delta U = 0 \quad \text{in } (0, T) \times \Omega
\]

\[\nabla \cdot U = 0,\]

\[U(t, x, y) = (1, 0) \quad \text{on } (0, T) \times \Gamma_1\]

\[U(t, x, y) = (0, 0) \quad \text{on } (0, T') \times \Gamma_0\]

\[U(0, x, y) = (0, 0) \quad \text{in } \Omega\]

Reference solution (FVM)
PINNs prediction

Relative prediction error (L2 norm) is \(~1\%\) for the velocity field and pressure.
Summary

• Function space constraints in introduce “unconventional” regularizers/priors that requires us to revisit standard deep learning practices.

• Constraints alter the loss landscape of neural networks. Different terms in such composite loss function may have different nature and magnitudes, leading to imbalanced gradients during back-propagation.

• Adaptive annealing of learning rates can balance the interplay between different terms in a constrained loss function and lead to improved solutions.

• Novel architectures can also safe-guard against gradient-related pathologies and lead to improved solutions.

• Using the proposed workflow we have observed consistent improvements in the predictive accuracy of physics-informed neural networks by a factor of 50-100x across a range of problems in computational physics.

• Despite some progress, we are still at the very early stages of understanding the capabilities and limitations of such models.
Acknowledgements:

Sifan Wang (UPenn)