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Scientific discovery by machine learning and the mythical human “expert”

I Big data
I Allows us to ask more detailed questions (e.g “personalized medicine”)
I Big data contains more complex patterns

I Machine Learning discovers patterns fast

I Typically – validation by “domain experts”

I Often Hypotheses are cheap, experiments are expensive
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Drowning in hypotheses. . .

Validation is the bottleneck

I Validation by visualization

I is qualitative not quantitative

I hard/impossible in dimension > 3

I can’t be crowdsourced

I discovering what is known?



Validation should be part of learning

I Unsupervised validation = validation by machine not by human expert

I THIS TALK

I Data driven methods to make unsupervised learning more reproducible,
trustworthy and free of artefacts

I want stability
I through geometry



Stability guarantees for clustering [M NeurIPS 2018]

provable “correctness” for the practitioner

Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]

“coordinate independent” geometric recovery

Manifold coordinates with physical meaning [M,Koelle,Zhang arXiv:1811.11891]

interpretability in the language of the problem
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For the practitioner of clustering

I Clustering algorithm e.g. K-means, Spectral clustering produces clustering
C with K clusters

I IDEALLY WANTED: guarantee that C is correct/optimal

I WHAT WE CAN DO: guarantee that C is approximately correct/optimal

I WHEN C is good and stable

Good, stable Bad Unstable

SS output: OI=1e−4 no guarantee no guarantee
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What is an Optimality Interval (OI)?

I Let Bε = {C′ | dEM(C′, C) ≤ ε}.
I C′ is good if

Loss(C′) ≤ Loss(C) + α.

I OI=ε iff any good C′ ∈ Bε
in particular, Copt ∈ Bε

I If OI exists, we say C is stable



Idea: Use convex relaxations

Clustering problem Given data, K , loss function Loss(C)

Lopt = min
C∈CK

Loss(C), with solution CoptHard (1)

Convex relaxation of problem (1).

L∗ = min
X∈X

Loss(X ), with solution X ∗ (2)

where X is convex set of matrices, X ⊃ {X (C), C ∈ CK}
Loss(X ) convex in X and Loss(C) ≡ Loss(X (C)).



The Sublevel Set (SS) method

Framework Given clustering problem defined by Loss and data

and convex relaxation with space X .

Step 0 Cluster data, obtain a clustering C.

X≤c = {X ∈ X , Loss(X ) ≤ c} is a sublevel set of

Loss
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The Sublevel Set (SS) method

Framework Given clustering problem defined by Loss and data

and convex relaxation with space X .

Step 0 Cluster data, obtain a clustering C.

Step 1 Use convex relaxation to define new optimization problem

SS δ = max
X ′∈X

‖X (C)− X ′‖F , s.t. Loss(X ′) ≤ Loss(C).

Step 2 Prove that ‖X (C)− X (C)′‖F ≤ δ ⇒ dEM(C, C′) ≤ ε E.g. by [M,

MLJ 2012]

Done: ε is a Optimality Interval (OI) for C.

X≤c = {X ∈ X , Loss(X ) ≤ c} is a sublevel set of

Loss
||X (C)− X ′|| generally not concave.



Relation with other work

I Previous ideas on OI
I Spectral bounds for Spectral Clustering [M,Shortreed,Xu AISTATS05]
I Spectral bounds for K-means, NCut and other quadratic costs [M, ICML06

and JMVA 2018]
I Spectral bounds for networks model based clustering: Stochastic Block

Model and Preference Frame Model [Wan,M NIPS16]

I Previous work we build on
I Convex relaxations for clustering MANY! here we use SDP for K-means

[Peng, Wei 2007]
I Transforming bound on ||X − X ′||F into bound on dEM [M MLJ 2012]

I Contrast with work on Clusterability and resilience, e.g. [Ben-David,
2015],[Bilu,Linial 2009]

I clusterable data, resilient clustering ≈ stable C
I This work: given C, prove it is stable
I “Their” work: assume ∃ stable C, prove it can be found efficiently



For what clustering paradigms can we obtain OI’s?

Ways to map C to a matrix
space matrix definition size
X X (C) Xij = 1/nk iff i , j ∈ Ck n × n, block-diagonal

X̃ X̃ (C) X̃ij = 1 iff i , j ∈ Ck n × n, block-diagonal
Z Z(C) Zik = 1/

√
nk iff i ∈ Ck n × K , orthogonal

Theorem
[M NeurIPS 2018] If Loss has a convex relaxation involving one of X , X̃ ,Z , then

(1) There exists a convex SS problem

(SS) δ = min
X ′∈X≤c

〈X (C),X ′〉 (similarly for X̃ ,Z).

(2) From optimal δ an OI ε can be obtained, valid when ε ≤ pmin.

X : Xij = 1/nk iff i , j ∈ Ck ε = (K − δ)pmax

X̃ : X̃ij = 1 iff i , j ∈ Ck ε =
∑

k∈[K ] n
2
k+(n−K+1)2+(K−1)−2δ

2pmin

Z : Zik = 1/
√
nk iff i ∈ Ck ε = (K − δ2/2)pmax

Existence of guarantee depends only on space of convex relaxation.



K-means Sublevel Set problem and Optimality Interval

Loss(C) = 〈D,X (C)〉, D = squared distance matrix ∈ Rn×n

X (C) = [Xij = 1/nk iff i , j ∈ Ck ] ∈ Rn×n, block-diagonal

X = {∈ Rn×n, X � 0,Xij ≥ 0, traceX = K , X1 = 1 }

Sublevel Set problem

(SSKm) δ = min
X ′∈X

〈X (C),X ′〉 s.t.〈D,X ′〉 ≤ Loss(C)

This is a SDP.

Algorithm

Input Squared distance matrix D, clustering C
1. Solve (SSKm) let δ be the optimal value obtained.

2. If ε = (K − δ)pmax ≤ pmin then C is stable

else no guarantee.

Theorem 1
If ε ≤ pmin,

then dEM(C, C′) ≤ ε for any C′ with Loss(C′) ≤ Loss(C).
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Results for K-means clusterings

K = 4 equal Gaussian clusters, n = 1024, ||µk − µl || = 4
√

2 ≈ 5.67

data for σ = 0.9 Values of ε vs cluster spread σ

Spectral=[M ICML06], SDP=[M NeurIPS 2018]

Aspirin (C9O4H8) molecular simulation data [Chmiela et al. 2017]

K = 2
pmin = .26
pmax = .74

n = 2118 ε = 0.065



Separation statistics

distance to own center over min center
separation, colored by σ.

distance to second closest center over
distance to own center, versus σ



Results for Spectral Clustering by Normalized Cut

Spectral=[M AISTATS05], SDP=[M NeurIPS 2018]

Synthetic S , n = 100 Chemical reaction data, n ≈ 1000



Stability and the selection of K (in preparation)

2 3 4 5 6 7 8 9 10
number of clusters k

0.0
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sd
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bo
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d

sdp bound for n = 200 normal: 0 cluster_equal_size: 0 full: 1 k_true: 8
sigma: 0.6[8]
sigma: 0.8[8]
sigma: 1.0[8]
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Stability guarantees for clustering [M NeurIPS 2018]

provable “correctness” for the practitioner

Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]

“coordinate independent” geometric recovery

Manifold coordinates with physical meaning [M,Koelle,Zhang arXiv:1811.11891]
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When to do (non-linear) dimension reduction

I high-dimensional data p ∈ RD , D = 64× 64

I can be described by a small number d of continuous parameters

I Usually, large sample size n



When to do (non-linear) dimension reduction

Why?
I To save space and computation

I n × D data matrix → n × s, s � D

I To use it afterwards in (prediction) tasks
I To understand the data better

I preserve large scale features, suppress fine scale features



Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

www.sdss.org

www.sdss.org

I Preprocessed by Jacob VanderPlas and Grace Telford

I n = 675, 000 spectra ×D = 3750 dimensions

embedding by James McQueen



Molecular configurations

aspirin molecule
I Data from Molecular Dynamics (MD) simulations

of small molecules by [Chmiela et al. 2016]

I n ≈ 200, 000 configurations ×D ∼ 20− 60
dimensions



Brief intro to manifold learning algorithms

ALL ML Algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

p1, . . . pn ⊂ RD
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Brief intro to manifold learning algorithms

ALL ML Algorithms

I Input Data p1, . . . pn, embedding dimension m, neighborhood scale
parameter ε

I Construct neighborhood graph p, p′ neighbors iff ||p − p′||2 ≤ ε
I Construct a n × n sparse distance matrix

D = [||p − p′||]p,p′neighbors

I Optional: construct kernel matrix, .e.g

S = [Spp′ ]p,p′∈D with Spp′ = e−
1
ε
||p−p′||2 iff p, p′ neighbors

and Laplacian matrix

p1, . . . pn ⊂ RD



Embedding in 2 dimensions by different manifold learning algorithms

Original data
(Swiss Roll with hole)

Hessian Eigenmaps (HE)

Laplacian Eigenmaps
(LE)

Local Linear Embedding
(LLE)

Isomap

Local Tangent Space
Alignment (LTSA)



Preserving topology vs. preserving (intrinsic) geometry

I Algorithm maps data p ∈ RD −→ φ(p) = x ∈ Rm

I Mapping M −→ φ(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

I Mapping φ preserves
I distances along curves in M
I angles between curves in M
I areas, volumes

. . . i.e. φ is isometry
For most algorithms, in most cases, φ is not isometry

Preserves topology Preserves topology + intrinsic geometry



Previous known results in geometric recovery

Positive results

I Nash’s Theorem: Isometric
embedding is possible.

I Diffusion Maps embedding is
isometric in the limit
[Berard,Besson,Gallot 94]

I algorithm based on Nash’s theorem
(isometric embedding for very low d)
[Verma 11]

I Isomap [Tennenbaum,]recovers flat
manifolds isometrically

I Consistency results for Laplacian and
eigenvectors

I [Hein & al 07,Coifman & Lafon
06, Singer 06, Ting & al 10,
Gine & Koltchinskii 06]

I imply isometric recovery for LE,
DM in special situations

Negative results

I obvious negative examples

I No affine recovery for normalized
Laplacian algorithms [Goldberg&al
08]

I Sampling density distorts the
geometry for LE [Coifman& Lafon 06]



Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given

I mapping φ that preserves topology

true in many cases

Objective

I augment φ with geometric information g
so that (φ, g) preserves the geometry

Dominique
Perrault-Joncas

g is the Riemannian metric.



g for Sculpture Faces

I n = 698 gray images of faces in D = 64× 64 dimensions
I head moves up/down and right/left

LTSA Algoritm



Isomap LTSA

Laplacian Eigenmaps



Relation between g and ∆

I ∆ = Laplace-Beltrami operator on M
I ∆ = div · grad
I on C2, ∆f =

∑
j
∂2f
∂x2

j

I on weighted graph with similarity matrix S , and tp =
∑

pp′ Spp′ ,

∆ = diag{ tp} − S

Proposition 1 (Differential geometric fact)

∆f =
√

det(G)
∑
l

∂

∂x l

(
1√

det(G)

∑
k

(G−1)lk
∂

∂xk
f

)
,



Estimation of g

Proposition

Let ∆ be the Laplace-Beltrami operator on M. Then

hkl(p) =
1

2
∆(φk − φk(p)) (φl − φl(p))|φk (p),φl (p)

where h = g−1 (matrix inverse) and k, l = 1, 2, . . .m are embedding
dimensions

Intuition:

I at each point p ∈M, G(p) is a d × d matrix

I apply ∆ to embedding coordinate functions φ1, . . . φm

I this produces G−1(p) in the given coordinates

I our algorithm implements matrix version of this operator result

I consistent estimation of ∆ is well studied [Coifman&Lafon 06,Hein&al 07]



Calculating distances in the manifold M

Original Isomap Laplacian Eigenmaps

true distance d = 1.57
Shortest Metric Rel.

Embedding ||f (p)− f (p′)|| Path dG d̂ error
Original data 1.41 1.57 1.62 3.0%
Isomap s = 2 1.66 1.75 1.63 3.7%
LTSA s = 2 0.07 0.08 1.65 4.8%

LE s = 2 0.08 0.08 1.62 3.1%

l(c) =

∫ b

a

√√√√∑
ij

Gij
dx i

dt

dx j

dt
dt,



Riemannian Relaxation for Ethanol molecular configurations



Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric Gi

along with embedding coordinates

Why useful

I Measures local distortion induced by any embedding algorithm
Gi = Id when no distortion at pi

I Algorithm independent geometry preserving method

I Outputs of different algorithms on the same data are comparable

Applications

I Estimating distortion
I Correcting distortion

I Integrating with the local volume/length units based on Gi
I Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]

I Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17] and
of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco ])

I Accelerating Topological Data Analysis (in progress), selecting
eigencoordinates [Chen, M NeurIPS19]
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Motivation

ethanol torsion 1 torsion 2 persistence

I 2 rotation angles parametrize this manifold

I Can we discover these features automatically? Can we select these angles
from a larger set of features with physical meaning?



Problem formulation

Hanyu Sam Yu-chia

Zhang Koelle Chen

I Given
I data ξi ∈ RD , i ∈ 1 . . . n
I embedding of data φ(ξ1:n) in Rm

I Assume
I data sampled from smooth manifold M
I M Riemannian with metric inherited from RD

I embedding algorithm φ :M→ φ(M) is smooth embedding
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Problem formulation
Hanyu Sam Yu-chia

Zhang Koelle Chen

I Given
I data ξi ∈ RD , i ∈ 1 . . . n
I embedding of data φ(ξ1:n) in Rm

I dictionary of domain-related smooth functions
G = {g1, . . . gp, with gj : RD → R}.

I e.g. all torsions in ethanol
I Assume

I data sampled from smooth manifold M
I M Riemannian with metric inherited from RD

I embedding algorithm φ :M→ φ(M) is smooth embedding

I Goal to express the embedding coordinate functions φ1 . . . φm in terms of
functions in G.
More precisely, we assume that

φ(x) = h(gj1 (x), . . . gjs (x)) with gj1,...js ⊂ G.

Problem: find S = {j1, . . . js}



Challenges

φ(x) = h(gj1 (x), . . . gjs (x)) with gj1,...js ⊂ G.

I Framework: sparse recovery

I Challenges

I h non-linear (but smooth)
I φ defined up to diffeomorphism

I hence, h cannot assume a parametric form
I will not assume one-to-one correspondence between φk coordinates and gj

in dictionary

φ1 = g1g2, φ1 = sin(τ1)
e.g. φ2 = g1 sin(g2

3 ) or φ2 = cos(τ1)(ethanol)
φ3 = sin(τ2)

I we do not assume φ isometric (but smooth)

I what requirements on dictionary functions g1:p for unique recovery?
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First Idea: from non-linear to linear

I If

φ = h ◦ g
I (sparse non-linear, non-parametric recovery)

I then

Dφ = DhDg

I sparse linear recovery

I A sparse linear system for every data point i
I Require subset S is same for all i

I group Lasso problem

I Functional Lasso
I optimize

(FLasso) min
β

Jλ(β) = 1
2

n∑
i=1

||yi − X iβ i ||22 + λ/
√
n
∑
j

||βj ||,

I with y i = ∇φ(ξi ), X i = ∇g1:p(ξ), βij = ∂h
∂gj

(ξi )

I support S of β selects gj1,...js from G
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Multidimensional FLasso

I Assume

yik = ∇fk(ξi ) X i = ∇g1:p(ξ) ββijk =
∂h

∂gj
(ξi ) (3)

and

βj = vec(βijk , i = 1 : n, k = 1 : m) ∈ Rmn, βik = vec(βijk , j = 1 : p) ∈ Rp . (4)

Jλ(β) =
1

2

n∑
i=1

m∑
k=1

||yik − Xiβik ||2 +
λ√
mn

p∑
j=1

||βj ||. (5)



FLasso in manifold setting

I gradients ∇ → manifold gradients
grad

I grad gj is in TξiM
I ∇gj known analytically

I gradφk is in Tφ(ξi )φ(M)
I must be estimated

I must pull-back gradφk(φ(ξi )) to TξiM

M

φ(M)



Theory

I When is S unique? / When can M be uniquely parametrized by G?
Functional independence conditions on dictionary G and subset gj1,...js

I Basic result

gS = h ◦ gS′ on U iff

rank

(
DgS
DgS′

)
= rankDgS′ on U

I When can FLasso recover S ?
Incoherence conditions

µ = max
i=1:n,j∈S,j′ 6∈S

|XT
ji Xj′ i | ν =

1

mini=1:n ||XT
iSXiS ||2

ndσ2 =
∑
i,k

ε2
ik

Theorem If µν
√
s + σ

√
nd
λ

< 1 then βj = 0 for j 6∈ S .
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Ethanol MD simulation



Toluene MD simulation



Para-xilene MD simulation



Malondialdehyde MD simulation



Summary Cluster validation without model assumptions [M NeurIPS 2018]

I A general method that can be applied to any clustering cost that has a
convex relaxation

Metric Manifold learning

I Before embedding: choice of kernel width ε [Perrault-Joncas,McQueen,M

17], choice of intrinsic dimension d

I Simultaneously with embedding: Gaussian process prediction, estimating
vector fields [Perrault-Joncas,M 10], eigenfunctions vs. embedding
coordinates [M,Chen NeurIPS19]

I After embedding: estimate distortion by H and correct it by Riemannian
Relaxation [Perrault-Joncas,M 10, McQueen,Perrault-Joncas,M 16]

Manifold coordinates with pysical meaning [arXiv:1811.11891]

I Interpretation in the language of the domain

I From non-parametric to parametric

Python package github.com/mmp2/megaman

I tractable for millions of points

I manifold learning and clustering

I incorporates state of the art results
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Towards unsupervised validation for unsupervised learning

I In Machine Learning: Unsupervised Learning is the next big challenge

I In the sciences: Unsupervised Learning is about explanation and
understanding

I Automated discoveries require automated validation

I With domain knowledge
I On purely mathematical/statistical grounds

I Remove algorithmic artefacts

I Quantitative measures of “correctness” / robustness / uncertainty

I Is explanation unique?

I Statistical guarantees – without untestable assumptions

I Good community practices – all machine learning algorithms should come
with validation procedures
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