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FIGURE 5. Top left: At level `=1 n3 aggregates information from {n4, n5} and
n2 aggregates information {n5, n6}. At `= 2, n1 collects this summary informa-
tion from n3 and n2. Bottom left: This graph is not isomorphic to the top one,
but the activations of n3 and n2 at `= 1 will be identical. Therefore, at `= 2, n1
will get the same inputs from its neighbors, irrespective of whether or not n5 and
n7 are the same node or not. Right: Aggregation at different levels. For keeping
the figure legible only the neighborhood around one node in higher levels is
marked.

Proposition 3. If for any ⇡ 2 Sm, the f 7! R⇡(f) map appearing in Definition 6 is linear, then the

corresponding {R⇡}⇡2Sm matrices form a representation of Sm.

The representation theory of symmetric groups is a rich subject that goes beyond the scope of the
present paper (Sagan, 2001). However, there is one particular representation of Sm that is likely
familiar even to non-algebraists, the so-called defining representation, given by the P⇡ 2 Rn⇥n

permutation matrices

[P⇡]i,j =

⇢
1 if ⇡(j) = i

0 otherwise.
It is easy to verify that P⇡2⇡1 = P⇡2P⇡1 for any ⇡1,⇡2 2 Sm, so {P⇡}⇡2Sm is indeed a representa-
tion of Sm. If the transformation rules of the fi activations in a given comp-net are dictated by this
representation, then each fi must necessarily be a |Pi| dimensional vector, and intuitively each com-
ponent of fi carries information related to one specific atom in the receptive field, or the interaction
of that specific atom with all the others. We call this case first order permutation covariance.

Definition 7. We say that ni is a first order covariant node in a comp-net if under the permutation

of its receptive field Pi by any ⇡ 2 S|Pi|, its activation trasforms as fi 7! P⇡fi.

4.2. SECOND ORDER COVARIANT COMP-NETS

It is easy to verify that given any representation (Rg)g2G of a group G, the matrices (Rg⌦Rg)g2G

also furnish a representation of G. Thus, one step up in the hierarchy from P⇡–covariant comp-nets
are P⇡ ⌦P⇡–covariant comp-nets, where the fi feature vectors are now |Pi|2 dimensional vectors
that transform under permutations of the internal ordering by ⇡ as fi 7! (P⇡⌦P⇡)fi.

If we reshape fi into a matrix Fi 2R|Pi|⇥|Pi|, then the action
Fi 7! P⇡FiP

>
⇡

is equivalent to P⇡⌦P⇡ acting on fi. In the following, we will prefer this more intuitive matrix view,
since it clearly expresses that feature vectors that transform this way express relationships between
the different constituents of the receptive field. Note, in particular, that if we define A#Pi

as the
restriction of the adjacency matrix to Pi (i.e., if Pi = (ep1 , . . . , epm) then [A#Pi

]a,b = Apa,pb ), then
A#Pi

transforms exactly as Fi does in the equation above.
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1. Physics is implicitly 
baked in specialized 

neural architectures with 
strong inductive biases 

(e.g. invariance to simple 
group symmetries).

2. Physics is explicitly 
imposed by constraining 

the output of conventional 
neural architectures with 
weak inductive biases.
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*figures from Kondor, R., Son, H. T., Pan, H., Anderson, B., & Trivedi, S. (2018). Covariant 
compositional networks for learning graphs. arXiv preprint arXiv:1801.02144.

DEEPXDE 3

element-wisely, the FNN is recursively defined as follows:

input layer: N 0(x) = x 2 Rdin ,

hidden layers: N `(x) = �(W `N `�1(x) + b`) 2 RN` , for 1  `  L� 1,

output layer: NL(x) = WLNL�1(x) + bL 2 Rdout ;

see also a visualization of a neural network in Figure 1. Commonly used activation
functions include the logistic sigmoid 1/(1+ e�x), the hyperbolic tangent (tanh), and
the rectified linear unit (ReLU, max{x, 0}).

2.2. Physics-informed neural networks for solving PDEs. We consider
the following PDE parameterized by � for the solution u(x) with x = (x1, . . . , xd)
defined on a domain ⌦ ⇢ Rd:

(2.1) f
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;
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@x1@x1
, . . . ,

@2u

@x1@xd
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◆
= 0, x 2 ⌦,

with suitable boundary conditions

B(u,x) = 0 on @⌦,

where B(u,x) could be Dirichlet, Neumann, Robin, or periodic boundary conditions.
For time-dependent problems, we consider time t as a special component of x, and
⌦ contains the temporal domain. The initial condition can be simply treated as a
special type of Dirichlet boundary condition on the spatio-temporal domain.
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Fig. 1. Schematic of a PINN for solving the di↵usion equation @u
@t = � @2u

@x2 with mixed boundary

conditions (BC) u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u
@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. The initial

condition (IC) is treated as a special type of boundary conditions. Tf and Tb denote the two sets of
residual points for the equation and BC/IC.

The algorithm of PINN [19, 30] is shown in Procedure 2.1, and visually in the

schematic of Figure 1 solving a di↵usion equation @u
@t = �@2u

@x2 with mixed boundary
conditions u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u

@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. We
explain each step as follows. In a PINN, we first construct a neural network û(x;✓)
as a surrogate of the solution u(x), which takes the input x and outputs a vector with
the same dimension as u. Here, ✓ = {W `, b`}1`L is the set of all weight matrices
and bias vectors in the neural network û. One advantage of PINNs by choosing neural
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@û
@n (x, t)� gR(u, x, t)

BC & IC

Loss ✓⇤

Tf

Tb

Minimize

Fig. 1. Schematic of a PINN for solving the di↵usion equation @u
@t = � @2u

@x2 with mixed boundary

conditions (BC) u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u
@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. The initial

condition (IC) is treated as a special type of boundary conditions. Tf and Tb denote the two sets of
residual points for the equation and BC/IC.

The algorithm of PINN [19, 30] is shown in Procedure 2.1, and visually in the

schematic of Figure 1 solving a di↵usion equation @u
@t = �@2u

@x2 with mixed boundary
conditions u(x, t) = gD(x, t) on �D ⇢ @⌦ and @u

@n (x, t) = gR(u, x, t) on �R ⇢ @⌦. We
explain each step as follows. In a PINN, we first construct a neural network û(x;✓)
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and bias vectors in the neural network û. One advantage of PINNs by choosing neural

DEEPXDE 3

element-wisely, the FNN is recursively defined as follows:

input layer: N 0(x) = x 2 Rdin ,

hidden layers: N `(x) = �(W `N `�1(x) + b`) 2 RN` , for 1  `  L� 1,

output layer: NL(x) = WLNL�1(x) + bL 2 Rdout ;

see also a visualization of a neural network in Figure 1. Commonly used activation
functions include the logistic sigmoid 1/(1+ e�x), the hyperbolic tangent (tanh), and
the rectified linear unit (ReLU, max{x, 0}).

2.2. Physics-informed neural networks for solving PDEs. We consider
the following PDE parameterized by � for the solution u(x) with x = (x1, . . . , xd)
defined on a domain ⌦ ⇢ Rd:

(2.1) f

✓
x;

@u

@x1
, . . . ,

@u

@xd
;

@2u

@x1@x1
, . . . ,

@2u

@x1@xd
; . . . ;�

◆
= 0, x 2 ⌦,

with suitable boundary conditions

B(u,x) = 0 on @⌦,

where B(u,x) could be Dirichlet, Neumann, Robin, or periodic boundary conditions.
For time-dependent problems, we consider time t as a special component of x, and
⌦ contains the temporal domain. The initial condition can be simply treated as a
special type of Dirichlet boundary condition on the spatio-temporal domain.

x

t

�

�

...

�

�

�

...

�

û
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the viscosity parameters, Burgers’ equation can lead to shock formation that
is notoriously hard to resolve by classical numerical methods. In one space
dimension, the Burger’s equation along with Dirichlet boundary conditions
reads as

ut + uux � (0.01/⇡)uxx = 0, x 2 [�1, 1], t 2 [0, 1], (3)

u(0, x) = � sin(⇡x),

u(t,�1) = u(t, 1) = 0.

Let us define f(t, x) to be given by

f := ut + uux � (0.01/⇡)uxx,

and proceed by approximating u(t, x) by a deep neural network. To highlight
the simplicity in implementing this idea we have included a Python code
snippet using Tensorflow [16]; currently one of the most popular and well
documented open source libraries for machine learning computations. To
this end, u(t, x) can be simply defined as

def u(t, x):

u = neural_net(tf.concat([t,x],1), weights, biases)

return u

Correspondingly, the physics informed neural network f(t, x) takes the form

def f(t, x):

u = u(t, x)

u_t = tf.gradients(u, t)[0]

u_x = tf.gradients(u, x)[0]

u_xx = tf.gradients(u_x, x)[0]

f = u_t + u*u_x - (0.01/tf.pi)*u_xx

return f

The shared parameters between the neural networks u(t, x) and f(t, x) can
be learned by minimizing the mean squared error loss

MSE = MSEu +MSEf , (4)
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i
}

Nu
i=1 denote the initial and boundary training data on u(t, x)

and {tif , x
i
f}

Nf

i=1 specify the collocations points for f(t, x). The loss MSEu

corresponds to the initial and boundary data while MSEf enforces the struc-
ture imposed by equation (3) at a finite set of collocation points.

In all benchmarks considered in this work, the total number of training
data Nu is relatively small (a few hundred up to a few thousand points), and
we chose to optimize all loss functions using L-BFGS; a quasi-Newton, full-
batch gradient-based optimization algorithm [17]. For larger data-sets a more
computationally e�cient mini-batch setting can be readily employed using
stochastic gradient descent and its modern variants [18, 19]. Despite the
fact that there is no theoretical guarantee that this procedure converges to
a global minimum, our empirical evidence indicates that, if the given partial
di↵erential equation is well-posed and its solution is unique, our method is
capable of achieving good prediction accuracy given a su�ciently expressive
neural network architecture and a su�cient number of collocation points Nf .
This general observation deeply relates to the resulting optimization land-
scape induced by the mean square error loss of equation 4, and defines an
open question for research that is in sync with recent theoretical develop-
ments in deep learning [20, 21]. Here, we will test the robustness of the
proposed methodology using a series of systematic sensitivity studies that
accompany the numerical results presented in the following.

Figure 1 summarizes our results for the data-driven solution of the Burg-
ers equation. Specifically, given a set of Nu = 100 randomly distributed
initial and boundary data, we learn the latent solution u(t, x) by training all
3021 parameters of a 9-layer deep neural network using the mean squared
error loss of (4). Each hidden layer contained 20 neurons and a hyperbolic
tangent activation function. In general, the neural network should be given
su�cient approximation capacity in order to accommodate the anticipated

6
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Figure 1: Burgers’ equation: Top: Predicted solution u(t, x) along with the initial and

boundary training data. In addition we are using 10,000 collocation points generated using

a Latin Hypercube Sampling strategy. Bottom: Comparison of the predicted and exact

solutions corresponding to the three temporal snapshots depicted by the white vertical

lines in the top panel. The relative L2 error for this case is 6.7 ·10
�4

. Model training took

approximately 60 seconds on a single NVIDIA Titan X GPU card.

ical law through the collocation points Nf , one can obtain a more accurate
and data-e�cient learning algorithm.1 Finally, table 2 shows the resulting
relative L2 for di↵erent number of hidden layers, and di↵erent number of
neurons per layer, while the total number of training and collocation points
is kept fixed to Nu = 100 and Nf = 10, 000, respectively. As expected, we
observe that as the number of layers and neurons is increased (hence the
capacity of the neural network to approximate more complex functions), the

1
Note that the case Nf = 0 corresponds to a standard neural network model, i.e., a

neural network that does not take into account the underlying governing equation.
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Recent advances

Discovery of PDEs
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Figure 3: The KdV equation: A solution to the KdV equation (left panel) is compared to

the corresponding solution of the learned partial di↵erential equation (right panel). The

identified system correctly captures the form of the dynamics and accurately reproduces

the solution with a relative L2
-error of 6.28e-02. It should be emphasized that the training

data are collected in roughly two-thirds of the domain between times t = 0 and t = 26.8
represented by the white vertical lines. The algorithm is thus extrapolating from time

t = 26.8 onwards. The relative L2
-error on the training portion of the domain is 3.78e-02.

fectiveness of our approach, we solve the learned partial di↵erential equation
(7) using the PINNs algorithm [34]. We assume periodic boundary condi-
tions and the same initial condition as the one used to generate the original
dataset. The resulting solution of the learned partial di↵erential equation as
well as the exact solution of the KdV equation are depicted in figure 3. This
figure indicates that our algorithm is capable of accurately identifying the
underlying partial di↵erential equation with a relative L2-error of 6.28e-02.
It should be highlighted that the training data are collected in roughly two-
thirds of the domain between times t = 0 and t = 26.8. The algorithm is
thus extrapolating from time t = 26.8 onwards. The corresponding relative
L2-error on the training portion of the domain is 3.78e-02.

To test the algorithm even further, let us change the initial condition to
cos(�⇡x/20) and solve the KdV (6) using the conventional spectral method
outlined above. We compare the resulting solution to the one obtained by
solving the learned partial di↵erential equation (5) using the PINNs algo-
rithm [34]. It is worth emphasizing that the algorithm is trained on the
dataset depicted in figure 3 and is being tested on a di↵erent dataset as
shown in figure 4. The surprising result reported in figure 4 strongly indi-
cates that the algorithm is accurately learning the underlying partial di↵er-
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3.2. The KdV equation

As a mathematical model of waves on shallow water surfaces one could
consider the Korteweg-de Vries (KdV) equation. The KdV equation reads as

ut = �uux � uxxx. (6)

To obtain a set of training data we simulate the KdV equation (6) using
conventional spectral methods. In particular, we start from an initial con-
dition u(0, x) = � sin(⇡x/20), x 2 [�20, 20] and assume periodic boundary
conditions. We integrate equation (6) up to the final time t = 40. We use the
Chebfun package [43] with a spectral Fourier discretization with 512 modes
and a fourth-order explicit Runge-Kutta temporal integrator with time-step
size 10�4. The solution is saved every �t = 0.2 to give us a total of 201
snapshots. Out of this data-set, we generate a smaller training subset, scat-
tered in space and time, by randomly sub-sampling 10000 data points from
time t = 0 to t = 26.8. In other words, we are sub-sampling from the orig-
inal dataset only in the training portion of the domain from time t = 0 to
t = 26.8. Given the training data, we are interested in learning N as a
function of the solution u and its derivatives up to the 3rd order6; i.e.,

ut = N (u, ux, uxx, uxxx). (7)

We represent the solution u by a 5-layer deep neural network with 50 neurons
per hidden layer. Furthermore, we letN to be a neural network with 2 hidden
layers and 100 neurons per hidden layer. These two networks are trained by
minimizing the sum of squared errors loss of equation (3). To illustrate the ef-

6
A detailed study of the choice of the order is provided in section 3.1 for the Burgers’

equation.

1st order 2nd order 3rd order 4th order
Relative L2-error 1.14e+00 1.29e-02 3.42e-02 5.54e-02

Table 2: Burgers’ equation: Relative L2
-error between solutions of the Burgers’ equa-

tion and the learned partial di↵erential equation as a function of the highest order

of spatial derivatives included in our formulation. For instance, the case correspond-

ing to the 3rd order means that we are looking for a nonlinear function N such that

ut = N (u, ux, uxx, uxxx). Here, the total number of training data as well as the neural

network architectures are kept fixed and the data are assumed to be noiseless.
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Figure 2: Lorenz System: The exact phase portrait of the Lorenz system (left panel) is

compared to the corresponding phase portrait of the learned dynamics (right panel).

The Lorenz system has a positive Lyapunov exponent, and small di↵er-
ences between the exact and learned models grow exponentially, even though
the attractor remains intact. This behavior is evident in figure 3, as we com-
pare the exact versus the predicted trajectories. Small discrepancies due to
finite accuracy in the predicted dynamics lead to large errors in the fore-
casted time-series after t > 4, despite the fact that the bi-stable structure of
the attractor is well captured (see figure 2).

3.3. Fluid flow behind a cylinder

In this example we collect data for the fluid flow past a cylinder (see fig-
ure 4) at Reynolds number 100 using direct numerical simulations of the two
dimensional Navier-Stokes equations. In particular, following the problem
setup presented in [23] and [24], we simulate the Navier-Stokes equations de-
scribing the two-dimensional fluid flow past a circular cylinder at Reynolds
number 100 using the Immersed Boundary Projection Method [25, 26]. This
approach utilizes a multi-domain scheme with four nested domains, each suc-
cessive grid being twice as large as the previous one. Length and time are
non-dimensionalized so that the cylinder has unit diameter and the flow has
unit velocity. Data is collected on the finest domain with dimensions 9⇥4 at
a grid resolution of 449⇥ 199. The flow solver uses a 3rd-order Runge Kutta
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Physics as a regularizer/prior

L(✓) := 1

Nu

NuX
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[ui � f✓(xi)]
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Physics regularization
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An “unconventional” regularizer/prior that requires 
us to revisit standard deep learning practices: 
• loss function
• network initialization
• data normalization
• optimization
• network architecture 

Results showcase remarkable promise, but failure looms even for the simplest problems…
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MSEf is deeper than the chain rule for computing the gradients of MSEb and thus the gradients of MSEf are easier
to suffer from the gradient vanishing problem. Surprsingly, we got the oppsite result.

First, let’s go back to the simplest case to see what happens during the training. Consider the one dimension Possion’s
equation.
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u = h, x = 0 and x = 1.
(7)

Here we take u(x) = sin(Cx) and then g(x) = �C
2
sin(Cx) = �C

2
u(x) Now we use a feed forward neural network

u✓ parametrized by ✓ to approximate the latent solution u(x). Then the corresponding loss function is given by
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59% error in the prediction of a dense, 4-layer 
deep physics-informed neural network

�u(x1, x2) = f(x1, x2)

u(x1, x2) = sin(a1⇡x1) cos(a2⇡x2)

f(x1, x2) = �(a21⇡
2 + a22⇡

2)u(x1, x2)
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A simple benchmark:
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Overcoming gradient pathologies in PINNs via:
• Adaptive learning rate strategies 
• Resilient neural architectures



Gradient pathologies in physics-informed neural networks

Hypothesis: Constraints alter the loss landscape of neural networks. Different terms in such 
composite loss functions may have different nature and magnitudes, leading to imbalanced 
gradients during back-propagation.
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MSEf is deeper than the chain rule for computing the gradients of MSEb and thus the gradients of MSEf are easier
to suffer from the gradient vanishing problem. Surprsingly, we got the oppsite result.

First, let’s go back to the simplest case to see what happens during the training. Consider the one dimension Possion’s
equation.
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A simple benchmark:

L(✓) := Lu(✓)| {z }
Data fit

+ Lr(✓)| {z }
PDE residual

+Lu0(✓)| {z }
ICs fit

+Lub(✓)| {z }
BCs fit
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✓n+1 = ✓n � ⌘r✓L(✓n)
= ✓n � ⌘{r✓Lu(✓n) +r✓Lr(✓n) +r✓Lu0(✓n) +r✓Lub(✓n)}
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Gradient descent update:
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Some intuition

min f1(x) + f2(x)
<latexit sha1_base64="YtkvmdAbqt1v4HQ8uoVVzJjUdX4="></latexit>

A pedagogical example: 
Minimization of an additive objective with multi-scale behavior:

Gradient descent is bound to get trapped in local suboptimal minima

xn+1 = xn � ⌘{rxf1(x) +rxf2(x)}
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Hypothesis: Adaptively selecting different learning rates that balance the interplay between the 
different loss terms can lead to improved solutions:

xn+1 = xn � ⌘(n)1 rxf1(x)� ⌘(n)2 rxf2(x)
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Figure 1: Caption

Figure 2: Caption

MSEf is deeper than the chain rule for computing the gradients of MSEb and thus the gradients of MSEf are easier
to suffer from the gradient vanishing problem. Surprisingly, we got the oppsite result.

First, let’s go back to the simplest case to see what happens during the training. Consider the one dimension Possion’s
equation.
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@x2
= g, x 2 [0, 1]

u = h, x = 0 and x = 1.
(8)

Here we take u(x) = sin(Cx) and then g(x) = �C
2 sin(Cx) = �C

2
u(x) Now we use a feed forward neural network

u✓ parametrized by ✓ to approximate the latent solution u(x). Then the corresponding loss function is given by
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and proceed by approximating u(x, t) by a deep neural network f✓, which can be learned by minimizing the mean
squared error loss

MSE = MSE0 +MSEb +MSEf , (4)

where
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b, g
i
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Nb
i=1 denotes the boundary data and {tif , xi

f}
Nf

i=1 denotes the
collocation points inside the domain. x). Consequently, MSE0 corresponds to the loss on the initial data, MSEb

enforces the periodic boundary conditions, and MSEf penalizes the equation not being satisfied on the collocation
points. The goal is to construct functions represented by a neural network u✓ for which MSE is as close to zero as
possible.

2.2 Gradient pathologies in physics-informed neural networks

Now we consider the Helmholtz equation:

�u+ k
2
u = q(x, y) (x, y) 2 [�1, 1] (5)

where � is the Laplace operator and

q(x, y) =

For k = 10, the analytical solution is

u(x, y) = (x+ y) sin(⇡x) sin(6⇡y) (6)

We extract the boundary function h(x, y) from the exact solution.

The the corresponding mean square loss is

MSE = MSEb +MSEf (7)

Here our goal is to learn the latent solution u(t, x) of the Helmholtz equation (4) by training the network using the
mean squared error loss of (5). And then we choose to represent the latent solution using a 5-layer feed forward neural
network with 100 neurons per layer and a hyperbolic tangent activation function. From the figure, we find that our
PINN model cannot learn the latent solution u(x1, x2) correctly.

To explore the reason why this model collapses, inspired by the paper [understanding the difficulty of learning a feed
forward neural network], we are trying to investigate the gradients of weights during the training. Rather than tracking
the gradients of the mean squared loss function MSE, we track the gradients of MSEb and MSEf with respect to the
weights in each layer respectively. From the figure, we find the gradients of MSEb in each layer is much less than the
gradients of MSEf in each layer.

As we know, for a partial differential equation, if we don’t give any other restriction such as boundary condition or
initial condition, the equation may have infinitely many solutions. So if the gradients of MSEb is very small, then
our PINN model may have some trouble in fitting the boudary conditions. While the gradients of MSEf is large, the
neural network can easily learn any solutions that satisfy the equation. As a result, our PINN model may not learn the
latent solution as we expected.

2.3 Gradient analysis for physics-informed neural networks

Why does this happen? According to the common sense, we need to compute the second derivatives of the neural
network with respect to the data during the training, which means that the chain rule for computing the gradients of
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MSEf is deeper than the chain rule for computing the gradients of MSEb and thus the gradients of MSEf are easier
to suffer from the gradient vanishing problem. Surprisingly, we got the oppsite result.
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L(✓) := Lr(✓)| {z }
PDE residual

+Lub(✓)| {z }
BCs fit
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Loss function:



Gradient pathologies in physics-informed neural networks
A simple benchmark
(2D Helmholtz 
equation):
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and proceed by approximating u(x, t) by a deep neural network f✓, which can be learned by minimizing the mean
squared error loss

MSE = MSE0 +MSEb +MSEf , (4)

where

MSE0 =
1

N0

N0X

i=1

|u(0, xi
0)� h

i
0)|2,

MSEb =
1

Nb

NbX

i=1

|u(tib, xi
b)� g

i
b|2,

MSEf =
1

Nf

NfX

i=1

|f(tif , xi
f )|2

Here {xi
0, h

i
0)}

N0
i=1 denotes the initial data, {tib, xi

b, g
i
b}

Nb
i=1 denotes the boundary data and {tif , xi

f}
Nf

i=1 denotes the
collocation points inside the domain. x). Consequently, MSE0 corresponds to the loss on the initial data, MSEb

enforces the periodic boundary conditions, and MSEf penalizes the equation not being satisfied on the collocation
points. The goal is to construct functions represented by a neural network u✓ for which MSE is as close to zero as
possible.

2.2 Gradient pathologies in physics-informed neural networks

Now we consider the Helmholtz equation:

�u+ k
2
u = q(x, y) (x, y) 2 [�1, 1] (5)

where � is the Laplace operator and

q(x, y) =

For k = 10, the analytical solution is

u(x, y) = (x+ y) sin(⇡x) sin(6⇡y) (6)

We extract the boundary function h(x, y) from the exact solution.

The the corresponding mean square loss is

MSE = MSEb +MSEf (7)

Here our goal is to learn the latent solution u(t, x) of the Helmholtz equation (4) by training the network using the
mean squared error loss of (5). And then we choose to represent the latent solution using a 5-layer feed forward neural
network with 100 neurons per layer and a hyperbolic tangent activation function. From the figure, we find that our
PINN model cannot learn the latent solution u(x1, x2) correctly.

To explore the reason why this model collapses, inspired by the paper [understanding the difficulty of learning a feed
forward neural network], we are trying to investigate the gradients of weights during the training. Rather than tracking
the gradients of the mean squared loss function MSE, we track the gradients of MSEb and MSEf with respect to the
weights in each layer respectively. From the figure, we find the gradients of MSEb in each layer is much less than the
gradients of MSEf in each layer.

As we know, for a partial differential equation, if we don’t give any other restriction such as boundary condition or
initial condition, the equation may have infinitely many solutions. So if the gradients of MSEb is very small, then
our PINN model may have some trouble in fitting the boudary conditions. While the gradients of MSEf is large, the
neural network can easily learn any solutions that satisfy the equation. As a result, our PINN model may not learn the
latent solution as we expected.

2.3 Gradient analysis for physics-informed neural networks

Why does this happen? According to the common sense, we need to compute the second derivatives of the neural
network with respect to the data during the training, which means that the chain rule for computing the gradients of

3
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Loss function:
L(✓) := �1 Lr(✓)| {z }

PDE residual

+�2 Lub(✓)| {z }
BCs fit
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Figure 3: 1.565970e-02 3 hidden layers 50 units

Figure 4: 40000 iterations

2.5 Modifying the neural network architecture?

In this section, we provides details for the ADGM network architectures.

Always, how to design the architecture of neural network is the key to its success. People utilize different architecture to
deal with different problems based on some prior knowledge. For instance, convolution neural newtorks are widely used
in images recognition and images classifications. This is because convolution operation achieves translation invariance,
which is the crucial feature in image processing. Besides, recurrent neural networks are essential for modeling sequential
data. That’s due to its ability to memorize more information stored in those sequential data.

Inspired by the Attention mechanism popular recently, we purposed a novelty neural network, which has following
features:

1. introduce pointwise multiplication
2. each layer accepts inputs

and found that such a neural network is specially effective to learn latent solution in our case.

Basically, what we are trying to do is to use two encoders that map the inputs to a high-dimensional space and then use
pointwise muliplication opeation such that

U = �(W 1
~x+ b

1), V = �(W 2
~x+ b

2)

H
(1) = �(W z,1

~x+ b
z,1)

Z
(k) = �(W z,k

H
(k) + b

z,k), k = 1, . . . , L

H
(k+1) = (1� Z

(k))� U + Z
(k) � V, k = 1, . . . , L

f(x; ✓) = WH
(L+1) + b

7

Histograms of back-propagated gradients  at each hidden layer∇θℒub
(θ), ∇θℒr(θ)
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Figure 3: 1.565970e-02 3 hidden layers 50 units

Figure 4: 40000 iterations
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Prediction of a fully connected 4-layer deep physics-informed neural network (0.5% relative error)



L(✓) := �1 Lu(✓)| {z }
Data fit

+�2 Lr(✓)| {z }
PDE residual

+�3 Lu0(✓)| {z }
ICs fit

+�4 Lub(✓)| {z }
BCs fit
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…but how to choose the weights/learning rates?



Adaptive moment estimation

Published as a conference paper at ICLR 2015

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g2t indicates the elementwise
square gt � gt. Good default settings for the tested machine learning problems are ↵ = 0.001,
�1 = 0.9, �2 = 0.999 and ✏ = 10�8. All operations on vectors are element-wise. With �

t
1 and �

t
2

we denote �1 and �2 to the power t.
Require: ↵: Stepsize
Require: �1,�2 2 [0, 1): Exponential decay rates for the moment estimates
Require: f(✓): Stochastic objective function with parameters ✓
Require: ✓0: Initial parameter vector

m0  0 (Initialize 1st moment vector)
v0  0 (Initialize 2nd moment vector)
t 0 (Initialize timestep)
while ✓t not converged do
t t+ 1
gt  r✓ft(✓t�1) (Get gradients w.r.t. stochastic objective at timestep t)
mt  �1 ·mt�1 + (1� �1) · gt (Update biased first moment estimate)
vt  �2 · vt�1 + (1� �2) · g2t (Update biased second raw moment estimate)
bmt  mt/(1� �

t
1) (Compute bias-corrected first moment estimate)

bvt  vt/(1� �
t
2) (Compute bias-corrected second raw moment estimate)

✓t  ✓t�1 � ↵ · bmt/(
p
bvt + ✏) (Update parameters)

end while
return ✓t (Resulting parameters)

In section 2 we describe the algorithm and the properties of its update rule. Section 3 explains
our initialization bias correction technique, and section 4 provides a theoretical analysis of Adam’s
convergence in online convex programming. Empirically, our method consistently outperforms other
methods for a variety of models and datasets, as shown in section 6. Overall, we show that Adam is
a versatile algorithm that scales to large-scale high-dimensional machine learning problems.

2 ALGORITHM

See algorithm 1 for pseudo-code of our proposed algorithm Adam. Let f(✓) be a noisy objec-
tive function: a stochastic scalar function that is differentiable w.r.t. parameters ✓. We are in-
terested in minimizing the expected value of this function, E[f(✓)] w.r.t. its parameters ✓. With
f1(✓), ..., , fT (✓) we denote the realisations of the stochastic function at subsequent timesteps
1, ..., T . The stochasticity might come from the evaluation at random subsamples (minibatches)
of datapoints, or arise from inherent function noise. With gt = r✓ft(✓) we denote the gradient, i.e.
the vector of partial derivatives of ft, w.r.t ✓ evaluated at timestep t.

The algorithm updates exponential moving averages of the gradient (mt) and the squared gradient
(vt) where the hyper-parameters �1,�2 2 [0, 1) control the exponential decay rates of these moving
averages. The moving averages themselves are estimates of the 1st moment (the mean) and the
2nd raw moment (the uncentered variance) of the gradient. However, these moving averages are
initialized as (vectors of) 0’s, leading to moment estimates that are biased towards zero, especially
during the initial timesteps, and especially when the decay rates are small (i.e. the �s are close to 1).
The good news is that this initialization bias can be easily counteracted, resulting in bias-corrected
estimates bmt and bvt. See section 3 for more details.

Note that the efficiency of algorithm 1 can, at the expense of clarity, be improved upon by changing
the order of computation, e.g. by replacing the last three lines in the loop with the following lines:
↵t = ↵ ·

p
1� �t

2/(1� �
t
1) and ✓t  ✓t�1 � ↵t ·mt/(

p
vt + ✏̂).

2.1 ADAM’S UPDATE RULE

An important property of Adam’s update rule is its careful choice of stepsizes. Assuming ✏ = 0, the
effective step taken in parameter space at timestep t is �t = ↵ · bmt/

p
bvt. The effective stepsize has

two upper bounds: |�t|  ↵ · (1 � �1)/
p
1� �2 in the case (1 � �1) >

p
1� �2, and |�t|  ↵

2

…i.e. use the gradient statistics during training to adaptively adjust the learning rate.



A learning rate annealing algorithm for PINNs
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Then plugging all these together gives

|@MSEf

@✓
| 6 k@u✓(x)

@✓
kL1 · (C4 + 2C3 + 2)✏+ 2✏ (15)

From (8) and (13), we can conlude that if the constant C is large, then the norm of gradients of MSEf may be much
greater the gradients of MSEb.

In general, we have the following theorem:
Theorem 2.1. Suppose that

2.4 Modifying the loss function

Present method on adaptively choosing c.

Once we understand that the PINN model suffers from the unbalanced gradients with respect to MSEf and MSEb

and MSE0. A straightforward idea is to multiply some constant C to balance the gradients of those terms. In other
words, we consider minimizing the following mean square error problem

MSE = MSEf + �1 ·MSEb + �2 ·MSE0

However, experiment results show that too large or too small constant may not produce satisfied results, which means we
may need to choose the constant very carefully. Besides, the optimal constant may vary greatly for different problems.
Moreover, the loss function may consist of various parts that serve to provide restrictions on the equation, which means
we may need to give different weights to different parts and this is infeasible.

Therefore, it is impractical to find such constants satisfying our requirement manually.

In this section, we purpose a "adaptive reweights" method, which enables the neural network to find the suitable constant
automatically based the known gradients information during the training.

Suppose that

Algorithm 1: Learning rate annealing for physics-informed neural networks
Consider a physics-informed neural network f✓(x) with parameters ✓. and a loss function

L(✓) = Lr(✓) +
MX

i=1

�iLi(✓),

where Lr(✓) denotes the PDE residual loss, the Li(✓) correspond to data-fit terms (e.g., measurements, initial or
boundary conditions, etc.), and �i = 1, i = 1, . . . ,M .

Use N steps of a gradient descent algorithm to update the parameters ✓ as:
for n = 1, . . . , N do

(a) Compute �̂i by

�̂i =
max✓{r✓Lr(✓n)}

|r✓Li(✓n)|.k
, i = 1, . . . ,M,

where |r✓Li(✓n)|.k denotes the k-th percentile of the set {|r✓Li(✓n)|}.
(b) Update the weights �i using a moving average of the form

�i = (1� ↵)�i + ↵�̂i, i = 1, . . . ,M.

(c) Update the parameters ✓ via gradient descent

✓n+1 = ✓n � ⌘r✓Lr(✓n)� ⌘

MX

i=1

�ir✓Li(✓n)

end
The recommended hyper-parameter values are: ⌘ = 10�3, k = 0.05 and ↵ = 0.9.

Advantage:

1. this adaptive method can be easily generalized to loss function consisting of multiple terms.
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Systematic comparison

Architecture M1 M2

30 units / 3 hidden layers 2.44E-01 3.98E-02

50 units / 3 hidden layers 1.06E-01 1.58E-02

100 units / 3 hidden layers 9.07E-02 2.39E-03

30 units / 5 hidden layers 2.47E-01 8.91E-03

50 units / 5 hidden layers 1.40E-01 8.08E-03

100 units / 5 hidden layers 1.15E-01 3.25E-03

30 units / 7 hidden layers 3.10E-01 7.86E-03

50 units / 7 hidden layers 1.98E-01 3.66E-03

100 units / 7 hidden layers 8.14E-02 2.57E-03

Relative prediction error (L2 norm) averaged over 10 independent 
trials for the 2D Helmholtz benchmark.

M1: Baseline PINN model (Raissi et. al., 2019)
M2: PINN with the proposed learning rate annealing



Soft physics-informed learning, a recap

L(✓) := 1

Nu

NuX

i=1

[ui � f✓(xi)]
2

| {z }
Data fit

+
1

�
R[f✓(x)]

| {z }
Physics regularization
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An “unconventional” regularizer/prior that requires us to revisit standard deep learning practices: 
• loss functions (e.g., square residual, variational principle, Hamiltonian, etc.?)
• network initialization (e.g., Glorot, adaptive?)
• normalization (e.g., zero-mean/unit-variance, PDE solution bounds?)
• optimization (e.g.,  Adam, adaptive learning rates, proximal algorithms, meta-learning?)
• network architecture (e.g.,  fully connected, residual/recurrent/convolutional layers, attention?)



An improved neural architecture

x U

x

H(1) H(2) . . . H(L)

V

x fθ(x)

U = φ(W 1x⃗+ b1), V = φ(W 2x⃗+ b2)

H(1) = φ(W z,1x⃗+ bz,1)

Z(k) = φ(W z,kH(k) + bz,k), k = 1, . . . , L

H(k+1) = (1− Z(k))⊙ U + Z(k) ⊙ V, k = 1, . . . , L

f(x; θ) = WH(L+1) + b

Key points:
• Account for multiplicative interactions of the inputs, similar to attention mechanisms.
• Residual connections improve resilience against vanishing gradient pathologies.
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Original Adaptive ADGM Adaptive ADGM
30 units / 3 hidden layers 2.44e-01 3.98e-02 5.31e-02 2.56e-03
50 units / 3 hidden layers 1.06e-01 1.58e-02 2.46e-02 1.81e-03
100 units / 3 hidden layers 9.07e-02 2.39e-03 1.17e-02 1.28e-03
30 units / 5 hidden layers 2.47e-01 8.91e-03 4.12e-02 1.96e-03
50 units / 5 hidden layers 1.40e-01 8.08e-03 1.97e-02 1.86e-03
100 units / 5 hidden layers 1.15e-01 3.25e-03 1.08e-02 1.22e-03
30 units / 7 hidden layers 3.10e-01 7.86e-03 3.17e-02 1.98e-03
50 units / 7 hidden layers 1.98e-01 3.66e-03 2.37e-02 1.54e-03
100 units / 7 hidden layers 8.14e-02 2.57e-03 9.36e-03 1.40e-03

where ~x denotes the data points and � denotes element-wise multiplication. The parameters are

✓ = {W 1
, b

1
,W

2
, b

2
, (W z,l

, b
z,l)Ll=1,W, b}

The number of units in each layer is M and � : RM ! RM is a nonlinear activation function.

3 Results

3.1 Example (Helmholtz Equation)

As an example, let’s consider the Helmholtz Equation. This equation is closely related to many problems in natural
and engineer sciences such as wave propagation in acoustic, elastic and electromagnetic media. The two-dimensional
Helmholtz equation has the following form:

�u+ k
2
u = q(x, y) (x, y) 2 [�1, 1] (16)

where � is the Laplace operator and
q(x, y) = 2⇡ cos(⇡y) sin(⇡x) + 2⇡ cos(⇡x) sin(⇡y) + (x+ y)⇡ sin(⇡x) sin(⇡y) + 2⇡2(x+ y) sin(⇡x) sin(⇡y)

For k = 1, the analytical solution is
u(x, y) = (x+ y) sin(⇡x) sin(⇡y) (17)

We extract the boundary function h(x, y) from the exact solution.

To further analyze the performance and generality of our methods, we have performed the following systematic studies
to quantify its predictive accuracy for different methods with respect to different layers and different neural units.

Conclusion:

1. The L2 error of original method even increases when we use deeper neural network with the same number of units,
which contradicts our commonsense that deeper neural network has better ability to fit functions. So this phenomenon
reveals that the ability of neural network to express or generalize is restricted.

2. The L
2 error of original method decreases when we use a wider neural network with the same number of hidden

layers. This is because wider neural networks suffer less from the unbalance gradients issue (Just guess)

3. The L
2 error of adaptive method is obviously lower than the L2 error generated by the original method. It implies

that unbalanced gradients is one of the main problem that prevent the neural network from approximating the solution
effectively. Once this problem is solved, we can expect higher accuracy.

4. The L
2 error of adaptive method decreases when we choose deeper and wider neural network, which means that

adaptive method is effective to help neural network express sufficiently.

5. The L
2 error of ADGM is uniformly better than the original method. This means that the architecture of ADGM is

better than the fully connected neural networks.

3.2 Example (Klein Gordon Equation )

To emphasize the ability of our proposed methods and neural network architecture to deal with different types of
nonlinearity in the governing partial differential equations, let us consider the Klein Gordon Equation along with initial
value conditions:

utt + ↵uxx + �u+ �u
k = f(x, t), (x, t) 2 ⌦⇥ [0, T ]
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Systematic comparison

Architecture M1 M2 M3 M4

30 units / 3 hidden layers 2.44E-01 3.98E-02 5.31E-02 2.56E-03

50 units / 3 hidden layers 1.06E-01 1.58E-02 2.46E-02 1.81E-03

100 units / 3 hidden layers 9.07E-02 2.39E-03 1.17E-02 1.28E-03

30 units / 5 hidden layers 2.47E-01 8.91E-03 4.12E-02 1.96E-03

50 units / 5 hidden layers 1.40E-01 8.08E-03 1.97E-02 1.86E-03

100 units / 5 hidden layers 1.15E-01 3.25E-03 1.08E-02 1.22E-03

30 units / 7 hidden layers 3.10E-01 7.86E-03 3.17E-02 1.98E-03

50 units / 7 hidden layers 1.98E-01 3.66E-03 2.37E-02 1.54E-03

100 units / 7 hidden layers 8.14E-02 2.57E-03 9.36E-03 1.40E-03

Relative prediction error (L2 norm) averaged over 10 independent 
trials for the 2D Helmholtz benchmark.

M1: Baseline PINN model (Raissi et. al., 2019)
M2: PINN with the proposed learning rate annealing
M3: PINN with the proposed neural architecture
M4: PINN with the proposed learning rate annealing and improved neural architecture



Wave equation

Absolute error

t t t

x
x x

Predicted u(t, x)Exact u(t, x)
t t t
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Predicted u(t, x)Exact u(t, x)

Figure 30: Wave propagation: Top: Imbalanced gradients during model training lead to erroneous predictions for a
dense, 5-layer deep physics-informed neural network (relative prediction error: 76%). Bottom: Accurate predictions
can be obtained with the same network architecture by employing the proposed adaptive re-weighting procedure for
balancing the back-propagated gradients during model training (relative prediction error: 0.6%).

equation subject to initial and boundary conditions as

utt = 4uxx, (t, x) 2 [0, 1]

u(0, x) = h(x),

u(t, 0) = u(t, 1),

(48)

which has an exact solution u(t, x) = sin(⇡x) sin(2⇡t)+2 sin(2⇡x) sin(4⇡t) (used only for validation
purposes). Figure 30 summarizes the results of this experiment, illustrating how the proposed
adaptive re-weighting procedure leads to a two orders of magnitude improvement in the predictive
accuracy of a dense, 5-layer deep physics-informed neural network. Current e↵orts are focused on
applying these techniques to the challenging fluid dynamics problems discussed in section 1.2.

In summary, this work studies physics-informed neural networks as a test-bed for analyzing the
performance of constrained neural networks trained using regularized loss functions in the form of
equation 37. Our specific contributions can be summarized in the following points:

• Our analysis reveals a fundamental mode of failure in physics-informed neural networks related
to an imbalance in the magnitude of the back-propagated gradients during model training.

• We propose a simple solution based on a re-weighting procedure that aims to balance the
interplay between data-fit and regularization.

• We systematically test the proposed ideas and demonstrate consistent improvements in the
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Top: Imbalanced gradients in a dense, 5-layer deep physics-informed neural network lead to large 
prediction errors (76%). 

Bottom: Accurate predictions can be obtained using the proposed learning rate annealing and improved 
neural architecture strategy (relative prediction error: 0.6%). 
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3.2 Example (Klein Gordon Equation )

To emphasize the ability of our proposed methods and neural network architecture to deal with different types of
nonlinearity in the governing partial differential equations, let us consider the Klein Gordon Equation along with initial
value conditions:

utt + ↵uxx + �u+ �u
k = f(x, t), (x, t) 2 ⌦⇥ [0, T ]

with the initial conditions

u(x, 0) = g1(x), x 2 ⌦

ut(x, 0) = g2(x), x 2 ⌦

and Dirichlet boundary condition

u(x, t) = h(x, t), (x, t) 2 @⌦⇥ [0, T ]

where ↵,�, � and k are known constants, k = 2 when we have quadratic nonlinearity and k = 3 when we have cubic
nonlinearity. f, g1, g2 and h are known functions, and the function u is unknown.

The Klein-Gordon equation is frequently used in mathematical models for problems in many fields of science and
engineering, particularly in quantum field theory and relativistic quantum mechanics.

3.3 Example (Lid-Driven Cavity Flow)

The lid-driven cavity is an important benchmark problem within the field of computational fluid dynamics (CFD) for
validating computational methods. While the boundary conditions are relatively simple, the flow features created are
quite interesting and complex. Here we consider a 2D lid driven cavity problem, which has the following form:

@tU � 1

Re
+ (U ·�)U +�p = 0 in (0, T )⇥ ⌦ (18)

� · U = 0, in (0, T )⇥ ⌦ (19)
U(t, x, y) = (1, 0) on (0, T )⇥ �1 (20)
U(t, x, y) = (0, 0) on (0, T )⇥ �0 (21)
U(0, x, y) = (0, 0) in ⌦ (22)

where ⌦ = (0, 1)⇥ (0, 1) is a 2D square cavity and T > 0 the simulation time. And U = (u, v) and p are the velocity
and the pressure respectively. �1 is the top boundary and �0 denotes the other three sides.
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Lid-driven cavity flow in 2D
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Reference solution (FVM) PINNs prediction

Relative prediction error (L2 norm) is ~1% for the velocity field and pressure.
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Summary

• Function space constraints in introduce “unconventional” regularizers/priors that requires us 
to revisit standard deep learning practices.

• Constraints alter the loss landscape of neural networks. Different terms in such composite 
loss function may have different nature and magnitudes, leading to imbalanced gradients during 
back-propagation.

• Adaptive annealing of learning rates can balance the interplay between different terms in a 
constrained loss function and lead to improved solutions.

• Novel architectures can also safe-guard against gradient-related pathologies and lead to 
improved solutions.

• Using the proposed workflow we have observed consistent improvements in the predictive 
accuracy of physics-informed neural networks by a factor of 50-100x across a range of 
problems in computational physics. 

• Despite some progress, we are still at the very early stages of understanding the capabilities 
and limitations of such models.
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