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REINFORCEMENT LEARNING

» General framework to learn how to interact in complex,
high-dimensional environments.
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» Remarkable ability to discover useful policies in large
environments.

» High-dimensional, noisy, observations.



RL TODAY
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» Remarkable ability to discover useful policies in Iarge
environments.

» High-dimensional, noisy, observations.
» Yet, with

» poor sample efficiency.

» limited theoretical guarantees.



MARKOV DECISION PROCESSES

» Mathematical Setup: M = (S, A, P,R,~,p)

» S : state space (might be discrete or continuous).
» A: space of actions (assumed the same for all states).
»P (s’ | s,a): Markov transition probability kernel.
» P : initial state distribution.

>R(S, CL) : instantaneous reward.

» 7Y : discount factor, assume 0 < v < 1.
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» Mathematical Setup: M = (S, A, P,R,~,p)

» S : state space (might be discrete or continuous).
» A: space of actions (assumed the same for all states).
»P (s’ | s,a): Markov transition probability kernel.
» P : initial state distribution.

» R(s,a) :instantaneous reward.

» 7Y : discount factor, assume 0 < v < 1.

» Goal: Find a policy 7w : S — A that maximizes expected

sum of discounted rewards: /
. Sk+1 ~~ P(S ‘Sk ak)
max L, p kaR(sk, ay) subject to So ~ p |

k

7T
A — W(Sk)
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THREE PARADIGMS OF RL

» Model-based: estimate dynamics P and then solve the
resulting optimal control problem (planning and simulation).

» Approximate Dynamic Programming: Exploit recurrence
structure in optimal policy (Q-learning):

» Estimation: Given a policy T, compute the Value of a state s:

V7(s) = E Y7 R(sw,an)s so = 5, ax = 7(si).
k

» Temporal-Difference (TD) learning enforces V" to satisfy rec.

» Control: Modify 7 greedily from estimated value functions.

» Policy gradient: Bypass both model and value, optimize
directly over parameters of policy. Essentially a derivative-
free method.
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THE CURSE OF DIMENSIONALITY IN RL

» State and Action Spaces can be huge (2170 for GO) or even
infinite and high-dimensional.

» In absence of structural/modeling assumptions, sample
complexity will be at least linear with respect to |S| - |A4] .

» Such structure can be incorporated by function
approximation, ie appropriate parametrisations of value
functions, policies, and model dynamics: 8 — {V (s),s € S}.

» In generic cases, efficient function approximation will be non-

linear.

» Deep RL: Use neural networks as function approximation.

» How to learn with guarantees using nonlinear approx?



THIS WORK

» Focus on Value estimation with non-linear function
approximation: convergence of non-linear TD learning.

» Interplay between MDP and function approximation
geometry: we establish convergence conditions.

» Key geometric properties of function approximation:

» Homogeneity

» “"Includes” linear functions —> Residual architecture.
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APPROXIMATE DYNAMIC PROGRAMMING: BELLMAN EQUATION

» Recall the value function associated to a current policy:
. k
V7T(s):= thy R(sg,ar); so = s, ar = w(Sk).
k

» Itis the unique solution of the Bellman equation:

V™ (s) = R(s) + YEg~p( 1V (s") , with R(s) = ER(s,n(s)).

» The most popular algorithm to estimate it is Temporal-
Difference learning [Sutton, Samuel].

» Given transition (S, R(S), S/) and step-size Ok

VI () = VO (s) + i, (R(s,a) + 7V (s) = V().

» Under appropriate conditions, we have V¥) — ¥ as k — oo.
[Robbins & Munro,50s]
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EXPECTED CONTINUOUS-TIME DYNAMICS

» This algorithm can be seen as taking a stochastic gradient
step with respect to the expected squared Bellman error.

» Continuous-time interpretation: suppose Pdefines an
aperiodic, irreducible Markov chain, with stationary
distribution (.

» asay, — 0, the expected dynamics of TD become
V(s) = pu(s) (R(s) +vEgp)[V(s)] = V(s))

» In matrix form, using Bellman equation V"™ = R + vyPV™

-
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CONSISTENCY OF TD-LEARNING: TABULAR CASE

» Fact: A is a “positive-definite”, non-symmetric, matrix, ie

v Ar > 0 when ||z|| > 0. [Sutton,’88]

» Consequence: V (t)converges (linearly)toV™ as t — .

» However, this algorithm currently computes an
independent quantity for each s € § (the “tabular” case).

» Infeasible in any typical large-scale scenario.
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FUNCTION APPROXIMATION

» To overcome such blowup, one considers function
approximation. Let § € R%and 6 +— Vj € RIS
differentiable.

» TD(0) “semi-gradient” algorithm:
(9<k+1) — H(k) + OékV@Vg(k) (S) (R(S) + ”}/Vg(k) (S/) — Ve(k) (S)) .
» Such update approximates the stochastic gradient of the

squared Bellman error A(#) := ||Vy — R — yPV3||*

» Problem: an unbiased estimator of V4 A(f)requires two
samples g’ from the environment (“double-sample" problem):

V@A(Q) e Z(Vg — R — ’YPVQ) . (V@V@ — WPV@V@)

» This breaks convergence guarantees of stochastic optimization.
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» Alternative Strategies to TD to ensure convergence:

» “Two-time-scale” algorithms [Dai et al., Borkar et al, Chung et al]
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HOMOGENEOUS NON-LINEAR MODELS

» f:R*¥ 5 R™is h-homogenous for h € R if

» If 0isahomogeneous activation function, then neural
networks using ¢ are also homogeneous (wrt parameters).
» Homogeneous function approximation prevents divergence:

» In the worst case, homogeneous TD is not worse than
using the 0 function baseline: IR,

» Stronger baseline?
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HOMOGENEOUS RESIDUAL MODELS

» f: R¥ x R*2 — R™ is residual-homogeneous if

f(x1,29) = P21 + g(x2), with ¢ homogeneous.

» With residual-homogeneous, we are provably not worse
than using linear models:

» Similar guarantee as in non-convex optimization using Resnets

[Shamir’'18].

» Generically, no global convergence. Role of
overparametrisation?
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INTERPLAY BETWEEN MDP AND FUNCTION GEOMETRY

» Recall that reversible dynamics result in gradient descent
[Ollivier'18]. Can we leverage this property?

, Definition: The reversibility coefficient of a
Markov Chain P is

, with

A=D,(I—+P),Sa=(A+A")/2, Ry =(A—-A")/2.

» Global convergence with well-conditioned function
approximation:

» Observe that K(VV(0)VV(0)') < oo requiresd > |S]|.

» Open: underparametrised case with extra smoothness?
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BEYOND CONVERGENCE

» Convergence of Value Estimation is the weakest possible
guarantee.

» Rate of convergence currently only known for linear
models [Bandhari et al.’18]. Non-linear case?

» Preliminary analysis: does not measure sample efficiency.

» Sample Complexity of “model-free” RL
» Tabular Case [Jin et al./18], [Azar et al."17], [Brunskill et al.].

» Linear Function Approximation [Jin et al."19], [Brandfonbrener
et al'19]

» Policy Gradients [Argawal et al."19]
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4

Analysis of TD-learning using nonlinear function
approximation.

Interplay between geometry of function approximation
(homogeneity, conditioning, linear baseline) and
environment (reversibility).

Learning with guarantees under such conditions.

Next: Further exploit regularity of reward/environment to
reduce overparametrisation.

Next: From of value estimation to policy update, tighter
link between environment and network parametrisation.



Thanks!
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