Unsupervised Validation for Unsupervised Learning

Marina Meila

University of Washington
mmp@stat.washington.edu
with Dominique Perrault-Joncas, James McQueen, Yu-chia Chen, Samson Koelle, Hanyu Zhang

WISCONSIN 09/16/2019

UNIVERSITY OF WISCONSIN-MADISON



Scientific discovery by machine learning and the mythical human “expert”

» Big data

> Allows us to ask more detailed questions (e.g “personalized medicine”)
> Big data contains more complex patterns



Scientific discovery by machine learning and the mythical human “expert”

» Big data

> Allows us to ask more detailed questions (e.g “personalized medicine”)
> Big data contains more complex patterns
> Machine Learning discovers patterns fast

» Typically — validation by “domain experts”



Scientific discovery by machine learning and the mythical human “expert”

» Big data
> Allows us to ask more detailed questions (e.g “personalized medicine”)
> Big data contains more complex patterns
> Machine Learning discovers patterns fast

» Typically — validation by “domain experts”

» Often Hypotheses are cheap, experiments are expensive

Black Holes of Known Mass
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Drowning in hypotheses. . .

Validation is the bottleneck
» Validation by visualization
> is qualitative not quantitative
> hard/impossible in dimension > 3
> can't be crowdsourced

» discovering what is known?



Validation should be part of learning

» Unsupervised validation = validation by machine not by human expert

» THIS TALK
» Data driven methods to make unsupervised learning more reproducible,
trustworthy and free of artefacts

> want stability
> through geometry



Stability guarantees for clustering [M NeurlPS 2018]
provable “correctness” for the practitioner

Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]
“coordinate independent” geometric recovery

Manifold coordinates with physical meaning [M,Koelle,Zhang arXiv:1811.11891]
interpretability in the language of the problem



Outline

Stability guarantees for clustering [M NeurlPS 2018]
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For the practitioner of clustering

» Clustering algorithm e.g. K-means, Spectral clustering produces clustering
C with K clusters

v

IDEALLY WANTED: guarantee that C is correct/optimal
WHAT WE CAN DO: guarantee that C is approximately correct/optimal

v

v

WHEN C is good and stable
Good, stable Bad Unstable

SS output: Ol=1le™* no guarantee no guarantee



What is an Optimality Interval (OI)?

v

Let B. = {C' | d®M(C’,C) < ¢}.
» C'is good if
Loss(C') < Loss(C) + .

Ol=¢ iff any good C’ € B Loss(C)
in particular, C°Pt ¢ B,

Loss

v

> If Ol exists, we say C is stable



Idea: Use convex relaxations

Clustering problem Given data, K, loss function Loss(C)
L°P* = min Loss(C), with solution C°*Hard
ceCy
Convex relaxation of problem (1).
L* = min Loss(X), with solution X~
Xex

where X is convex set of matrices, X D {X(C), C € Cx}
Loss(X) convex in X and Loss(C) = Loss(X(C)).

(2)



The Sublevel Set (SS) method

Framework Given clustering problem defined by Loss and data
and convex relaxation with space X.

Step 0 Cluster data, obtain a clustering C.

X< ={X € X, Loss(X) < c} is a sublevel set of

Loss

Loss(C )

Loss
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Framework Given clustering problem defined by Loss and data
and convex relaxation with space X.

Step 0 Cluster data, obtain a clustering C.
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The Sublevel Set (SS) method

Framework Given clustering problem defined by Loss and data
and convex relaxation with space X.

Step 0 Cluster data, obtain a clustering C.

Step 1 Use convex relaxation to define new optimization problem

SS & = max IX(C) — X'||r, s.t. Loss(X') < Loss(C).
e
Step 2 Prove that | X(C) — X(C)'||[r < 6 = dM(C,C’) < ¢ E.g. by [M,
MLJ 2012
Done: ¢ is a Optimality Interval (OI) for C.
X<c ={X € X, Loss(X) < c} is a sublevel set of

Loss

Loss(C )

Loss
[|X(C) — X'|| generally not concave.



Relation with other work

» Previous ideas on Ol
> Spectral bounds for Spectral Clustering [M,Shortreed,Xu AISTATSO05]
> Spectral bounds for K-means, NCut and other quadratic costs [M, ICMLO06
and JMVA 2018]
> Spectral bounds for networks model based clustering: Stochastic Block
Model and Preference Frame Model [Wan,M NIPS16]
» Previous work we build on
> Convex relaxations for clustering MANY! here we use SDP for K-means
[Peng, Wei 2007]
» Transforming bound on || X — X’||¢ into bound on df™ [M MLJ 2012]
» Contrast with work on Clusterability and resilience, e.g. [Ben-David,
2015],[Bilu, Linial 2009]
> clusterable data, resilient clustering = stable C

> This work: given C, prove it is stable
> “Their" work: assume 3 stable C, prove it can be found efficiently



For what clustering paradigms can we obtain Ol's?

Ways to map C to a matrix
space  matrix definition size
X X(C)  Xj=1/nkiffi,j € G« nx n, block-diagonal
X X(C) Xj = 1iffi,j € G n x n, block-diagonal
Z Z(C) Zy = 1/\/nciffi € G nx K, orthogonal

Theorem

[M NeurlPS 2018] If Loss has a convex relaxation involving one of X, X, Z, then
(1) There exists a convex SS problem

(SS) 6= XlrQLpSC(X(C),X Y (similarly for X, Z).

(2) From optimal § an Ol € can be obtained, valid when & < pmin.
X: Xij=1/nciffi,j € G €= (K —6)Pmax
~ ~ 2 —_ 2 — —
X X = 1iffi,j € G c— 2kelK] "k+(n2pK#.>1) +(K—1)—25
Z:Zy=1/nciffi € G &= (K — 6*/2)Ppmax

Existence of guarantee depends only on space of convex relaxation.



K-means Sublevel Set problem and Optimality Interval

Loss(C) = (D,X(C)), D = squared distance matrix € R™"
X(C) = [Xy=1/nkiffi,j € C] € R"™" block-diagonal
X = {eR™", X>0,X;>0 traceX =K, X1 =1}

Sublevel Set problem

(SSkm) 6 = Xmin (X(C), X"y st.(D,X") < Loss(C)

ex

This is a SDP.
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K-means Sublevel Set problem and Optimality Interval

Loss(C) = (D,X(C)), D = squared distance matrix € R™"
X(C) = [Xy=1/nkiffi,j € C] € R"™" block-diagonal
X = {eR™", X>0,X;>0 traceX =K, X1 =1}

Sublevel Set problem

(SSkwm) 6 = min (X(€),X') st.(D,X') < Loss(C)

This is a SDP.
Algorithm

Input Squared distance matrix D, clustering C
1. Solve (SSkm) let § be the optimal value obtained.
2. If e = (K — §)Ppmax < Pmin then C is stable

else no guarantee.

Theorem 1
lf 3 S Pmin,
then d¥(C,C") < e for any C’ with Loss(C") < Loss(C).



Results for K-means clusterings

K = 4 equal Gaussian clusters, n = 1024, ||ux — /|| = 4v/2 =~ 5.67

data for 0 = 0.9 Values of € vs cluster spread o
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spectral=[M ICMLO06], sop=[M NeurlPS 2018]
Aspirin (CyO4Hg) molecular simulation data [Chmiela et al. 2017]
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K=2
Pmin = .26
Pmax = .74

€ = 0.065



Separation statistics
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Results for Spectral Clustering by Normalized Cut
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Stability and the selection of K (in preparation)

10 sdp bound for n = 200 normal: 0 cluster_equal_size: 0 full: 1 k_true: 8

—— sigma: 0.6[8]
—— sigma: 0.8[8]
—— sigma: 1.0[8]

sdp bound




Outline

Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]



When to do (non-linear) dimension reduction
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> high-dimensional data p € R, D = 64 x 64
> can be described by a small number d of continuous parameters

> Usually, large sample size n



When to do (non-linear) dimension reduction
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Why?
» To save space and computation
» n x D data matrix -+ nx s, s << D
> To use it afterwards in (prediction) tasks
> To understand the data better
> preserve large scale features, suppress fine scale features



Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

www.sdss.org

> Preprocessed by Jacob VanderPlas and Grace Telford
> n = 675,000 spectra x D = 3750 dimensions

www.sdss.org




Molecular configurations

aspirin molecule

aspirin3,3 vs 8.2

» Data from Molecular Dynamics (MD) simulations

of small molecules by [Chmiela et al. 2016]

> n = 200,000 configurations x D ~ 20 — 60
dimensions

stable

transition

923

e




Brief intro to manifold learning algorithms
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> Input Data pi, ... pn, embedding dimension m, neighborhood scale
parameter €
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Brief intro to manifold learning algorithms

ALL ML Algorithms

> Input Data p1, ... ps, embedding dimension m, neighborhood scale
parameter ¢
» Construct neighborhood graph p, p’ neighbors iff ||[p — p/||2 < e

» Construct a n X n sparse distance matrix

D= [Hp - p,H]p,p'neighbors




Brief intro to manifold learning algorithms

ALL ML Algorithms

> Input Data pi, ... ps, embedding dimension m, neighborhood scale
parameter ¢

» Construct neighborhood graph p, p’ neighbors iff ||[p — p/||2 < e

» Construct a n X n sparse distance matrix
/
D= [||P — P H]P,P/neighbors
» Optional: construct kernel matrix, .e.g
; =Hlp=p'II> " nei
S =[Spplpprep With Sy =e ¢ iff p, " neighbors

and Laplacian matrix

pi,...pn C RP



Embedding in 2 dimensions by different manifold learning algorithms

Original data
(Swiss Roll with hole)

Laplacian Eigenmaps
(LE) Isomap

~ X

D =

Local Tangent Space

Local Linear Embedding Alignment (LTSA)

(LLE)

£
v

A

P

ex



Preserving topology vs. preserving (intrinsic) geometry

» Algorithm maps data p € R® — ¢(p) = x € R™

» Mapping M — ¢(M) is diffeomorphism
preserves topology
often satisfied by embedding algorithms

> Mapping ¢ preserves
> distances along curves in M
> angles between curves in M
> areas, volumes
...i.e. ¢ is isometry
For most algorithms, in most cases, ¢ is not isometry

Preserves topology Preserves topology + intrinsic geometry

o
)
iy
(i




Previous known results in geometric recovery

Positive results

>

Nash’s Theorem: Isometric
embedding is possible.

Diffusion Maps embedding is
isometric in the limit
[Berard,Besson,Gallot 94]

algorithm based on Nash's theorem
(isometric embedding for very low d)
[Verma 11]

Isomap [Tennenbaum,]recovers flat
manifolds isometrically

Consistency results for Laplacian and
eigenvectors

> [Hein & al 07,Coifman & Lafon
06, Singer 06, Ting & al 10,
Gine & Koltchinskii 06]

> imply isometric recovery for LE,
DM in special situations

Negative results
> obvious negative examples

> No affine recovery for normalized
Laplacian algorithms [Goldberg&al
08]

» Sampling density distorts the
geometry for LE [Coifman& Lafon 06]



Our approach: Metric Manifold Learning

[Perrault-Joncas,M 10]

Given
» mapping ¢ that preserves topology

true in many cases

Objective

» augment ¢ with geometric information g
so that (¢, g) preserves the geometry

Dominique
Perrault-Joncas

g is the Riemannian metric.



g for Sculpture Faces

> n = 698 gray images of faces in D = 64 X 64 dimensions
> head moves up/down and right/left

LTSA Algoritm



LTSA

Laplacian Eigenmaps



Relation between g and A

» A = Laplace-Beltrami operator on M
> A = div-grad

2
> on c{m:zj%

> on weighted graph with similarity matrix S, and t, = pr, Sppts
A = diag{t,} — S

Proposition 1 (Differential geometric fact)

Af = «/det(G)Z% <\/<%(G)Z(G_l)/kai){kf> ,



Estimation of g

Proposition
Let A be the Laplace-Beltrami operator on M. Then

ha(p) = SA(6x — 0u(p)) (91— 31D lstrhontr

where h = g1 (matrix inverse) and k,/ =1,2,... m are embedding
dimensions

Intuition:
> at each point p € M, G(p) is a d x d matrix
> apply A to embedding coordinate functions ¢1,... ¢m
> this produces G~*(p) in the given coordinates
> our algorithm implements matrix version of this operator result

> consistent estimation of A is well studied [Coifman&Lafon 06,Hein&al 07]



Calculating distances in the manifold M

Original

true distance d = 1.57

Shortest | Metric | Rel
Embedding | ||f(p) — f(p’)|| | Path dg d error
Original data 1.41 1.57 1.62 | 3.0%
Isomap s =2 1.66 1.75 1.63 | 3.7%
LTSAs=2 0.07 0.08 1.65 4.8%
LEs=2 0.08 0.08 1.62 3.1%
dx’ de
ie) = / Z Ci e dt dt b




Riemannian Relaxation for Ethanol molecular configurations

Distortion
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Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric G;
along with embedding coordinates
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Metric Manifold Learning summary

Metric Manifold Learning = estimating (pushforward) Riemannian metric G;
along with embedding coordinates
Why useful
> Measures local distortion induced by any embedding algorithm
Gi = l4 when no distortion at p;
> Algorithm independent geometry preserving method
» Outputs of different algorithms on the same data are comparable

Applications
» Estimating distortion
» Correcting distortion
> Integrating with the local volume/length units based on G;
> Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
» Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17] and
of intrinsic dimension d (variant of [Chen,Little,Maggioni,Rosasco |)

> Accelerating Topological Data Analysis (in progress), selecting
eigencoordinates [Chen, M NeurlPS19]



Outline

Manifold coordinates with physical meaning [M,Koelle,Zhang arXiv:1811.11891]



Motivation

ethanol torsion 2 persistence

b &« Xod

> 2 rotation angles parametrize this manifold

> Can we discover these features automatically? Can we select these angles
from a larger set of features with physical meaning?




Problem formulation

Sam Yu-chia
Koelle Chen

» Given

> data&; €RP,j€1...n

> embedding of data ¢(&1.5) in R™
» Assume

> data sampled from smooth manifold M
» M Riemannian with metric inherited from RP
> embedding algorithm ¢ : M — ¢(M) is smooth embedding



Problem formulation

Sam Yu-chia
Koelle Chen

> Given
> data & €RP,ic1...n
> embedding of data ¢(&1.5) in R™
» dictionary of domain-related smooth functions
G ={g,...g, with gj : R® = R}.
> e.g. all torsions in ethanol
> Assume

> data sampled from smooth manifold M
» M Riemannian with metric inherited from RP
> embedding algorithm ¢ : M — ¢(M) is smooth embedding



Problem formulation
Sam Yu-chia
Koelle Cen

> Given
» data&; €RP,ie€1...n
> embedding of data ¢(&1:) in R™
> dictionary of domain-related smooth functions
G={a,...g, with g : R°? = R}.
> e.g. all torsions in ethanol
> Assume
> data sampled from smooth manifold M
» M Riemannian with metric inherited from RP
> embedding algorithm ¢ : M — ¢(M) is smooth embedding
> Goal to express the embedding coordinate functions ¢1 ... ¢m in terms of
functions in G.
More precisely, we assume that

o(x) = higi(x), - .- gi(x)) with g, j, CG.
Problem: find S = {ji1,...js}



Challenges

d(x) = h(gj(x),... g.(x)) withg; ;i CG.

v

Framework: sparse recovery

v

Challenges

v

h non-linear (but smooth)
¢ defined up to diffeomorphism

> hence, h cannot assume a parametric form
> will not assume one-to-one correspondence between ¢ coordinates and g;
in dictionary

\4

¢1 = 8182, ¢1 = sin(71)
eg. ¢2=gisin(gl) or ¢y = cos(ri)(ethanol)
¢3 = sin(m2)



Challenges

d(x) = h(gj(x),... g.(x)) withg; ;i CG.

v

Framework: sparse recovery

v

Challenges

v

h non-linear (but smooth)
¢ defined up to diffeomorphism

> hence, h cannot assume a parametric form
> will not assume one-to-one correspondence between ¢ coordinates and g;
in dictionary

\4

1 = g18, $1 = sin(71)
e.g. ¢ =gisin(g?) or ¢ = cos(ri)(ethanol)
¢3 = sin(m2)

» we do not assume ¢ isometric (but smooth)

> what requirements on dictionary functions gi., for unique recovery?



First ldea: from non-linear to linear

> If

> (sparse non-linear, non-parametric recovery)

> then

Dé = DhDg

> sparse linear recovery



First ldea: from non-linear to linear

> If

> (sparse non-linear, non-parametric recovery)

> then

Dé = DhDg

> sparse linear recovery

> A sparse linear system for every data point 7
» Require subset S is same for all i

> group Lasso problem
» Functional Lasso

> optimize
(FLASs0) mm Ih(B) = 5 Z||y,

> with y; = Vo (&), Xi = Var,(6), b = 52(&)
> support S of 3 selects gj, .., from G




Multidimensional FLASSO

» Assume

Vi = VA(E) Xi = Vap(e) fi, = g—;(@)

and
Bik = vec(Bijk, j =1: p) € R

Bj = vec(Bjjk, i=1:nk=1:m)eR™,

NOE %ZZHm—xm + Znﬁ,n

i=1 k=1
- e oaw
1T
Bj
] 1
~
= | b
Ie
B

=
[
]

®3)

4)

(5)



FLASSO in manifold setting

M

gradz61(&i)

TeM Aig = Projr (6~ &)
M &
> gradients V — manifold gradients
grad

» gradg; is in T¢; M

> Vg known analytically ¢(M)
> grad Gk is in 7;>(£;)¢(M)

> must be estimated % Boo—oer) o6
» must pull-back grad ¢« (#(&)) to Te, M i

4;('6")1 she0n




Theory

> When is S unique? / When can M be uniquely parametrized by G?
Functional independence conditions on dictionary G and subset gj,..j.

» Basic result

gs = hogs: on U iff

Dgs >
rank = rank Dgsr on U
( DgS’ 8s



Theory

> When is S unique? / When can M be uniquely parametrized by G?
Functional independence conditions on dictionary G and subset gj,..j.

» Basic result
gs = hogs: on U iff

Dgs >
rank = rank Dgsr on U
( DgS’ 8s

» When can FLASSO recover S ?
Incoherence conditions
W= max |XJ,TXJ/,| v = %T ndo? = E €%
i=1:n,jES,j' €S minj=1., || X Xis||2

ik

Theorem If uv+/s + "Tm < 1then §j=0forj¢S.



Ethanol MD simulation
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Toluene MD simulation

Toluene
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Para-xilene MD simulation
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Malondialdehyde MD simulation
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Summary Cluster validation without model assumptions [M NeurlPS 2018]

> A general method that can be applied to any clustering cost that has a
convex relaxation
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> A general method that can be applied to any clustering cost that has a
convex relaxation

Metric Manifold learning

» Before embedding: choice of kernel width € [Perrault-Joncas,McQueen,M
17], choice of intrinsic dimension d

» Simultaneously with embedding: Gaussian process prediction, estimating
vector fields [Perrault-Joncas,M 10], eigenfunctions vs. embedding
coordinates [M,Chen NeurlPS19]

> After embedding: estimate distortion by H and correct it by Riemannian
Relaxation [Perrault-Joncas,M 10, McQueen,Perrault-Joncas,M 16]



Summary Cluster validation without model assumptions [M NeurlPS 2018]

> A general method that can be applied to any clustering cost that has a
convex relaxation

Metric Manifold learning

» Before embedding: choice of kernel width € [Perrault-Joncas,McQueen,M
17], choice of intrinsic dimension d

» Simultaneously with embedding: Gaussian process prediction, estimating
vector fields [Perrault-Joncas,M 10], eigenfunctions vs. embedding
coordinates [M,Chen NeurlPS19]

> After embedding: estimate distortion by H and correct it by Riemannian
Relaxation [Perrault-Joncas,M 10, McQueen,Perrault-Joncas,M 16]

Manifold coordinates with pysical meaning [arXiv:1811.11891]
> Interpretation in the language of the domain

» From non-parametric to parametric

Python package github.com/mmp2/megaman
» tractable for millions of points
» manifold learning and clustering

> incorporates state of the art results
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» Statistical guarantees — without untestable assumptions

» Good community practices — all machine learning algorithms should come
with validation procedures
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	Stability guarantees for clustering [M NeurIPS 2018]
	provable ``correctness'' for the practitioner

	Metric manifold learning [Perrault-Joncas,M arXiv:1305.7255]
	``coordinate independent'' geometric recovery

	Manifold coordinates with physical meaning [M,Koelle,Zhang arXiv:1811.11891]
	interpretability in the language of the problem


