

Machine learning for molecular simulations: priors and predictive constraints

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Tristan Bereau Max Planck Institute for Polymer Research, Mainz, Germany

High-throughput screening

З

High-throughput screening

High-throughput screening

Outline

High-throughput thermodynamics

Outline

Intermolecular interactions across chemical space

Predicting the intermolecular energy landscape 🔰

Predicting the intermolecular energy landscape $\left| \begin{array}{c} \mathbf{z} \end{array} \right|$

$\{Z_i, \mathbf{r}_i\} \mapsto U(\{Z_i, \mathbf{r}_i\})$

Predicting the intermolecular energy landscape

Coordinates

$\{Z_i, \mathbf{r}_i\} \mapsto U(\{Z_i, \mathbf{r}_i\})$ Potential energy

$\{Z_i, \mathbf{r}_i\} \mapsto U(\{Z_i, \mathbf{r}_i\})$

Phase (e.g., gas vs. condensed)

Conformational (e.g., *cis* vs. *trans*)

Compositional

Transferability challenges

AMOEBA polarizable force field

 $U = U_{bond} + U_{angle} + U_{b\theta} + U_{oop} + U_{torsion} + U_{vdW} + U_{ele}^{perm} + U_{ele}^{ind}$

Water-sulfate anion clusters

Ponder et al., Phys Chem B (2010)

Max Planck Institute for Polymer Research

Small molecule solvation free energies

Phase and conformational transferability

$\{Z_i, \mathbf{r}_i\} \mapsto U(\{Z_i, \mathbf{r}_i\})$

1. Physics-based (force field)

2. Data-driven (machine learning)

$\{Z_i, \mathbf{r}_i\} \mapsto U(\{Z_i, \mathbf{r}_i\})$

1. Physics-based (force field) **More parameters**

Transferability

2. Data-driven (machine learning) **Extrapolation**

Strategies for energy landscape prediction

Extrapolation in machine learning

Extrapolation in machine learning

Extrapolation in machine learning

Machine learning: encoding physics

Chmiela, Sauceda, Müller, Tkatchenko, Nat. Comm. 9:3887 (2018)

"Transform the configuration, and the prediction transforms with it"

conservation

 $\mathbf{K}(\mathcal{S}\rho, \mathcal{S}'\rho') = \mathbf{S}\mathbf{K}(\rho, \rho')\mathbf{S}'^{\mathrm{T}}$

Glielmo, Sollich, De Vita, *Phys Rev B* **95** (2017)

Machine learning: encoding physics

Wishlist

THEORY

GROUP

- long-range interactions
- chemical-space transferability

Size of the interpolation-space?

"Transform the configuration, and the prediction transforms with it"

018)

$\mathbf{K}(\mathcal{S}\rho, \mathcal{S}'\rho') = \mathbf{S}\mathbf{K}(\rho, \rho')\mathbf{S}'^{\mathrm{T}}$

Glielmo, Sollich, De Vita, *Phys Rev B* **95** (2017)

Intermolecular interactions across chemical space

Intermolecular interactions across chemical space 📿

Nuclear charges

Coordinates

Intermolecular interactions across chemical space 📿

Nuclear charges

Coordinates

Any small molecule made of H, C, O, N neutral compounds

Coordinates

Physics-based models

- Encode laws, symmetries
- Little chemical information

Any small molecule made of H, C, O, N neutral compounds

Intermolecular interactions across chemical space

Physics-based aspect

Long-ranged

- Static electrostatics
- Many-body dispersion
- Polarization

Van Vleet, Misquitta, Stone, and Schmidt, *J. Chem. Theory Comput.* **12** (2016); Vandenbrande, et al., *J. Chem. Theory Comput.* **13** (2017); Grimme, *J. Chem. Theory Comput.* **10** (2014); Verstraelen, et al., *J. Chem. Theory Comput.* **12** (2016); Metz et al, *J. Chem. Theory Comput* **12** (2016)

Short-ranged

- Charge penetration
- Repulsion
- (Charge transfer)

Physics-based aspect

Long-ranged

Perturbation theory

- Static electrostatics
- Many-body dispersion
- Polarization

Van Vleet, Misquitta, Stone, and Schmidt, J. Chem. Theory Comput. 12 (2016); Vandenbrande, et al., J. Chem. Theory Comput. 13 (2017); Grimme, J. Chem. Theory Comput. 10 (2014); Verstraelen, et al., J. Chem. Theory THEORY *Comput.* **12** (2016); Metz et al, *J. Chem. Theory Comput* **12** (2016)

Short-ranged

Overlap models

- Charge penetration
- Repulsion
- (Charge transfer)

 $S_{ij} = \int \mathrm{d}^3 \mathbf{r} \rho_i(\mathbf{r}) \rho_j(\mathbf{r})$

Physics-based aspect

Long-ranged

- Static electrostatics
- Many-body dispersion
- Polarization

Use ML to predict atoms-in-molecules properties

- Multipole moments
- Hirshfeld ratios

Van Vleet, Misquitta, Stone, and Schmidt, J. Chem. Theory Comput. 12 (2016); Vandenbrande, et al., J. Chem. Theory Comput. 13 (2017); Grimme, J. Chem. Theory Comput. 10 (2014); Verstraelen, et al., J. Chem. Theory THEORY *Comput.* **12** (2016); Metz et al, *J. Chem. Theory Comput* **12** (2016) GROUP

Short-ranged

- Charge penetration
- Repulsion
- (Charge transfer)

Atomic density widths/populations

Van Vleet, Misquitta, Stone, and Schmidt, J. Chem. Theory Comput. 12 (2016); Vandenbrande, et al., J. Chem. Theory Comput. 13 (2017); Grimme, J. Chem. Theory Comput. 10 (2014); Verstraelen, et al., J. Chem. Theory THEORY *Comput.* **12** (2016); Metz et al, *J. Chem. Theory Comput* **12** (2016) GROUP

Stone, The Theory of Intermolecular Forces

Static multipole electrostatics

THEORY GROUP Stone, The Theory of Intermolecular Forces

THEORY Stone, The Theory of Intermolecular Forces

THEORY GROUP Stone, The Theory of Intermolecular Forces

Static multipole electrostatics

dipoles, quadrupoles rotate with the sample $1 \frac{3R_{\alpha}R_{\beta} - R^2\delta_{\alpha\beta}}{-7}$

 $e^{\lambda l}$

kernel-ridge regression $\mathbf{K}\alpha = p$

0.01

0.1

0.001

Descriptor: aSLATM

$\mathbf{M}^{I} = [Z_{I}, \{\rho_{I}^{IJ}(R)\}, \{\rho_{I}^{IJK}(\theta)\}]$

Huang and von Lilienfeld, J. Chem. Phys. 145 (2016) Huang and von Lilienfeld, arXiv:1707.04146, 2017

Multipoles: Learning curves

 $10^1 \, 10^2 \, 10^3 \, 10^4 \, 10^1 \, 10^2 \, 10^3 \, 10^4 \, 10^1 \, 10^2 \, 10^3 \, 10^4$

Atoms in training set

Easier to learn H,O than C,N₁₅

Multipoles: Correlation curves

monopole

C,**N** have more complex valencies

Many-body dispersion

Pairwise London dispersion: $E_{AB} = -\frac{C_{6AB}}{R^6}$

 $U_{\rm LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

Casimir-Polder: $C_{6AB} = \frac{3}{\pi} \int_0^\infty \mathrm{d}\omega \alpha_p(i\omega) \alpha_q(i\omega)$

Many-body dispersion

Pairwise London dispersion: $E_{AB} = -\frac{C_{6AB}}{R^6}$

 $U_{\rm LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right]$

Max Planck Institute for Polymer Research

Casimir-Polder:

$$C_{6AB} = \frac{3}{\pi} \int_{0}^{\infty} d\omega \alpha_{p}(i\omega) \alpha_{q}(i\omega)$$

Need atomic polarizabilities as input parameters

Many-body dispersion

Pairwise London dispersion: $E_{AB} = -\frac{C_{6AB}}{R^6}$

$$U_{\rm LJ}(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^{12} \right]$$

Many-body dispersion

Coupled fluctuating dipole model:

Quantum harmonic oscillators

Donchev, Chem Phys (2006)

Max Planck Institute for Polymer Research

Casimir-Polder:

$$C_{6AB} = \frac{3}{\pi} \int_{0}^{\infty} d\omega \alpha_{p}(i\omega) \alpha_{q}(i\omega)$$

Need atomic polarizabilities as input parameters

Atomic polarizabilities

Atom-in-molecule: Hirshfeld ratios

Tkatchenko et al., Phys Rev Lett (2012)

Many-body dispersion

Pairwise London dispersion:

Many-body dispersion

Coupled fluctuating dipole model:

Quantum harmonic oscillators

Donchev, Chem Phys (2006)

Max-Planck-Institut ür Polymerforschung

Max Planck Institute for Polymer Research

Casimir-Poider:

$$C_{6AB} = \frac{3}{\pi} \int_{0}^{\infty} \mathrm{d}\omega \alpha_{p}(i\omega) \alpha_{q}(i\omega)$$

Need atomic polarizabilities as input parameters

Atomic polarizabilities

Atom-in-molecule: Hirshfeld ratios

Tkatchenko et al., Phys Rev Lett (2012)

Learning Hirshfeld ratios

Reference Hirshfeld ratio

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

 $\alpha_p^0 \approx \frac{V_p^{\text{eff}}}{V_p^{\text{free}}} \alpha_p^{\text{free}} = \frac{\int d\mathbf{r} r^3 w_p(\mathbf{r}) \mathbf{n}(\mathbf{r})}{\int d\mathbf{r} r^3 n_p^{\text{free}}} \alpha_p^{\text{free}}$

Training: 12.3k atoms in 1k molecules MAE: 0.006

 $\frac{Z_i Z_j}{|\mathbf{R}_i - \mathbf{R}_j|} \quad \forall \quad i \neq j$

Polarizability

Thole model

N point dipole polarizabilities placed in a homogeneous field F

Induced dipole moment at point p:

$$\mu_p = \alpha_p \left(\mathbf{F}_p \cdot \mathbf{F}_p$$

- I_{pq} : dipole field tensor
- $\mathbf{F}_{\mathcal{D}}$ given by static electrostatic interactions at site p

Thole, Chem Phys, **59**, 341 (1981)

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

Polarizability

Thole model

N point dipole polarizabilities placed in a homogeneous field **F**

Induced dipole moment at point p:

$$\mu_p = \alpha_p \left(\mathbf{F}_p \cdot \mathbf{F}_p$$

- I_{pq} : dipole field tensor
- $\mathbf{F}_{\mathcal{D}}$ given by static electrostatic interactions at site p

Thole, Chem Phys, **59**, 341 (1981)

Max-Planck-Institut ür Polymerforschung

Max Planck Institute for Polymer Research

Need atomic polarizabilities and multipoles as input parameters

 $\alpha_{\text{model}}^{\text{iso}}$ [Bohr³]

Tkatchenko and Scheffler, Phys Rev Lett (2009)

Molecular polarizabilities

Max-Planck-Institut für Polymerforschung

Max Planck Institute for Polymer Research

7 parameters to cover chemical space of CHON intermolecular energies

Polarization

Many-body dispersion

Repulsion

Few global parameters

2

1.50 Mixed complexes: benzene C; H; O; N

Validation: SSI

THEORY Burns *et al.*, *J Chem Phys*, **147** (2017).

2,200+ amino-acid pairs

Ref: CCSD(T)/CBS

Error: 0.4 kcal/mol

THEORY GROUP Jurečka et al., Phys Chem Chem Phys 8 (2006)

Toward the condensed phase

THEORY Bereau, DiStasio Jr., Tkatchenko, von Lilienfeld, *JCP* **148**, 241706 (2018)

Intermolecular interactions across chemical space

7 global parameters

Lessons learned ML force fields can be systematically improved

- physical effects (perturbation theory at short range)
- chemical groups
- provide data + ML model

Outline

High-throughput thermodynamics

Outline

Intermolecular interactions across chemical space

Drug permeability

Drug permeability

Drug permeability

Fokker-Planck; Smoluchoswki

Permeability coefficient

$$P^{-1} = \int \mathrm{d}z \frac{\exp\left(\Delta G(z)/k_{\rm B}T\right)}{D_z(z)}$$

Swift & Amaro, Chem Biol & Drug THEORY GROUP *Design* **81** (2013)

Drug permeability

Fokker-Planck; Smoluchoswki

Permeability coefficient

$$P^{-1} = \int \mathrm{d}z \frac{\exp\left(\Delta G(z)/k_{\rm B}T\right)}{D_z(z)}$$

Swift & Amaro, Chem Biol & Drug THEORY GROUP *Design* **81** (2013)

Drug permeability

 $\Delta G(z)$

Fokker-Planck; Smoluchoswki

Permeability coefficient

$$P^{-1} = \int \mathrm{d}z \frac{\exp\left(\Delta G(z)/k_{\rm B}T\right)}{D_z(z)}$$

Swift & Amaro, Chem Biol & Drug THEORY GROUP *Design* **81** (2013)

Drug permeability

force from computer simulations

Chipot and Comer, *Scientific Reports* (2016)

- Manual force-field parametrization
- Sampling: 100,000+ CPU-hours

THEORY

• GROUP

Chipot and Comer, *Scientific Reports* (2016)

THEORY

• GROUP

Chemical group:

- net charge
- hydrogen bond
- water/octanol partitioning

Automated coarse-graining: Martini

Chemical group:

- net charge
- hydrogen bond
- water/octanol partitioning

18 bead types: chemical fragments Marrink, Tieleman, Chem Soc Rev 42 (2013) Periole, Marrink, Biomolecular Simulations (2013)

Chemical group:

- hydrogen bond
- water/octanol partitioning

neural network trained on experimental data

Tetko et al., J Chem Inf Comput Sci 41 (2001)

Automated parametrization for small molecules

THEORY GROUP Bereau & Kremer, *J Chem Theory Comput* **11** (2015)

THEORY Jakobtorweihen et al. J Chem Phys **141** (2014); Bereau & Kremer, J Chem Theory Comput, **11** (2015)

Solute insertion in the membrane

ACS Publications

THEORY Jakobtorweihen et al. J Chem Phys **141** (2014); Bereau & Kremer, J Chem Theory Comput, **11** (2015)

THEORY Jakobtorweihen et al. J Chem Phys **141** (2014); Bereau & Kremer, J Chem Theory Comput, **11** (2015)

Construct reduced chemical space

We don't focus on specific compounds, instead explore chemical diversity

Molecular weight:

~ 30-160 Da

Construct reduced chemical space

We don't focus on specific compounds, instead explore chemical diversity

Molecular weight:

2 ~ 30-160 Da

CG: combinatorial explosion is reduced

G

Identifying simple thermodynamic relations

Midplane

Water

Intertace

THEORY GROUP Menichetti, Kanekal, Kremer, Bereau, J Chem Phys 147 (2017)

G

Identifying simple thermodynamic relations

 \boldsymbol{Z}

Midplane

$\Delta G_{I \rightarrow}$ Water Interface

 $\Delta G_{W\to O}$

• GROUP Menichetti, Kanekal, Kremer, Bereau, J Chem Phys 147 (2017)

 GROUP Menichetti, Kanekal, Kremer, Bereau, J Chem Phys 147 (2017)

🕼 Identifying simple thermodynamic relations 🔰

 GROUP Menichetti, Kanekal, Kremer, Bereau, J Chem Phys 147 (2017)

Identifying simple thermodynamic relations

 GROUP Menichetti, Kanekal, Kremer, Bereau, J Chem Phys 147 (2017)

 THEORY
GROUP Menichetti, Kanekal, Kremer, Bereau, J Chem Phys 147 (2017)

PMF prediction from experimental value

High-throughput coarse-grained

THEORY GROUP Menichetti, Kanekal, Kremer, Bereau, J Chem Phys 147 (2017)

PMF prediction from experimental value

High-throughput coarse-grained

THEORY GROUP Menichetti, Kanekal, Kremer, Bereau, J Chem Phys 147 (2017)

PMF prediction from experimental value

High-throughput coarse-grained

Error across chemical space: linear relations: 1.8 kcal/mol coarse-grained: 1.4 kcal/mol

THEORY GROUP Menichetti, Kanekal, Kremer, Bereau, J Chem Phys 147 (2017)

Coarse-graining reduces chemical space

Reduction due to limited number of bead types

Coarse-graining reduces chemical space

High-throughput coarse-graining scheme

Menichetti, Kanekal, Bereau, ACS Cent. Sci. 5 (2019)

Menichetti, Kanekal, Bereau, ACS Cent. Sci. 5 (2019)

High-throughput coarse-graining scheme

Potential of mean force of neutral and charged species $\Delta G(z)$ $\Delta G_{W \rightarrow M}$ pK_{a} $\bigstar \Delta G(z)$ ********** $\blacktriangle \Delta G(z)$ \mathbf{r}_{z}

Menichetti, Kanekal, Bereau, ACS Cent. Sci. 5 (2019)

THEORY GROUP Menichetti, Kanekal, Bereau, ACS Cent. Sci. 5 (2019)

12 9 3 6 $\Delta G_{W \rightarrow M} \text{ [kcal/mol]}$

> What type of chemistry covers the surface?

 $\mathsf{ap}K\mathsf{a}$

THEORY GROUP Menichetti, Kanekal, Bereau, ACS Cent. Sci. 5 (2019)

12 9 3 6 $\Delta G_{W \rightarrow M} \text{ [kcal/mol]}$

> What type of chemistry covers the surface?

Analysis of **500,000+** compounds

THEORY GROUP Menichetti, Kanekal, Bereau, ACS Cent. Sci. 5 (2019)

 $\mathsf{ap}K\mathsf{a}$

Chemical-space coverage

Kernel-based machine learning

$\Delta G(\mathbf{x}) = \sum \alpha_i K(\mathbf{x}_i^*, \mathbf{x})$

THEORY GROUP Hoffmann, Menichetti, Kanekal, Bereau, *Phys Rev E* **100** (2019)

Boosting the database with machine learning

Training of machine learning model on Monte Carlo dataset Training data Predictions

THEORY GROUP Hoffmann, Menichetti, Kanekal, Bereau, *Phys Rev E* **100** (2019)

••• GROUP Hoffmann, Menichetti, Kanekal, Bereau, Phys Rev E 100 (2019)

Physics offers controlled exploration of chemical space

THEORY Hoffmann, Menichetti, Kanekal, Bereau, *Phys Rev E* **100** (2019)

THEORY GROUP Hoffmann, Menichetti, Kanekal, Bereau, Phys Rev E 100 (2019)

Physics offers controlled exploration of chemical space

THEORY GROUP Hoffmann, Menichetti, Kanekal, Bereau, Phys Rev E 100 (2019)

Conclusions

MAX PLANCK INSTITUTE FOR POLYMER RESEARCH

Conclusions

High-throughput thermodynamics

- Coarse-graining reduces the size of chemical space: fewer simulations
- Structure-property relationships: CG suggests low-dimensional representation

Force fields across chemical space

- Physics encode long-range interactions Symmetries reduce the interpolation
- Learning from QM (atomistic) or physicochemical properties (CG)

Acknowledgments

Group members

- Marius Bause
- Yasemin Bozkurt Varolgunes
- Alessia Centi
- Arghya Dutta
- Martin Girard
- Christian Hoffmann
- Kiran Kanekal
- Chan Liu

Collaborators

- Robert DiStasio Jr. (Cornell)
- Anatole von Lilienfeld (Basel)
- Alexandre Tkatchenko (Luxembourg)
- Dirk Schneider (JGU Mainz)
- Michael Wand (JGU Mainz)

Roberto Menichetti

- Bernadette Mohr
- René Scheid
- Clemens Rauer
- Joseph F. Rudzinski
- Marc Stieffenhofer
- Timon Wittenstein
- Svenja Wörner

- Kurt Kremer
- Denis Andrienko
- Sapun Parekh
- Tanja Weil

MAX PLANCK RESEARCH **NETWORK** on big-data-driven materials science

Noether-Programm

