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AMOEBA polarizable force field
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CHARMM,21 GROMOS,22,23 and OPLS24–26 potential energy models over many decades.
In this feature article, we hope to continue that tradition by summarizing some important
early validation tests by a consortium of research groups at Washington University St.
Louis, University of Texas at Austin, UC Berkeley and Stanford University conducted on
the general purpose polarizable force field, AMOEBA (Atomic Multipole Optimized
Energetics for Biomolecular Applications) developed by Ponder and co-workers.27–31

The first level of comprehensive testing of any force field will include predictions made by
that potential against the best experiments and theoretical calculations available on a wide
array of small molecule data in both gas phase and condensed phase environments. In fact,
AMOEBA belongs to the class of molecular mechanics force fields that aims for high
fidelity to ab initio calculations but at a computational cost that makes it suited for both
small molecule and biomolecule condensed phase studies where statistical mechanical
sampling is necessary. In practical terms, AMOEBA is intermediate in computational cost
between other transferable polarizable force fields such as SIBFA (Sum of Interactions
Between Fragments Ab initio),32 NEMO (Non-Empirical Molecular Orbital),33 and QM/
MM approaches such as DRF34 and inexpensive polarizable biomolecular force fields from
the Amber,11 CHARMM7,8,10 and OPLS/PFF consortiums.6,9 In this paper we review the
AMOEBA model and its performance in several areas including gas phase properties against
state-of-the-art quantum mechanical calculations, aqueous peptide solvation, structure and
dynamics, solvation free energies of small molecule protein analogues and drug-like
molecules with high precision, early structural stability studies of aqueous solvated proteins,
computational X-ray crystallography, and protein-ligand binding.

THE AMOEBA FORCE FIELD
The AMOEBA force field has the following general functional form for the interactions
among atoms

(1)

where the first five terms describe the short-range valence interactions (bond stretching,
angle bending, bond-angle cross term, and out-of-plane bending, and torsional rotation), and
the last three terms are the nonbonded vdW and electrostatic contributions. AMOEBA
contains a number of differences from “traditional” biomolecular potentials such as the
current Amber ff99SB,20 CHARMM27,21 OPLS-AA,25,26 and GROMOS 53A623 in the use
of bond-angle cross terms, a formal Wilson-Decius-Cross decomposition of angle bending
into in-plane and out-of-plane components, and a “softer” buffered 14-7 vdW form.
However, the major difference is replacement of the fixed partial charge model with
polarizable atomic multipoles through the quadrupole moments. One advantage of the
AMOEBA model is its emphasis on replication of molecular polarizabilities and
electrostatic potentials, instead of just interaction energies. The use of permanent dipoles
and quadrupoles allows accurate reproduction of molecular electrostatic potentials, and fine-
tuning of subtle directional effects in hydrogen bonding and other interactions. The inclusion
of explicit dipole polarization allows the AMOEBA model to respond to changing or
heterogeneous molecular environments, and allows direct parameterization against gas
phase experimental data and high-level quantum mechanical results. The AMOEBA model
also presents a consistent treatment of intra- and intermolecular polarization that is achieved
through a physically motivated damping scheme for local polarization effects.35,36 A further
attractive aspect of AMOEBA is its use of multipole moments derived directly from ab
initio quantum mechanical electron densities for small molecules and molecular fragments.

Ponder et al. Page 3

J Phys Chem B. Author manuscript; available in PMC 2011 March 4.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Strategies for energy landscape prediction

8

{Zi, ri} 7! U({Zi, ri})

1. Physics-based (force field)

2. Data-driven (machine learning)



Strategies for energy landscape prediction

8

{Zi, ri} 7! U({Zi, ri})

1. Physics-based (force field) 
 
 

2. Data-driven (machine learning)
Transferability

More parameters  
 
 
 

Extrapolation



Extrapolation in machine learning

9

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

r [�]

0

5

10

15

20

25

30

35

U
L
J
(r

)
[✏

]

ULJ(r)

Training points
Prediction

ULJ(r) = 4✏

⇣�
r

⌘12
�

⇣�
r

⌘6
�

<latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc=">AAACWHichVFNa9wwFJSd7+3XJj328shS2By62CG0zaEQ2kspPaRQN4G1u8ja510RSTbSc2Ex/pM5FEL+Sg7R7vrQJoUOCA0z85A0yislHUXRTRBubG5t7+zu9Z48ffb8RX//4IcrayswEaUq7WXOHSppMCFJCi8ri1znCi/yq09L/+IXWidL850WFWaaz4wspODkpUm/SiZNajV8/dIO7RF8gBNIsXJSlQZShQWN19sQ0sJyAamTM83BQmrlbE5HP5v4uIU3/wu9bTueTfqDaBStAI9J3JEB63A+6V+n01LUGg0JxZ0bx1FFWcMtSaGw7aW1w4qLKz7DsaeGa3RZs2qmhddemUJRWr8MwUr9c6Lh2rmFzn1Sc5q7h95S/Jc3rql4nzXSVDWhEeuDiloBlbCsGabSoiC18IQLK/1dQcy5L4f8Z/R8CfHDJz8myfHodBR/Oxmcfeza2GWv2CEbspi9Y2fsMztnCRPsN7sLtoLt4DYMwp1wbx0Ng27mJfsL4cE9X2yxCQ==</latexit><latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc="></latexit><latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc="></latexit><latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc="></latexit>



Extrapolation in machine learning

9

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

r [�]

0

5

10

15

20

25

30

35

U
L
J
(r

)
[✏

]

ULJ(r)

Training points
Prediction

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

r [�]

0

5

10

15

20

25

30

35

U
L
J
(r

)
[✏

]

ULJ(r)

Training points
Prediction

ULJ(r) = 4✏

⇣�
r

⌘12
�

⇣�
r

⌘6
�

<latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc="></latexit><latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc="></latexit><latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc="></latexit><latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc="></latexit>



Extrapolation in machine learning

9

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

r [�]

0

5

10

15

20

25

30

35

U
L
J
(r

)
[✏

]

ULJ(r)

Training points
Prediction

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

r [�]

0

5

10

15

20

25

30

35

U
L
J
(r

)
[✏

]

ULJ(r)

Training points
Prediction

Uniform prior

ULJ(r) = 4✏

⇣�
r

⌘12
�

⇣�
r

⌘6
�

<latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc="></latexit><latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc="></latexit><latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc="></latexit><latexit sha1_base64="G3h4pfP2Yj/buXVPhz0Vw6uTCrc=">AAACWHichVFNa9wwFJSd7+3XJj328shS2By62CG0zaEQ2kspPaRQN4G1u8ja510RSTbSc2Ex/pM5FEL+Sg7R7vrQJoUOCA0z85A0yislHUXRTRBubG5t7+zu9Z48ffb8RX//4IcrayswEaUq7WXOHSppMCFJCi8ri1znCi/yq09L/+IXWidL850WFWaaz4wspODkpUm/SiZNajV8/dIO7RF8gBNIsXJSlQZShQWN19sQ0sJyAamTM83BQmrlbE5HP5v4uIU3/wu9bTueTfqDaBStAI9J3JEB63A+6V+n01LUGg0JxZ0bx1FFWcMtSaGw7aW1w4qLKz7DsaeGa3RZs2qmhddemUJRWr8MwUr9c6Lh2rmFzn1Sc5q7h95S/Jc3rql4nzXSVDWhEeuDiloBlbCsGabSoiC18IQLK/1dQcy5L4f8Z/R8CfHDJz8myfHodBR/Oxmcfeza2GWv2CEbspi9Y2fsMztnCRPsN7sLtoLt4DYMwp1wbx0Ng27mJfsL4cE9X2yxCQ==</latexit>



Machine learning: encoding physics

10

is necessary which is based on the composite matrix ~P of all
pairwise assignment matrices ~Pij ! Pð~τijÞ within the training set.

We propose to reconstruct a rank-limited P via the transitive
closure of the minimum spanning tree (MST) that minimizes the bi-
partite matching cost (see Eq. (1), Fig. 1) over the training set. The
MST is constructed from the most confident bi-partite assignments
and represents the rank N skeleton of ~P, defining also P.

The resulting consistent multipartite matching P enables
us to construct symmetric kernel-based ML models of the
form

f̂ ðxÞ ¼
XM

ij

αijκ x;Pijxi
! "

; ð3Þ
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Fig. 1 Fully data-driven symmetry discovery. a, b Our multipartite matching algorithm recovers a globally consistent atom-atom assignment across the
whole training set of molecular conformations, which directly enables the identification and reconstructive exploitation of relevant spatial and temporal
physical symmetries of the molecular dynamics. c The global solution is obtained via synchronization of approximate pairwise matchings based on the
assignment of adjacency matrix eigenvectors, which correspond in near isomorphic molecular graphs. We take advantage of the fact that the minimal
spanning set of best bipartite assignments fully describes the multipartite matching, which is recovered via its transitive closure. Symmetries that are not
relevant within the scope of the training dataset are successfully ignored. d This enables the efficient construction of individual kernel functions for each
training molecule, reflecting the joined similarity of all its symmetric variants with another molecule. The kernel exercises the symmetries by consolidating
all training examples in an arbitrary reference configuration from which they are distributed across all symmetric subdomains. This approach effectively
trains the fully symmetrized dataset without incurring the additional computational cost
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by augmenting the training set with the symmetric variations of
each molecule (see Supplementary Note 1 for a comparison with
alternative symmetry-adapted kernel functions). A particular
advantage of our solution is that it can fully populate all recovered
permutational configurations even if they do not form a
symmetric group, severely reducing the computational effort in
evaluating the model. Even if we limit the range of j to include all
S unique assignments only, the major downside of this approach
is that a multiplication of the training set size leads to a drastic
increase in the complexity of the cubically scaling kernel ridge
regression learning algorithm. We overcome this drawback by
exploiting the fact that the set of coefficients α for the
symmetrized training set exhibits the same symmetries as the
data, hence the linear system can be contracted to its original size,
while still defining the full set of coefficients exactly.

For notational convenience we transform all training geome-
tries into a canonical permutation xi ! Pi1xi, enabling the use of
uniform symmetry transformations Pj ! P1j (see Supplementary
Note 2). Simplifying Eq. (3) accordingly, gives rise to the
symmetric kernel that we originally set off to construct

f̂ xð Þ ¼
PM

i
αi

PS

q
κ x;Pqxi
! "

¼
P
i
αiκsym x; xið Þ;

ð4Þ

and yields a model with the exact same number of parameters as
the original, non-symmetric one.

Our symmetric kernel is an extension to regular kernels and
can be applied universally, in particular to kernel-based force
fields. Here we construct a symmetric variant of the GDML
model, sGDML. This symmetrized GDML force field kernel takes
the form:

Hess κsym
! "

x; x′
# $

¼
XS

q

Hess κð Þ x;Pqx
′

! "
Pq: ð5Þ

Accordingly, the trained force field estimator collects the
contributions of the partial derivatives 3N of all training points M
and number of symmetry transformations S to compile the
prediction for a new input x. It takes the form

f̂ F xð Þ ¼
XM

i

X3N

l

XS

q

ðPqαiÞl
∂
∂xl

∇κ x;Pqxi
! "

ð6Þ

and a corresponding energy predictor is obtained by integrating
f̂F with respect to the Cartesian geometry. Due to linearity of
integration, the expression for the energy predictor is identical up
to second derivative operator on the kernel function.

Every (s)GDML model is trained on a set of reference examples
that reflects the population of energy states a particular molecule
visits during an MD simulation at a certain temperature. For our
purposes, the corresponding set of geometries is subsampled from
a 200 picosecond DFT MD trajectory at 500 K following the
Boltzmann distribution. Subsequently, a globally consistent
permutation graph is constructed that jointly assigns all
geometries in the training set, providing a small selection of
physically feasible transformations that define the training set
specific symmetric kernel function. In the interest of computa-
tional tractability, we shortcut this sampling process to construct
sGDML@CCSD(T) and only recompute energy and force labels
at this higher level of theory.

The sGDML model can be trained in closed form, which is
both quicker and more accurate than numerical solutions. Model
selection is performed through a grid search on a suitable subset

of the hyper-parameter space. Throughout, cross-validation with
dedicated datasets for training, testing, and validation are used to
estimate the generalization performance of the model.

Forces and energies from GDML to sGDML@DFT to
sGDML@CCSD(T). Our goal is to demonstrate that it is possible
to construct compact sGDML models that faithfully recover
CCSD(T) force fields for flexible molecules with up to 20 atoms,
by using only a small set of few hundred molecular conforma-
tions. As a first step, we investigate the gain in efficiency and
accuracy of the sGDML model vs. the GDML model employing
MD trajectories of ten molecules from benzene to azobenzene
computed with DFT (see Fig. 2 and Supplementary Table 1). The
benefit of a symmetric model is directly linked to the number of
symmetries in the system. For toluene, naphthalene, aspirin,
malonaldehyde, ethanol, paracetamol, and azobenzene, sGDML
improves the force prediction by 31.3–67.4% using the same
training sets in all cases (see Table 1). As expected, uracil and
salicylic acid have no exploitable symmetries, hence the perfor-
mance of sGDML is unchanged with respect to GDML. The
inclusion of symmetries leads to a stronger improvement in force
prediction performance compared to energy predictions. This is
most clearly visible for the naphthalene dataset, where the force
predictions even improve unilaterally. We attribute this to the
difference in complexity of both quantities and the fact that an
energy penalty is intentionally omitted in the cost function to
avoid a tradeoff.

A minimal force accuracy required for reliable MD simulations
is MAE= 1 kcal mol−1 Å−1. While the GDML model can achieve
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prediction accuracy (in terms of the mean absolute error (MAE)) as a
function of training set size of both models trained on DFT forces: the gain
in efficiency and accuracy is directly linked to the number of symmetries in
the system
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VECTORIAL GAUSSIAN PROCESS

REGRESSION

We wish to model by a VGP the force f acting on
an atom whose chemical environment is in a configura-
tion ⇢ that encodes the positions of all of neighbours of
the atom, up to a suitable cutoff radius, in an arbitrary
Cartesian reference frame. In a Bayesian setting, before
any data is considered, f is treated as a Gaussian Process,
i.e., it is assumed that for any finite set of configurations
{⇢i, i = 1, . . . N} the values f(⇢i) taken by the vector
function f are well described by a multivariate Gaussian
distribution [21]. We write:

f(⇢) ⇠ GP(m(⇢),K(⇢, ⇢0)) (1)

where m(⇢) is a vector-valued mean function and K(⇢, ⇢0)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(⇢, ⇢0). The latter represents the correlation of the vec-
tors f(⇢) and f(⇢0) as a function of the two configurations
(“input space points”) ⇢ and ⇢

0:

K(⇢, ⇢0) = hf(⇢)fT(⇢0)i, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}

X

ij

vT
i
K(⇢i, ⇢j)vj = h(

X

i

vT
i
f(⇢i))

2
i � 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(⇢, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [27]
the distribution (1) is modified to take the data D into ac-
count [21]. If the likelihood function [22] is also Gaussian
(which effectively assumes that the observed forces fr

i
are

the true forces subject to Gaussian noise of variance �
2
n
)

then the resulting posterior distribution f(⇢ | D), condi-
tional on the data, will also be a Gaussian process

f(⇢ | D) ⇠ GP(f̂(⇢ | D), Ĉ(⇢, ⇢0)). (4)

The mean function of the posterior distribution, f̂(⇢ | D),
is at this point the best estimate for the true underlying
function:

f̂(⇢ | D) =
NX

ij

K(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j
. (5)

Here �
2
n
, formally is the noise affecting the observed

forces fr, serves in practice as a regulariser for the matrix
inverse. In the following, blackboard bold characters such

as K or I indicate N⇥N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(⇢i, ⇢j)). Simil-
arly, we denote by [K+ I�2

n
]�1
ij

the ij-block of the inverse
matrix.

We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ⇢i, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
⇢
0) = SK(⇢, ⇢0)S0T

. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the

“Transform the configuration, and 
the prediction transforms with it”

Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

Chmiela, Sauceda, Müller, Tkatchenko, Nat. Comm. 9:3887 (2018)
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is necessary which is based on the composite matrix ~P of all
pairwise assignment matrices ~Pij ! Pð~τijÞ within the training set.

We propose to reconstruct a rank-limited P via the transitive
closure of the minimum spanning tree (MST) that minimizes the bi-
partite matching cost (see Eq. (1), Fig. 1) over the training set. The
MST is constructed from the most confident bi-partite assignments
and represents the rank N skeleton of ~P, defining also P.

The resulting consistent multipartite matching P enables
us to construct symmetric kernel-based ML models of the
form

f̂ ðxÞ ¼
XM
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αijκ x;Pijxi
! "

; ð3Þ

sGDML

GDML

Data density

DFT reference

Symmetry lines

Geometrical symmetries Symmetries of the PES

Fluctional
Statistical

H3 rotor angle (°)
0

180
210

240

270

300

33030

60

90

120

150

0

180
210

240

270

300

33030

60

90

120

150

C-O rotor angle (°)

Globally inconsistent
local matching IP31 ≠ I

Bi-partite matching Multi-partite matching

M
D

 s
im

ul
at

io
n 

tim
e

A
 =

 U
Λ

U

⊥ Eigenvector
assignment

Transitive closure of 
minimum spanning tree

Adjacency matrix
(A)ij = ||ri − ri ||

Dynamic
symmetries

Model symmetries Symmetry lines Effective training set

Training cost

Regular
None

Exploited symmetry

Static
Dynamic
Both

Consolidation

P̃

M → P
~

PjkPij = Pik

Rank (P
~

) = N
skeleton of P

~

(M )ij

P13

I

I

P13

P31

K 1

K sym

K 2

K 3

I

+

=

+

P

M = abs(UG)abs(UH)

⊥

H
yd

ro
xy

l a
ng

le
 (

°)

M
at

ch
in

g

S
ym

m
et

ric
 m

od
el

–180 90 180–90 0 –180 90 180–90 0 –180 90 180–90 0

180

–90

–180

90

0

Methyl angle (°)

a b

c

d

Static symmetry

Fig. 1 Fully data-driven symmetry discovery. a, b Our multipartite matching algorithm recovers a globally consistent atom-atom assignment across the
whole training set of molecular conformations, which directly enables the identification and reconstructive exploitation of relevant spatial and temporal
physical symmetries of the molecular dynamics. c The global solution is obtained via synchronization of approximate pairwise matchings based on the
assignment of adjacency matrix eigenvectors, which correspond in near isomorphic molecular graphs. We take advantage of the fact that the minimal
spanning set of best bipartite assignments fully describes the multipartite matching, which is recovered via its transitive closure. Symmetries that are not
relevant within the scope of the training dataset are successfully ignored. d This enables the efficient construction of individual kernel functions for each
training molecule, reflecting the joined similarity of all its symmetric variants with another molecule. The kernel exercises the symmetries by consolidating
all training examples in an arbitrary reference configuration from which they are distributed across all symmetric subdomains. This approach effectively
trains the fully symmetrized dataset without incurring the additional computational cost
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by augmenting the training set with the symmetric variations of
each molecule (see Supplementary Note 1 for a comparison with
alternative symmetry-adapted kernel functions). A particular
advantage of our solution is that it can fully populate all recovered
permutational configurations even if they do not form a
symmetric group, severely reducing the computational effort in
evaluating the model. Even if we limit the range of j to include all
S unique assignments only, the major downside of this approach
is that a multiplication of the training set size leads to a drastic
increase in the complexity of the cubically scaling kernel ridge
regression learning algorithm. We overcome this drawback by
exploiting the fact that the set of coefficients α for the
symmetrized training set exhibits the same symmetries as the
data, hence the linear system can be contracted to its original size,
while still defining the full set of coefficients exactly.

For notational convenience we transform all training geome-
tries into a canonical permutation xi ! Pi1xi, enabling the use of
uniform symmetry transformations Pj ! P1j (see Supplementary
Note 2). Simplifying Eq. (3) accordingly, gives rise to the
symmetric kernel that we originally set off to construct

f̂ xð Þ ¼
PM

i
αi

PS

q
κ x;Pqxi
! "

¼
P
i
αiκsym x; xið Þ;

ð4Þ

and yields a model with the exact same number of parameters as
the original, non-symmetric one.

Our symmetric kernel is an extension to regular kernels and
can be applied universally, in particular to kernel-based force
fields. Here we construct a symmetric variant of the GDML
model, sGDML. This symmetrized GDML force field kernel takes
the form:

Hess κsym
! "

x; x′
# $

¼
XS

q

Hess κð Þ x;Pqx
′

! "
Pq: ð5Þ

Accordingly, the trained force field estimator collects the
contributions of the partial derivatives 3N of all training points M
and number of symmetry transformations S to compile the
prediction for a new input x. It takes the form

f̂ F xð Þ ¼
XM

i

X3N

l

XS

q

ðPqαiÞl
∂
∂xl

∇κ x;Pqxi
! "

ð6Þ

and a corresponding energy predictor is obtained by integrating
f̂F with respect to the Cartesian geometry. Due to linearity of
integration, the expression for the energy predictor is identical up
to second derivative operator on the kernel function.

Every (s)GDML model is trained on a set of reference examples
that reflects the population of energy states a particular molecule
visits during an MD simulation at a certain temperature. For our
purposes, the corresponding set of geometries is subsampled from
a 200 picosecond DFT MD trajectory at 500 K following the
Boltzmann distribution. Subsequently, a globally consistent
permutation graph is constructed that jointly assigns all
geometries in the training set, providing a small selection of
physically feasible transformations that define the training set
specific symmetric kernel function. In the interest of computa-
tional tractability, we shortcut this sampling process to construct
sGDML@CCSD(T) and only recompute energy and force labels
at this higher level of theory.

The sGDML model can be trained in closed form, which is
both quicker and more accurate than numerical solutions. Model
selection is performed through a grid search on a suitable subset

of the hyper-parameter space. Throughout, cross-validation with
dedicated datasets for training, testing, and validation are used to
estimate the generalization performance of the model.

Forces and energies from GDML to sGDML@DFT to
sGDML@CCSD(T). Our goal is to demonstrate that it is possible
to construct compact sGDML models that faithfully recover
CCSD(T) force fields for flexible molecules with up to 20 atoms,
by using only a small set of few hundred molecular conforma-
tions. As a first step, we investigate the gain in efficiency and
accuracy of the sGDML model vs. the GDML model employing
MD trajectories of ten molecules from benzene to azobenzene
computed with DFT (see Fig. 2 and Supplementary Table 1). The
benefit of a symmetric model is directly linked to the number of
symmetries in the system. For toluene, naphthalene, aspirin,
malonaldehyde, ethanol, paracetamol, and azobenzene, sGDML
improves the force prediction by 31.3–67.4% using the same
training sets in all cases (see Table 1). As expected, uracil and
salicylic acid have no exploitable symmetries, hence the perfor-
mance of sGDML is unchanged with respect to GDML. The
inclusion of symmetries leads to a stronger improvement in force
prediction performance compared to energy predictions. This is
most clearly visible for the naphthalene dataset, where the force
predictions even improve unilaterally. We attribute this to the
difference in complexity of both quantities and the fact that an
energy penalty is intentionally omitted in the cost function to
avoid a tradeoff.

A minimal force accuracy required for reliable MD simulations
is MAE= 1 kcal mol−1 Å−1. While the GDML model can achieve
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VECTORIAL GAUSSIAN PROCESS

REGRESSION

We wish to model by a VGP the force f acting on
an atom whose chemical environment is in a configura-
tion ⇢ that encodes the positions of all of neighbours of
the atom, up to a suitable cutoff radius, in an arbitrary
Cartesian reference frame. In a Bayesian setting, before
any data is considered, f is treated as a Gaussian Process,
i.e., it is assumed that for any finite set of configurations
{⇢i, i = 1, . . . N} the values f(⇢i) taken by the vector
function f are well described by a multivariate Gaussian
distribution [21]. We write:

f(⇢) ⇠ GP(m(⇢),K(⇢, ⇢0)) (1)

where m(⇢) is a vector-valued mean function and K(⇢, ⇢0)
is a matrix-valued kernel function. Before any data is
considered, m is usually assumed to be zero as all prior
information on f is encoded into the kernel function
K(⇢, ⇢0). The latter represents the correlation of the vec-
tors f(⇢) and f(⇢0) as a function of the two configurations
(“input space points”) ⇢ and ⇢

0:

K(⇢, ⇢0) = hf(⇢)fT(⇢0)i, (2)

where angular brackets here signify the expected value
over the multivariate Gaussian distribution. Any ker-
nel K consistent with this definition must be a positive
semi-definite matrix function, since for any collection of
vectors {vi}

X

ij

vT
i
K(⇢i, ⇢j)vj = h(

X

i

vT
i
f(⇢i))

2
i � 0. (3)

To train the prediction model we need to access a
database of atomic configurations and reference forces
D = {(⇢, fr)i, i = 1, . . . , N}. Using Bayes’ theorem [27]
the distribution (1) is modified to take the data D into ac-
count [21]. If the likelihood function [22] is also Gaussian
(which effectively assumes that the observed forces fr

i
are

the true forces subject to Gaussian noise of variance �
2
n
)

then the resulting posterior distribution f(⇢ | D), condi-
tional on the data, will also be a Gaussian process

f(⇢ | D) ⇠ GP(f̂(⇢ | D), Ĉ(⇢, ⇢0)). (4)

The mean function of the posterior distribution, f̂(⇢ | D),
is at this point the best estimate for the true underlying
function:

f̂(⇢ | D) =
NX

ij

K(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j
. (5)

Here �
2
n
, formally is the noise affecting the observed

forces fr, serves in practice as a regulariser for the matrix
inverse. In the following, blackboard bold characters such

as K or I indicate N⇥N block matrices (for instance, the
Gram matrix K is defined as (K)ij = K(⇢i, ⇢j)). Simil-
arly, we denote by [K+ I�2

n
]�1
ij

the ij-block of the inverse
matrix.

We next examine how to incorporate the vector be-
haviour of forces into the learning algorithm. The rel-
evant symmetry transformations in the input space are:
rigid translation of all atoms, permutation of atoms of
the same chemical species, rotations and reflections of
atomic configurations. Forces are invariant with respect
to translations and atomic permutations, and covariant
with respect to rotations and reflections. Assuming that
the representation of the atomic configuration is local,
i.e., the atom subject to the force fi is at the origin of the
reference frame used for ⇢i, translations are automatic-
ally taken into account. The remaining symmetries must
be addressed in the construction of covariant kernels.

COVARIANT KERNELS

From now on we will define S to be any symmetry
operator (rotation or reflection) acting on an atomistic
configuration of a d-dimensional system. Rotations will
be denoted by R and reflections by Q.

We require two properties to apply to the predicted
force f̂(⇢ | D), once configurations are transformed by an
operator S (represented by a matrix S):

Property 1 If the target configuration ⇢ is trans-
formed to S⇢, the predicted force must transform ac-
cordingly:

f̂(S⇢ | D) = Sf̂(⇢ | D). (6)

Property 2 The predicted force must not change if we
arbitrarily transform the configurations in the database
(D ! D̃ = {(Si⇢i,Sifri )}) with any chosen set of roto-
reflections {Si}.

We next introduce a special class of kernel functions
that automatically guarantees these two properties: a
covariant kenrel has the defining property

K(S⇢,S 0
⇢
0) = SK(⇢, ⇢0)S0T

. (7)

That a covariant kernel imposes Property 1 follows
straightforwardly from equation (5):

f̂(S⇢ | D) =
NX

ij

K(S⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

=
NX

ij

SK(⇢, ⇢i)[K+ I�2
n
]�1
ij

fr
j

= Sf̂(⇢ | D). (8)

To prove Property 2 we note that, if the kernel function is
covariant, the transformed database D̃ has Gram matrix
(K̃)ij = K(Si⇢i,Sj⇢j) = SiK(⇢i, ⇢j)ST

j
. If we define the

“Transform the configuration, and 
the prediction transforms with it”

Glielmo, Sollich, De Vita, Phys Rev B 95 (2017)

Chmiela, Sauceda, Müller, Tkatchenko, Nat. Comm. 9:3887 (2018)
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Transferable intermolecular potentials for small organic molecules
parametrized from machine learning of local properties
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We propose a set of intermolecular potentials with explicit polarization transferable across small organic
molecules. Machine learning provides predictions for atomic polarizabilities, the decay rate of atomic densities,
and static electrostatic multipole coe�cients across conformations and chemical compositions using H, C,
N, and O atoms. The parameters enable accurate calculations of intermolecular contributions: multipole
electrostatics, charge penetration, repulsion, induction (i.e., polarization and charge transfer), and many-
body dispersion.

I. INTRODUCTION

II. METHODS

A. Prediction of local properties

The set of intermolecular potentials is based on ma-
chine learning of local (i.e., atom in molecule) proper-
ties targeted at predicting atomic polarizabilities, the de-
cay rate of atomic densities, and electrostatic coe�cients,
which we present in the following.

1. Atomic polarizabilities

The Hirshfeld scheme provides a partitioning of the
molecular charge density into atomic contributions (i.e.,
atom-in-molecule description).1–4 It consists of estimat-
ing the loss of atomic volume of atom p due to the neigh-
boring atoms, as compared to the corresponding atom in
free space

V e↵
p

V free
p

=

R
drr3wp(r)n(r)R
drr3nfree

p (r)
, (1)

where nfree
p (r) is the electron density of the free atom,

n(r) is the electron density of the molecule, and wp(r)
weighs the contribution of the free atom p against all free
atoms at r.2 The static polarizability is then estimated
from the free-atom polarizability scaled by the Hirshfeld
ratio

↵p = ↵free
p

 
V e↵
p

V free
p

!4/3

. (2)

Derivation for 4/3 power.
Reference Hirshfeld ratios were provided from DFT

calculations of 1,000 molecules using the PBE05 func-
tional and extracted using postg.6,7 The geometry of

a)Electronic mail: bereau@mpip-mainz.mpg.de

the molecule was encoded in the Coulomb matrix,8 C,
such that for two atoms i and j

Cij =

(
Z2.4
i /2 i = j

ZiZj/rij i 6= j
(3)

A machine learning model of the Hirshfeld ratios was
built using kernel-ridge regression and provided predic-
tions for atomic polarizabilities of atoms in molecules
for the chemical elements H, C, O, and N. For all ma-
chine learning models presented here, datasets are split
between training and test subsets at a ⇡ 80 : 20 ratio, in
order to alleviate overfitting.

2. Atomic-density overlap

Exchange-repulsion, as well as other short-ranged in-
teractions, are proportional to the overlap of the charge
densities9,10

Sij =

Z
d3r⇢i(r)⇢j(r). (4)

Van Vleet et al.10 presented a series of short-ranged in-
termolecular potentials based on a Slater-like model of
overlapping atomic densities. They approximated the
atomic density using the iterated stockholder atom (ISA)
approach11,12 The atomic density of atom i, ⇢i, is approx-
imated by a single exponential function,

⇢i(r) ⇡ Di exp(�Bir), (5)

where Di is a prefactor absorbing the missing distance
dependency and Bi characterizes the rate of decay of the
atomic density. The short-ranged interactions proposed
by Van Vleet et al. rely on combinations of the decay
rates of atomic densities, i.e., Bij =

p
BiBj , for the atom

pair i and j.
We constructed a machine learning model of Bi coef-

ficients using the same descriptors and kernel as for Hir-
shfeld ratios (see above). Reference Bi coe�cients were
computed using Horton

13,14 for 1,102 molecules using
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ABSTRACT: Short-range repulsion within intermolecular force fields is
conventionally described by either Lennard-Jones (A/r12) or Born−Mayer
(A exp(−Br)) forms. Despite their widespread use, these simple functional
forms are often unable to describe the interaction energy accurately over a
broad range of intermolecular distances, thus creating challenges in the
development of ab initio force fields and potentially leading to decreased
accuracy and transferability. Herein, we derive a novel short-range
functional form based on a simple Slater-like model of overlapping atomic
densities and an iterated stockholder atom (ISA) partitioning of the
molecular electron density. We demonstrate that this Slater−ISA
methodology yields a more accurate, transferable, and robust description
of the short-range interactions at minimal additional computational cost
compared to standard Lennard-Jones or Born−Mayer approaches. Finally,
we show how this methodology can be adapted to yield the standard Born−Mayer functional form while still retaining many of
the advantages of the Slater-ISA approach.

1. INTRODUCTION

Molecular simulation is an essential tool for interpreting and
predicting the structure, thermodynamics, and dynamics of
chemical and biochemical systems. The fundamental inputs
into these simulations are the intra- and intermolecular force
fields, which provide simple and computationally efficient
descriptions of molecular interactions. Consequently, the
predictive and explanatory power of molecular simulations
depends on the fidelity of the force field to the underlying
(exact) potential energy surface.
In the case of intermolecular interactions, the dominant

contributions for nonreactive systems can be decomposed into
the following physically meaningful energy components:
electrostatic, exchange-repulsion, induction, and dispersion.1−5

At large intermolecular distances, where monomer electron
overlap can be neglected, the physics of intermolecular
interactions can be described entirely on the basis of monomer
properties (e.g., multipole moments, polarizabilities), all of
which can be calculated with high accuracy from first
principles.6 In conjunction with associated distribution schemes
that decompose molecular monomer properties into atomic
contributions,1,4,7−11 these monomer properties lead to an
accurate and computationally efficient model of “long-range”
intermolecular interactions as a sum of atom−atom terms,
which can be straightforwardly included in common molecular
simulation packages.

At shorter separations, where the molecular electron density
overlap cannot be neglected, the asymptotic description of
intermolecular interactions breaks down due to the influence of
Pauli repulsion, charge penetration, and charge transfer. These
effects can be quantitatively described using modern electronic
structure methods3,12−15 but are far more challenging to model
accurately using computationally inexpensive force fields. For
efficiency and ease of parametrization, most simple force fields
use a single “repulsive” term to model the cumulative influence
of (chemically distinct) short-range interactions. These simple
models have seen comparatively little progress over the past 80
years, and the Lennard-Jones16 (A/r12) and Born−Mayer17,18

(A exp(−Br)) forms continue as popular descriptions of short-
range effects in standard force fields despite some well-known
limitations (vide inf ra).
Because the prediction of physical and chemical properties

depends on the choice of a short-range interaction model,19−32

it is essential to develop sufficiently accurate short-range force
fields. This is particularly true in the case of ab initio force field
development. A principal goal of such a first-principles
approach is the reproduction of a calculated potential energy
surface (PES), thus (ideally) yielding accurate predictions of
bulk properties.33 Substantial deviations between a fitted and
calculated PES lead to nontrivial challenges in the para-
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terms of reproducing pure-liquid density, heat of vaporization,
and hydration free energy. They underline that a careful PC
parametrization can go a long way in reproducing the
thermodynamic properties of many simple liquids (e.g., PhH,
PhF), in which case MTPs are unlikely to play a significant role.
When switching from PC to MTP electrostatics, one should

expect force-field reparametrization: standard parametrization
protocols (including this one) make LJ coefficients inherently
dependent on the force field’s electrostatics. Lee and Meuwly
recently reparametrized a MTP model of cyanide in water and
showed that merely scaling the distance term, Rmin, allowed to
reproduce experimentally determined hydration free energies,
vibrational relaxation times, and 1D/2D spectroscopies.34−36 In
the present work, however, we kept the protocol applied to PC

electrostatics both for consistency and to best reproduce both
sterics and energetics. The results are shown in Table 3. We find
that most LJ coefficients remain similar across electrostatic
representations, except for a comparatively large change for the
well depth of N: 0.20 kcal/mol. The magnitude of these changes
do not correlate with the impact on the hydration free energies:
PhCl, PhBr, and PhI show the largest improvement in ΔGhyd,
though the changes in LJ parameters are modest. On the
contrary, the large change of εN did not improve ΔGhyd.
For all halobenzene compounds, MTP electrostatics allows us

to reproduce hydration free energies within ≈0.15 kcal/mol of
the experimental values. Naturally, we find the most significant
improvements on PhCl, PhBr, and PhI, which carry strong σ
holes. Jorgensen and Schyman introduced a correction for the
OPLS-AA force field to better describe halogenated compounds
by means of off-site point charges, which reproduces the
hydration free energies of halobenzene compounds within
0.4 kcal/mol.26 Other efforts to better reproduce σ holes in
computer modeling include the work of Ibrahim on off-site point
charges,37 as well as careful electrostatic calculations from the
SIBFA model38 and a recently published polarizable ellipsoidal
force field.39

Our PC and MTP parametrizations of pyrrole did not
reproduce the experimental hydration free energy as well as for
the other compounds, mostly due to the use of benzene’s
hydrogen atom type for pyrrole’s amine. Clearly, the two types of
hydrogens generate very different types of chemistry, which our
PC and MTP force fields do distinguish (to the extent of the
methods’ resolutions). Using benzene’s apolar hydrogen on the
amine is a stretch of transferability that shows its limits. Likewise,
distinguishing the carbons of benzene and pyrrole could prove
more accurate, as pyrrole is more reactive. However, the sole
purpose of the present pyrrole parametrization was to describe
the amine group of the brominated ligand studied below (Section
3.6). Because the conclusions drawn in that application do not
depend much on the quality of the amine’s parametrization (we
focus instead on the bromines), we decided against a careful, but
more expensive, LJ parametrization of both atom types of that
chemical group.

3.3. Structural Properties.We studied structural properties
of the PhX compounds solvated in a box of 500 water molecules.
NPT simulations were run for 1 ns, including 100 ps of
equilibration. Figure 3 shows the radial distribution functions,
g(r), between the Br atom of PhBr with water oxygens for both
PC and MTP electrostatics. The small changes in LJ parameters
for Br led to virtually no difference in g(r) between PC and MTP
electrostatics, despite the large change inΔGhyd (Table 4). While

Figure 2. Isosurfaces of the difference between ab initio and (a) PC and
(b)MTPESPs of PhBr. Blue and red regions denote an error of +0.5 and
−0.5 kcal/mol, respectively. The plots only show points within the first
interaction belt.

Table 3. LJ Parameters ε and Rmin/2 Parametrized Against PC
and MTP Electrostaticsa

PC elec. MTP elec.

compound atom name ε Rmin/2 ε Rmin/2

PhH C −0.05 2.00 −0.08 2.00
H −0.05 1.30 −0.01 1.20

PhF F −0.15 1.10 −0.07 1.70
PhCl Cl −0.44 1.90 −0.29 2.00
PhBr Br −0.50 2.17 −0.46 2.30
PhI I −0.57 2.33 −0.53 2.43
pyrrole N −0.31 2.00 −0.11 2.20

aAll units are in kcal/mol and Å.

Table 4. Comparison between Experimental Results25,31,40,41 and PC/MTP Calculations of Pure-Liquid Densities, ρ, Heats of
Vaporization, ΔHvap, and Hydration Free Energies, ΔGhyd

a

exptl. PC MTP

cmpd. ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd

PhH 0.88 7.89 −0.86 0.505 0.86 7.53 −0.77 ± 0.12 0.254 0.90 7.88 −0.89 ± 0.11
PhF 1.02 8.26 −0.80 1.215 1.05 7.95 −0.48 ± 0.30 0.502 1.05 8.60 −0.75 ± 0.08
PhCl 1.11 9.79 −1.12 0.929 1.11 9.68 −0.66 ± 0.01 0.464 1.14 10.13 −1.11 ± 0.26
PhBr 1.50 10.65 −1.46 1.173 1.44 10.54 −0.55 ± 0.04 0.682 1.47 11.98 −1.40 ± 0.10
PhI 1.83 11.85 −1.83 0.978 1.76 11.39 −1.35 ± 0.15 0.581 1.84 12.43 −1.97 ± 0.16
pyrrole 0.97 10.78 −4.78 1.212 1.00 11.11 −4.11 ± 0.04 1.092 0.99 10.87 −3.74 ± 0.20

aRoot-mean squared errors (RMSEs) of gas-phase dimer energies (see ref 10) are also shown. All units are in kcal/mol, Å, and g/cm3. The errors of
the mean on the computed densities and heats of vaporization are 0.01 g/cm3, and 0.05 kcal/mol, respectively, while they are mentioned explicitly
for the hydration free energies.
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terms of reproducing pure-liquid density, heat of vaporization,
and hydration free energy. They underline that a careful PC
parametrization can go a long way in reproducing the
thermodynamic properties of many simple liquids (e.g., PhH,
PhF), in which case MTPs are unlikely to play a significant role.
When switching from PC to MTP electrostatics, one should

expect force-field reparametrization: standard parametrization
protocols (including this one) make LJ coefficients inherently
dependent on the force field’s electrostatics. Lee and Meuwly
recently reparametrized a MTP model of cyanide in water and
showed that merely scaling the distance term, Rmin, allowed to
reproduce experimentally determined hydration free energies,
vibrational relaxation times, and 1D/2D spectroscopies.34−36 In
the present work, however, we kept the protocol applied to PC

electrostatics both for consistency and to best reproduce both
sterics and energetics. The results are shown in Table 3. We find
that most LJ coefficients remain similar across electrostatic
representations, except for a comparatively large change for the
well depth of N: 0.20 kcal/mol. The magnitude of these changes
do not correlate with the impact on the hydration free energies:
PhCl, PhBr, and PhI show the largest improvement in ΔGhyd,
though the changes in LJ parameters are modest. On the
contrary, the large change of εN did not improve ΔGhyd.
For all halobenzene compounds, MTP electrostatics allows us

to reproduce hydration free energies within ≈0.15 kcal/mol of
the experimental values. Naturally, we find the most significant
improvements on PhCl, PhBr, and PhI, which carry strong σ
holes. Jorgensen and Schyman introduced a correction for the
OPLS-AA force field to better describe halogenated compounds
by means of off-site point charges, which reproduces the
hydration free energies of halobenzene compounds within
0.4 kcal/mol.26 Other efforts to better reproduce σ holes in
computer modeling include the work of Ibrahim on off-site point
charges,37 as well as careful electrostatic calculations from the
SIBFA model38 and a recently published polarizable ellipsoidal
force field.39

Our PC and MTP parametrizations of pyrrole did not
reproduce the experimental hydration free energy as well as for
the other compounds, mostly due to the use of benzene’s
hydrogen atom type for pyrrole’s amine. Clearly, the two types of
hydrogens generate very different types of chemistry, which our
PC and MTP force fields do distinguish (to the extent of the
methods’ resolutions). Using benzene’s apolar hydrogen on the
amine is a stretch of transferability that shows its limits. Likewise,
distinguishing the carbons of benzene and pyrrole could prove
more accurate, as pyrrole is more reactive. However, the sole
purpose of the present pyrrole parametrization was to describe
the amine group of the brominated ligand studied below (Section
3.6). Because the conclusions drawn in that application do not
depend much on the quality of the amine’s parametrization (we
focus instead on the bromines), we decided against a careful, but
more expensive, LJ parametrization of both atom types of that
chemical group.

3.3. Structural Properties.We studied structural properties
of the PhX compounds solvated in a box of 500 water molecules.
NPT simulations were run for 1 ns, including 100 ps of
equilibration. Figure 3 shows the radial distribution functions,
g(r), between the Br atom of PhBr with water oxygens for both
PC and MTP electrostatics. The small changes in LJ parameters
for Br led to virtually no difference in g(r) between PC and MTP
electrostatics, despite the large change inΔGhyd (Table 4). While

Figure 2. Isosurfaces of the difference between ab initio and (a) PC and
(b)MTPESPs of PhBr. Blue and red regions denote an error of +0.5 and
−0.5 kcal/mol, respectively. The plots only show points within the first
interaction belt.

Table 3. LJ Parameters ε and Rmin/2 Parametrized Against PC
and MTP Electrostaticsa

PC elec. MTP elec.

compound atom name ε Rmin/2 ε Rmin/2

PhH C −0.05 2.00 −0.08 2.00
H −0.05 1.30 −0.01 1.20

PhF F −0.15 1.10 −0.07 1.70
PhCl Cl −0.44 1.90 −0.29 2.00
PhBr Br −0.50 2.17 −0.46 2.30
PhI I −0.57 2.33 −0.53 2.43
pyrrole N −0.31 2.00 −0.11 2.20

aAll units are in kcal/mol and Å.

Table 4. Comparison between Experimental Results25,31,40,41 and PC/MTP Calculations of Pure-Liquid Densities, ρ, Heats of
Vaporization, ΔHvap, and Hydration Free Energies, ΔGhyd

a

exptl. PC MTP

cmpd. ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd

PhH 0.88 7.89 −0.86 0.505 0.86 7.53 −0.77 ± 0.12 0.254 0.90 7.88 −0.89 ± 0.11
PhF 1.02 8.26 −0.80 1.215 1.05 7.95 −0.48 ± 0.30 0.502 1.05 8.60 −0.75 ± 0.08
PhCl 1.11 9.79 −1.12 0.929 1.11 9.68 −0.66 ± 0.01 0.464 1.14 10.13 −1.11 ± 0.26
PhBr 1.50 10.65 −1.46 1.173 1.44 10.54 −0.55 ± 0.04 0.682 1.47 11.98 −1.40 ± 0.10
PhI 1.83 11.85 −1.83 0.978 1.76 11.39 −1.35 ± 0.15 0.581 1.84 12.43 −1.97 ± 0.16
pyrrole 0.97 10.78 −4.78 1.212 1.00 11.11 −4.11 ± 0.04 1.092 0.99 10.87 −3.74 ± 0.20

aRoot-mean squared errors (RMSEs) of gas-phase dimer energies (see ref 10) are also shown. All units are in kcal/mol, Å, and g/cm3. The errors of
the mean on the computed densities and heats of vaporization are 0.01 g/cm3, and 0.05 kcal/mol, respectively, while they are mentioned explicitly
for the hydration free energies.
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pairs, hydrogen bonding, p-electron density—may require more elaborate schemes.
Going beyond the simple PC approximation can be approached both naturally and
systematically by considering the integral for the electrostatic potential (ESP)

4pe0F(r) =
Z

dr
0 r(r0)
|r� r0| , (1.1)

where r and r
0 are spatial variables. For a charge distribution confined to a sphere

of radius r0 around an arbitrary origin and an observation point outside the sphere
(r > r0), one can expand 1/|r� r

0| in powers of r0/r < 1 [30]. The ESP can thereby
be represented by an expansion in spherical harmonics Ylm(q ,f)—a set of orthonor-
mal functions that depends on the order l and its projection m, and the spherical
coordinates q and f—to yield

4pe0F(r) =
•

Â
l=0

l

Â
m=�l

Qlm

rl+1

r
4p

2l +1
Ylm(q ,f), (1.2)

while the spherical MTP moments are defined by

Qlm =
Z

dr
0r(r0)(r0)l

r
4p

2l +1
Y ⇤

lm(q 0,f 0) (1.3)

and can therefore be determined from the density r . For l  2, the Qlm coefficients
reduce to linear combinations of the familiar q (monopole scalar), µ (dipole vector),
and Qab (quadrupole second-rank tensor) expressed in Cartesian coordinates (see
field-line representations in Figure 1.1). A more convenient linear combination of
Cartesian coordinates expresses the spherical MTP moments in terms of cosmf
and sinmf , rather than the original exp±imf [31]. The new linear combination,
indexed by k = {0,1c,1s, . . . , lc, ls} for index l (c and s refer to cos and sin), has the
added advantage of containing only real components. While the spherical harmonics
and MTP moments can be found elsewhere (e.g., [31, 30]), the coefficients up to
quadrupole are summarized in Table 1.1.

An explicit development of Equation 1.2 in terms of the Cartesian coordinates
from Table 1.1 yields

Fig. 1.1 Representations of
the (a) monopole, (b) dipole,
and (c) quadrupole fields.
The anisotropy of the higher
MTPs provides the means for
an improved description of
the ESP.

(a) (b) (c)
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Table 1.1 List of spherical harmonics and MTP moments expressed in Cartesian coordinates—up
to quadrupole (i.e., l = 2) [31].

l k rl
q

4p
2l+1Ylk (q ,f) Qlk

0 0 1 q
1 0 z µz
1 1c x µx
1 1s y µy
2 0 1
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2 1c

p
3xz 2p

3
Qxz

2 1s
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3yz 2p
3
Qyz

2 2c 1
2

p
3(x2 � y2) 1p
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(Qxx �Qyy)

2 2s
p

3xy 2p
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Qxy

4pe0F(r) =
q
R
+

µa Ra
R3 +

1
3

Qab
3Ra Rb �R2dab

R5 + . . . , (1.4)

F(r) = qT �µa Ta +
1
3

Qab Tab + . . . , (1.5)

where 1/R ⌘ 1/|r� r
0|, the Einstein summation convention is applied, and Kro-

necker delta, dab , is 1 only if a = b , 0 otherwise. The total ESP can be partitioned
into a sum of multipolar potentials Fl (e.g., F0 is the monopolar potential), leading
to the concept of a “distributed multipole” expansion. Equation 1.5 provides a more
compact notation in terms of the T tensors describing the geometry of the multipo-
lar potential. A simple Taylor expansion of the original formulation of the ESP (i.e.,
Equation 1.1) shows that the T tensors correspond to the various partial derivatives
of 1/R.

In terms of running a molecular dynamics (MD) simulation, the quantity of in-
terest is the interaction potential, U . This quantity is defined by the work done on an
MTP Qlk brought from infinity to a point r in a region populated by the (multipo-
lar) potential F , U = FQlk (derived from first-order perturbation theory [31, 30]).
Thus, the interaction energy between sites (e.g., atoms, molecules) a and b can be
written as

Uab =

✓
qaT �µa

a Ta +
1
3

Q a
ab Tab + . . .

◆✓
qb +µb

a +
1
3

Q b
ab + . . .

◆
, (1.6)

where the superscripts a and b over the MTP parameters refer to the interaction site
(usually an atom) they belong to. Evidently, a truncation of the MTP expansions to
l = 0 reduces to the familiar Coulomb interaction, Uab = qaqb/4pe0R. In general,
the interaction energy can be compactly written as Uab = (Qa)TT abQb, where Qa

is a vector containing all MTP moments of site a and T ab forms a matrix of T
tensors—as elegantly presented in the AMOEBA implementation [32].

For a given interaction between two MTP moments Qa
t and Qb

u on sites a and
b, respectively, the tensor element describing the geometry as T ab

tu (q) is required,
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terms of reproducing pure-liquid density, heat of vaporization,
and hydration free energy. They underline that a careful PC
parametrization can go a long way in reproducing the
thermodynamic properties of many simple liquids (e.g., PhH,
PhF), in which case MTPs are unlikely to play a significant role.
When switching from PC to MTP electrostatics, one should

expect force-field reparametrization: standard parametrization
protocols (including this one) make LJ coefficients inherently
dependent on the force field’s electrostatics. Lee and Meuwly
recently reparametrized a MTP model of cyanide in water and
showed that merely scaling the distance term, Rmin, allowed to
reproduce experimentally determined hydration free energies,
vibrational relaxation times, and 1D/2D spectroscopies.34−36 In
the present work, however, we kept the protocol applied to PC

electrostatics both for consistency and to best reproduce both
sterics and energetics. The results are shown in Table 3. We find
that most LJ coefficients remain similar across electrostatic
representations, except for a comparatively large change for the
well depth of N: 0.20 kcal/mol. The magnitude of these changes
do not correlate with the impact on the hydration free energies:
PhCl, PhBr, and PhI show the largest improvement in ΔGhyd,
though the changes in LJ parameters are modest. On the
contrary, the large change of εN did not improve ΔGhyd.
For all halobenzene compounds, MTP electrostatics allows us

to reproduce hydration free energies within ≈0.15 kcal/mol of
the experimental values. Naturally, we find the most significant
improvements on PhCl, PhBr, and PhI, which carry strong σ
holes. Jorgensen and Schyman introduced a correction for the
OPLS-AA force field to better describe halogenated compounds
by means of off-site point charges, which reproduces the
hydration free energies of halobenzene compounds within
0.4 kcal/mol.26 Other efforts to better reproduce σ holes in
computer modeling include the work of Ibrahim on off-site point
charges,37 as well as careful electrostatic calculations from the
SIBFA model38 and a recently published polarizable ellipsoidal
force field.39

Our PC and MTP parametrizations of pyrrole did not
reproduce the experimental hydration free energy as well as for
the other compounds, mostly due to the use of benzene’s
hydrogen atom type for pyrrole’s amine. Clearly, the two types of
hydrogens generate very different types of chemistry, which our
PC and MTP force fields do distinguish (to the extent of the
methods’ resolutions). Using benzene’s apolar hydrogen on the
amine is a stretch of transferability that shows its limits. Likewise,
distinguishing the carbons of benzene and pyrrole could prove
more accurate, as pyrrole is more reactive. However, the sole
purpose of the present pyrrole parametrization was to describe
the amine group of the brominated ligand studied below (Section
3.6). Because the conclusions drawn in that application do not
depend much on the quality of the amine’s parametrization (we
focus instead on the bromines), we decided against a careful, but
more expensive, LJ parametrization of both atom types of that
chemical group.

3.3. Structural Properties.We studied structural properties
of the PhX compounds solvated in a box of 500 water molecules.
NPT simulations were run for 1 ns, including 100 ps of
equilibration. Figure 3 shows the radial distribution functions,
g(r), between the Br atom of PhBr with water oxygens for both
PC and MTP electrostatics. The small changes in LJ parameters
for Br led to virtually no difference in g(r) between PC and MTP
electrostatics, despite the large change inΔGhyd (Table 4). While

Figure 2. Isosurfaces of the difference between ab initio and (a) PC and
(b)MTPESPs of PhBr. Blue and red regions denote an error of +0.5 and
−0.5 kcal/mol, respectively. The plots only show points within the first
interaction belt.

Table 3. LJ Parameters ε and Rmin/2 Parametrized Against PC
and MTP Electrostaticsa

PC elec. MTP elec.

compound atom name ε Rmin/2 ε Rmin/2

PhH C −0.05 2.00 −0.08 2.00
H −0.05 1.30 −0.01 1.20

PhF F −0.15 1.10 −0.07 1.70
PhCl Cl −0.44 1.90 −0.29 2.00
PhBr Br −0.50 2.17 −0.46 2.30
PhI I −0.57 2.33 −0.53 2.43
pyrrole N −0.31 2.00 −0.11 2.20

aAll units are in kcal/mol and Å.

Table 4. Comparison between Experimental Results25,31,40,41 and PC/MTP Calculations of Pure-Liquid Densities, ρ, Heats of
Vaporization, ΔHvap, and Hydration Free Energies, ΔGhyd

a

exptl. PC MTP

cmpd. ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd

PhH 0.88 7.89 −0.86 0.505 0.86 7.53 −0.77 ± 0.12 0.254 0.90 7.88 −0.89 ± 0.11
PhF 1.02 8.26 −0.80 1.215 1.05 7.95 −0.48 ± 0.30 0.502 1.05 8.60 −0.75 ± 0.08
PhCl 1.11 9.79 −1.12 0.929 1.11 9.68 −0.66 ± 0.01 0.464 1.14 10.13 −1.11 ± 0.26
PhBr 1.50 10.65 −1.46 1.173 1.44 10.54 −0.55 ± 0.04 0.682 1.47 11.98 −1.40 ± 0.10
PhI 1.83 11.85 −1.83 0.978 1.76 11.39 −1.35 ± 0.15 0.581 1.84 12.43 −1.97 ± 0.16
pyrrole 0.97 10.78 −4.78 1.212 1.00 11.11 −4.11 ± 0.04 1.092 0.99 10.87 −3.74 ± 0.20

aRoot-mean squared errors (RMSEs) of gas-phase dimer energies (see ref 10) are also shown. All units are in kcal/mol, Å, and g/cm3. The errors of
the mean on the computed densities and heats of vaporization are 0.01 g/cm3, and 0.05 kcal/mol, respectively, while they are mentioned explicitly
for the hydration free energies.
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pairs, hydrogen bonding, p-electron density—may require more elaborate schemes.
Going beyond the simple PC approximation can be approached both naturally and
systematically by considering the integral for the electrostatic potential (ESP)

4pe0F(r) =
Z

dr
0 r(r0)
|r� r0| , (1.1)

where r and r
0 are spatial variables. For a charge distribution confined to a sphere

of radius r0 around an arbitrary origin and an observation point outside the sphere
(r > r0), one can expand 1/|r� r

0| in powers of r0/r < 1 [30]. The ESP can thereby
be represented by an expansion in spherical harmonics Ylm(q ,f)—a set of orthonor-
mal functions that depends on the order l and its projection m, and the spherical
coordinates q and f—to yield

4pe0F(r) =
•

Â
l=0

l

Â
m=�l

Qlm

rl+1

r
4p

2l +1
Ylm(q ,f), (1.2)

while the spherical MTP moments are defined by

Qlm =
Z

dr
0r(r0)(r0)l

r
4p

2l +1
Y ⇤

lm(q 0,f 0) (1.3)

and can therefore be determined from the density r . For l  2, the Qlm coefficients
reduce to linear combinations of the familiar q (monopole scalar), µ (dipole vector),
and Qab (quadrupole second-rank tensor) expressed in Cartesian coordinates (see
field-line representations in Figure 1.1). A more convenient linear combination of
Cartesian coordinates expresses the spherical MTP moments in terms of cosmf
and sinmf , rather than the original exp±imf [31]. The new linear combination,
indexed by k = {0,1c,1s, . . . , lc, ls} for index l (c and s refer to cos and sin), has the
added advantage of containing only real components. While the spherical harmonics
and MTP moments can be found elsewhere (e.g., [31, 30]), the coefficients up to
quadrupole are summarized in Table 1.1.

An explicit development of Equation 1.2 in terms of the Cartesian coordinates
from Table 1.1 yields

Fig. 1.1 Representations of
the (a) monopole, (b) dipole,
and (c) quadrupole fields.
The anisotropy of the higher
MTPs provides the means for
an improved description of
the ESP.

(a) (b) (c)
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Table 1.1 List of spherical harmonics and MTP moments expressed in Cartesian coordinates—up
to quadrupole (i.e., l = 2) [31].

l k rl
q
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2l+1Ylk (q ,f) Qlk

0 0 1 q
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4pe0F(r) =
q
R
+

µa Ra
R3 +

1
3

Qab
3Ra Rb �R2dab

R5 + . . . , (1.4)

F(r) = qT �µa Ta +
1
3

Qab Tab + . . . , (1.5)

where 1/R ⌘ 1/|r� r
0|, the Einstein summation convention is applied, and Kro-

necker delta, dab , is 1 only if a = b , 0 otherwise. The total ESP can be partitioned
into a sum of multipolar potentials Fl (e.g., F0 is the monopolar potential), leading
to the concept of a “distributed multipole” expansion. Equation 1.5 provides a more
compact notation in terms of the T tensors describing the geometry of the multipo-
lar potential. A simple Taylor expansion of the original formulation of the ESP (i.e.,
Equation 1.1) shows that the T tensors correspond to the various partial derivatives
of 1/R.

In terms of running a molecular dynamics (MD) simulation, the quantity of in-
terest is the interaction potential, U . This quantity is defined by the work done on an
MTP Qlk brought from infinity to a point r in a region populated by the (multipo-
lar) potential F , U = FQlk (derived from first-order perturbation theory [31, 30]).
Thus, the interaction energy between sites (e.g., atoms, molecules) a and b can be
written as

Uab =

✓
qaT �µa

a Ta +
1
3

Q a
ab Tab + . . .

◆✓
qb +µb

a +
1
3

Q b
ab + . . .

◆
, (1.6)

where the superscripts a and b over the MTP parameters refer to the interaction site
(usually an atom) they belong to. Evidently, a truncation of the MTP expansions to
l = 0 reduces to the familiar Coulomb interaction, Uab = qaqb/4pe0R. In general,
the interaction energy can be compactly written as Uab = (Qa)TT abQb, where Qa

is a vector containing all MTP moments of site a and T ab forms a matrix of T
tensors—as elegantly presented in the AMOEBA implementation [32].

For a given interaction between two MTP moments Qa
t and Qb

u on sites a and
b, respectively, the tensor element describing the geometry as T ab

tu (q) is required,
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terms of reproducing pure-liquid density, heat of vaporization,
and hydration free energy. They underline that a careful PC
parametrization can go a long way in reproducing the
thermodynamic properties of many simple liquids (e.g., PhH,
PhF), in which case MTPs are unlikely to play a significant role.
When switching from PC to MTP electrostatics, one should

expect force-field reparametrization: standard parametrization
protocols (including this one) make LJ coefficients inherently
dependent on the force field’s electrostatics. Lee and Meuwly
recently reparametrized a MTP model of cyanide in water and
showed that merely scaling the distance term, Rmin, allowed to
reproduce experimentally determined hydration free energies,
vibrational relaxation times, and 1D/2D spectroscopies.34−36 In
the present work, however, we kept the protocol applied to PC

electrostatics both for consistency and to best reproduce both
sterics and energetics. The results are shown in Table 3. We find
that most LJ coefficients remain similar across electrostatic
representations, except for a comparatively large change for the
well depth of N: 0.20 kcal/mol. The magnitude of these changes
do not correlate with the impact on the hydration free energies:
PhCl, PhBr, and PhI show the largest improvement in ΔGhyd,
though the changes in LJ parameters are modest. On the
contrary, the large change of εN did not improve ΔGhyd.
For all halobenzene compounds, MTP electrostatics allows us

to reproduce hydration free energies within ≈0.15 kcal/mol of
the experimental values. Naturally, we find the most significant
improvements on PhCl, PhBr, and PhI, which carry strong σ
holes. Jorgensen and Schyman introduced a correction for the
OPLS-AA force field to better describe halogenated compounds
by means of off-site point charges, which reproduces the
hydration free energies of halobenzene compounds within
0.4 kcal/mol.26 Other efforts to better reproduce σ holes in
computer modeling include the work of Ibrahim on off-site point
charges,37 as well as careful electrostatic calculations from the
SIBFA model38 and a recently published polarizable ellipsoidal
force field.39

Our PC and MTP parametrizations of pyrrole did not
reproduce the experimental hydration free energy as well as for
the other compounds, mostly due to the use of benzene’s
hydrogen atom type for pyrrole’s amine. Clearly, the two types of
hydrogens generate very different types of chemistry, which our
PC and MTP force fields do distinguish (to the extent of the
methods’ resolutions). Using benzene’s apolar hydrogen on the
amine is a stretch of transferability that shows its limits. Likewise,
distinguishing the carbons of benzene and pyrrole could prove
more accurate, as pyrrole is more reactive. However, the sole
purpose of the present pyrrole parametrization was to describe
the amine group of the brominated ligand studied below (Section
3.6). Because the conclusions drawn in that application do not
depend much on the quality of the amine’s parametrization (we
focus instead on the bromines), we decided against a careful, but
more expensive, LJ parametrization of both atom types of that
chemical group.

3.3. Structural Properties.We studied structural properties
of the PhX compounds solvated in a box of 500 water molecules.
NPT simulations were run for 1 ns, including 100 ps of
equilibration. Figure 3 shows the radial distribution functions,
g(r), between the Br atom of PhBr with water oxygens for both
PC and MTP electrostatics. The small changes in LJ parameters
for Br led to virtually no difference in g(r) between PC and MTP
electrostatics, despite the large change inΔGhyd (Table 4). While

Figure 2. Isosurfaces of the difference between ab initio and (a) PC and
(b)MTPESPs of PhBr. Blue and red regions denote an error of +0.5 and
−0.5 kcal/mol, respectively. The plots only show points within the first
interaction belt.

Table 3. LJ Parameters ε and Rmin/2 Parametrized Against PC
and MTP Electrostaticsa

PC elec. MTP elec.

compound atom name ε Rmin/2 ε Rmin/2

PhH C −0.05 2.00 −0.08 2.00
H −0.05 1.30 −0.01 1.20

PhF F −0.15 1.10 −0.07 1.70
PhCl Cl −0.44 1.90 −0.29 2.00
PhBr Br −0.50 2.17 −0.46 2.30
PhI I −0.57 2.33 −0.53 2.43
pyrrole N −0.31 2.00 −0.11 2.20

aAll units are in kcal/mol and Å.

Table 4. Comparison between Experimental Results25,31,40,41 and PC/MTP Calculations of Pure-Liquid Densities, ρ, Heats of
Vaporization, ΔHvap, and Hydration Free Energies, ΔGhyd

a

exptl. PC MTP

cmpd. ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd RMSE ρ ΔHvap ΔGhyd

PhH 0.88 7.89 −0.86 0.505 0.86 7.53 −0.77 ± 0.12 0.254 0.90 7.88 −0.89 ± 0.11
PhF 1.02 8.26 −0.80 1.215 1.05 7.95 −0.48 ± 0.30 0.502 1.05 8.60 −0.75 ± 0.08
PhCl 1.11 9.79 −1.12 0.929 1.11 9.68 −0.66 ± 0.01 0.464 1.14 10.13 −1.11 ± 0.26
PhBr 1.50 10.65 −1.46 1.173 1.44 10.54 −0.55 ± 0.04 0.682 1.47 11.98 −1.40 ± 0.10
PhI 1.83 11.85 −1.83 0.978 1.76 11.39 −1.35 ± 0.15 0.581 1.84 12.43 −1.97 ± 0.16
pyrrole 0.97 10.78 −4.78 1.212 1.00 11.11 −4.11 ± 0.04 1.092 0.99 10.87 −3.74 ± 0.20

aRoot-mean squared errors (RMSEs) of gas-phase dimer energies (see ref 10) are also shown. All units are in kcal/mol, Å, and g/cm3. The errors of
the mean on the computed densities and heats of vaporization are 0.01 g/cm3, and 0.05 kcal/mol, respectively, while they are mentioned explicitly
for the hydration free energies.

Journal of Chemical Theory and Computation Article
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pairs, hydrogen bonding, p-electron density—may require more elaborate schemes.
Going beyond the simple PC approximation can be approached both naturally and
systematically by considering the integral for the electrostatic potential (ESP)

4pe0F(r) =
Z

dr
0 r(r0)
|r� r0| , (1.1)

where r and r
0 are spatial variables. For a charge distribution confined to a sphere

of radius r0 around an arbitrary origin and an observation point outside the sphere
(r > r0), one can expand 1/|r� r

0| in powers of r0/r < 1 [30]. The ESP can thereby
be represented by an expansion in spherical harmonics Ylm(q ,f)—a set of orthonor-
mal functions that depends on the order l and its projection m, and the spherical
coordinates q and f—to yield

4pe0F(r) =
•

Â
l=0

l

Â
m=�l

Qlm

rl+1

r
4p

2l +1
Ylm(q ,f), (1.2)

while the spherical MTP moments are defined by

Qlm =
Z

dr
0r(r0)(r0)l

r
4p

2l +1
Y ⇤

lm(q 0,f 0) (1.3)

and can therefore be determined from the density r . For l  2, the Qlm coefficients
reduce to linear combinations of the familiar q (monopole scalar), µ (dipole vector),
and Qab (quadrupole second-rank tensor) expressed in Cartesian coordinates (see
field-line representations in Figure 1.1). A more convenient linear combination of
Cartesian coordinates expresses the spherical MTP moments in terms of cosmf
and sinmf , rather than the original exp±imf [31]. The new linear combination,
indexed by k = {0,1c,1s, . . . , lc, ls} for index l (c and s refer to cos and sin), has the
added advantage of containing only real components. While the spherical harmonics
and MTP moments can be found elsewhere (e.g., [31, 30]), the coefficients up to
quadrupole are summarized in Table 1.1.

An explicit development of Equation 1.2 in terms of the Cartesian coordinates
from Table 1.1 yields

Fig. 1.1 Representations of
the (a) monopole, (b) dipole,
and (c) quadrupole fields.
The anisotropy of the higher
MTPs provides the means for
an improved description of
the ESP.

(a) (b) (c)

4 Tristan Bereau and Markus Meuwly

Table 1.1 List of spherical harmonics and MTP moments expressed in Cartesian coordinates—up
to quadrupole (i.e., l = 2) [31].

l k rl
q

4p
2l+1Ylk (q ,f) Qlk

0 0 1 q
1 0 z µz
1 1c x µx
1 1s y µy
2 0 1

2 (3z2 � r2) Qzz
2 1c

p
3xz 2p

3
Qxz

2 1s
p

3yz 2p
3
Qyz

2 2c 1
2

p
3(x2 � y2) 1p

3
(Qxx �Qyy)

2 2s
p

3xy 2p
3
Qxy

4pe0F(r) =
q
R
+

µa Ra
R3 +

1
3

Qab
3Ra Rb �R2dab

R5 + . . . , (1.4)

F(r) = qT �µa Ta +
1
3

Qab Tab + . . . , (1.5)

where 1/R ⌘ 1/|r� r
0|, the Einstein summation convention is applied, and Kro-

necker delta, dab , is 1 only if a = b , 0 otherwise. The total ESP can be partitioned
into a sum of multipolar potentials Fl (e.g., F0 is the monopolar potential), leading
to the concept of a “distributed multipole” expansion. Equation 1.5 provides a more
compact notation in terms of the T tensors describing the geometry of the multipo-
lar potential. A simple Taylor expansion of the original formulation of the ESP (i.e.,
Equation 1.1) shows that the T tensors correspond to the various partial derivatives
of 1/R.

In terms of running a molecular dynamics (MD) simulation, the quantity of in-
terest is the interaction potential, U . This quantity is defined by the work done on an
MTP Qlk brought from infinity to a point r in a region populated by the (multipo-
lar) potential F , U = FQlk (derived from first-order perturbation theory [31, 30]).
Thus, the interaction energy between sites (e.g., atoms, molecules) a and b can be
written as

Uab =

✓
qaT �µa

a Ta +
1
3

Q a
ab Tab + . . .

◆✓
qb +µb

a +
1
3

Q b
ab + . . .

◆
, (1.6)

where the superscripts a and b over the MTP parameters refer to the interaction site
(usually an atom) they belong to. Evidently, a truncation of the MTP expansions to
l = 0 reduces to the familiar Coulomb interaction, Uab = qaqb/4pe0R. In general,
the interaction energy can be compactly written as Uab = (Qa)TT abQb, where Qa

is a vector containing all MTP moments of site a and T ab forms a matrix of T
tensors—as elegantly presented in the AMOEBA implementation [32].

For a given interaction between two MTP moments Qa
t and Qb

u on sites a and
b, respectively, the tensor element describing the geometry as T ab

tu (q) is required,

dipoles, quadrupoles rotate with the sample
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Now we can either consider fl
I(r) as a function of all the possible types of atoms ({ZI}), pairs of atoms (i.e., bonds

formed between ZI and ZJ , not necessarily covalent), triples of atoms, i.e.,

fl
I(r) = fl

I({tp}, {tpq}, {tpqr}) (S15)

or alternatively in an alchemical13 way,

fl
I(r) = fl

I(Z, R, ◊) (S16)

Sticking to the former, the charge ensemble representation is in essence the concatenation of di�erent many-body
potential spectra, i.e.,

MI = [ZI , {fl
IJ
I (R)}, {fl

IJK
I (◊)}], J ”= I, K ”= J ”= I (S17)

where fl
IJ
I (R) (two-body term) and fl

IJK
I (◊) (three-body term) are essentially radial distributions of London and ATM

potentials, respectively. The resulting representation is dubbed atomic Spectrum of London and Axilrod-Teller-Muto
potential (aSLATM) (see FIG. S1 for the graphical illustration for one exemplified molecule from FIG. 2A in the main
text).

The similarity of any two local atomic environments is the Euclidean distance (L2 norm) between their corresponding
M’s, comparing only terms sharing the same many-body type, i.e.,

d(I, J) = d(MI
, MJ) =

Û
d

2
1 +

ÿ

KL

d2(flIK
I , fl

JL
J )2 +

ÿ

KMLN

d3(flIKM
I , fl

JLN
J )2 (S18)

where K, L, M, N run through all atomic indices, d1 is the L2 distance between the one-body terms of atoms I and
J ,

d1(I, J) =
Ò

Z
2
I + s(I, J)Z2

J (S19)

with s() being the sign function,

s(I, J) =
;

≠1, ZI = ZJ

1, ZI ”= ZJ
(S20)

d2 is the L2 distance between the two-body terms of atom I and J (truncated at an inter-atomic distance of rc),

d2(flIK
I , fl

JL
J ) =

Y
]

[

Òs rc

0 (flIK
I (R) ≠ fl

JL
J (R))2dR, ZI = ZJ and ZK = ZLÒs rc

0 ((flIK
I (R))2 + (flJL

J (R))2)dR, otherwise
(S21)

and similarly d3 characterizes the similarity between the three-body terms of the two atoms,

d3(flIKM
I , fl

JLN
J ) =

Y
]

[

Òs fi
0 (flIKM

I (◊) ≠ fl
JLN
J (◊))2dR, ZI = ZJ , ZK = ZL and ZM = ZNÒs fi

0 ((flIKM
I (◊))2 + (flJLN

J (◊))2)d◊, otherwise.

(S22)

By binning each many-body term, a constant size atomic representation (i.e., an 1-D array) can be obtained for any
given dataset (or any two molecules).

SLATM and aSLATM have been tested for global ML models trained on randomly selected molecules, in analogy
to the assessment in Ref.23. In order to compare the relative performance between ML models based on SLATM and
other representations proposed in literature, three datasets: QM7b5, QM924,25 and 6k isomers (a subset of QM9)
were considered. For all these datasets, random sampling was used to generate training set, and the remaining was
selected for test. For QM9 dataset24, 229 molecules out of 133885 molecules dissociated after optimization, and were
not considered for this study. The corresponding indices of these 229 dissociated molecules along with their input
SMILES string are given in the supplementary information of BAML paper18. FIGs. S15,S16 illustrate their predictive
power by comparison to results obtained using the Coulomb matrix5, Bag of Bond26, and BAML18 representations.

Regarding the generation of both SLATM and aSLATM representations, three parameters need to be concerned
about: 1) cuto� radii rc for the 2-body term. Since London and ATM potential guarantees extremely fast decay of
atomic interactions, a cuto� radii of 4.8 Å is su�cient; 2) width of smearing Gaussian function for both radial and
angular terms, which is set to 0.05 Å and 0.05 rad, respectively; 3) density of grid to sample the radial and angular
terms. Convergence of distance between the 2-body terms of any two molecules was found at an interval of 0.03 Å.
For 3-body terms it is not necessary to go beyond 0.03 rad between two adjacent grids. Fortran code for generating
aSLATM and SLATM is now available as part of QML code6.

Huang and von Lilienfeld, J. Chem. Phys. 145 (2016) 
Huang and von Lilienfeld, arXiv:1707.04146, 2017
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Next, the resulting electrostatic interactions are combined with
a classical many-body dispersion (MBD)24 in order to validate
the model by estimating intermolecular energies of nearly 1,000
molecular dimers as well as the cohesive binding energy of the
benzene crystal. We find that the machine learning model
retains an accuracy similar to the same model parametrized
from individual quantum-chemical calculations.

2. METHODS
The following describes the ML model, the baseline property
used in the Δ-learning procedure, the data set, and the
description of the reference MTPs.
2.1. Machine Learning Model. We rely on supervised

learning to construct a kernel-ridge regression which general-
izes the linear-ridge regression model (i.e., linear regression
with regularizer λ) by mapping the input space x into a higher
dimensional “feature space”, ϕ(x), thereby casting the problem
in a linear way.16,25 The strength of the method comes from
avoiding the actual determination of ϕ thanks to the so-called
kernel trick:26 Since the ML algorithm only requires the inner
product between data vectors in feature space, one can apply a
kernel function k(x,x′) to compute dot products within input
space, thereby leaving the feature space entirely implicit. As a
result, the problem is reformulated from a v-dimensional input
space (i.e., the dimensionality of each data vector) into an n-
dimensional space spanned by the number of samples in the
training set. This characteristic implies that the larger n is, the
better the prediction ought to bethus the denomination of a
supervised learning method.
Here, we build on the Δ-ML approach,27 which estimates the

difference between the desired property and an inexpensive
baseline model that accounts for the most relevant physics.
More specifically, a refined target property p(x) is predicted
from baseline property pVor (see section 2.3) plus the ML-
model Δ

= + Δp x p x x p( ) ( ) ( , )Vor Vor
(1)

where x corresponds to the representation vectoror
descriptorof the input sample (e.g., query molecule). Δ
corresponds to the standard kernel-ridge regression model of
the difference between baseline and target property constructed
for n training samples,

∑ αΔ = + ′
=

x p k x x k p p( , ) [ ( , ) ( , )]
i

n

i i i
Vor

1

Vor Vor

(2)

where αi is the weight given to training molecule i. These
weights are determined by best reproducing the reference
property pref(x) for each sample in the training set according to
the closed-form solution α λ= + ′ + −−OK K p p( ) ( )1 ref Vor ,
where pref − pVor is the vector of training properties, i.e., the
difference between reference and baseline, and K and K′ are the
two kernel matrices. Note that, in eq 2, we have included
representation and baseline property in the kernel, each having
a different width in their respective kernel functions.
ML maps an input representation vector x into a scalar value

of similarity. Thus, before applying ML to predict atomic
MTPs, the information contained in the three-dimensional
structure of a molecule must be encoded in a vector of
numbers, i.e., its representation or descriptor. Ideally, this
information should reflect symmetries of molecular structures
with respect to rotations, translations, reflections, and atom

index permutations, etc. Here, we rely on the Coulomb-matrix
descriptor,28

=
∀ =
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Z Z
i j

R R

1
2

ij

i

i j

i j

2.4

(3)

where i and j are index atoms in the molecule, Zi is atom i’s
atomic number, and Ri represents its Cartesian coordinates.
Note that the Coulomb matrix not only encodes inverse
pairwise distances between atoms but also the chemical
elements involved. As different molecules have different
numbers of atoms, their Coulomb matrices will vary in size.
Distant neighbors are expected to have a comparatively small
impact on a prediction, such that the inclusion of all neighbors
can prove inefficient for large molecules. Given a set of
molecules, we pad matrices with zeros such that their size
amounts to n × n, where n is the number of closest neighboring
atoms considered.28 In the following, we set n = 4. Given a
molecule’s d atoms, there are d individual atomic MTP samples
for the ML to learn from. For each, an individual Coulomb
matrix is built in which the atom of interest fills up the first
row/column, while the indices of the surrounding n atoms are
sorted according to the atoms’ Euclidean distances to the query
atom. As such, we coarsen our descriptor to contain at least the
first shell of n covalently bound neighbors, and atoms that only
differ in their environment at larger distances will be assigned
the same MTP. We have found n = 4 to correspond to a
reasonable compromise between computational efficiency and
performance. Note, however, that while such choices of
descriptor typically do affect the model’s performance for
given training sets, other descriptor choices could work just as
wellas long as they meet the requirements and invariances
necessary for the ML of quantum properties.29

In the context of applying ML to the prediction of tensorial
quantities, such as MTPs, properties pVor(x) and p(x) will be
expressed as vectors of size mthe number of independent
coefficients of the tensor of interest (e.g., 1 for a scalar charge, 3
for a vector dipole moment, 5 for a traceless second-rank tensor
quadrupole). We express MTP moments with their minimal
number of independent coefficients by using the spherical-
coordinate representation. We recognize that the kernel
matrices, K and K′, will remain unmodified when learning/
predicting different tensor components of the same input data
vector. Finally, the weights α are expressed as a matrix of size m
× n, which naturally reduces to a vector when predicting a
scalar quantity.
For this work, we have used the Laplacian kernels,
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where σ and ζ are free parameters and |...| corresponds to the
Manhattan, or city block, L1 norm. This combination of kernel
functions and distance measure has previously been shown to
yield the best performance for the modeling of molecular
atomization energies and other electronic properties using the
Coulomb-matrix representation.30,31 Nt is the number of
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Validation: SSI

23

2,200+ amino-acid 
pairs

Burns et al., J Chem Phys, 147 (2017).

Ref: CCSD(T)/CBS

FIG. 6. Correlation plots for the total intermolecular energy between reference and present cal-
culations for (a) the S66a8 dataset of dimers translated and rotated away from their equilibrium
geometry and (b) the SSI dataset of amino acids (only dimers involving neutral compounds made
of HCON atoms). Inset: strongly-repulsive tryptophan-glutamine dimer.

Model 1 yields overall an MAE of 0.37 kcal/mol. Model 2 yields virtually the same MAE,

0.38 kcal/mol, but underpredicts the high-energy dimer highlighted in Fig. 6b: 3.6 instead

of 22.6 kcal/mol. It highlights how widening the training set of the model to both small

molecules and host-guest complexes decreases the accuracy on the former.

21

Error: 0.4 kcal/mol
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lations for (a) the water-clusters dataset and (b) the host-guest complexes in the S12L database.
The colors in (a) indicate the number of molecules involved in the cluster: from two (red) to 10
(blue) molecules.

around the equilibrium value, as detailed in previous work.32 The various contributions

of the energy are shown in Fig. 9c. For reference, we compare the cohesive energy with

experimental results62 and dispersion-corrected atom-centered potentials (DCACP).63

As reported before,32,64 we find the benzene crystal to display significant dispersion inter-

24

�3

�2

�1

0

1

1 1.2 1.4 1.6 1.8 2

(a)

�3

�2

�1

0

1

1 1.2 1.4 1.6 1.8 2

(b)

�25
�20
�15
�10
�5
0
5
10
15
20
25
30

0.8 0.85 0.9 0.95 1 1.05

(c)

E
[k

c
a
l/

m
o
l]

d/deq

Model 1

Model 2

Ref

E
[k

c
a
l/

m
o
l]

d/deq

Model 1

Model 2

Ref

E
[k

c
a
l/

m
o
l]

⇢/⇢exp

Elst 1

Rep 1

Ind 1

Disp 1

Total 1

Total 2

DCACP

Exp

FIG. 9. Comparison of the intermolecular energy as a function of dimer distance for the ben-
zene dimer in the (a) parallel-displaced—stacked—and (b) T-shaped conformations. (c) Cohesive
binding energy of the benzene crystal as a function of the scaling factor of the unit cell.

actions. Though the overall curvature against density changes agrees reasonably well with

DCACP, we find that the method overstabilizes the molecular crystal. Model 1 yields a

cohesive energy of �17.2 kcal/mol at equilibrium, as compared to the experimental value

of �12.2 kcal/mol.62 For reference, we show the potential energy landscapes of the benzene

dimer in the stacked (a) and T-shaped (b) conformations. Excellent agreement is found in

25



Intermolecular interactions across chemical space
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discrepancy. Otherwise, the profile between the bilayer
midplane (z = 0) and the interfacial region (z ≈ 1.5 nm) is
correctly reproduced. Overall, the CG model reliably
reproduces the AA PMF curve semiquantitatively.
Finally, the parametrization of dibenz[a,h]anthracene

amounted to 11 SC*beadsmost of them SC5 (like benzene
in the Martini force field), though two of them were assigned
SC4 types, due to slight differences in the partitioning of atoms
between fragments. Although the protocol, in line with the
Martini guidelines, assigns rigid constraints between all ring-
type beads, we found that the network of constraints made for
unstable simulationswe thus replaced all constraints by
harmonic bonds and weakened the dihedral force constants to
kdihedral = 2 kJ/mol. We emphasize that this modification both
preserves the overall geometry of the compound and is the only
occasion throughout this work that a force field was modified
after its automatic generation. Figure 7d features an exaggerated
free energy of transfer between bulk water and the interfacial
lipid region. The collection of ringlike beads enhances the effect
to yield a 3 kcal/mol offset at z = 0. We note, here again, that
the overall shape of the profile is reproduced. These results
point to a discrepancy of the transfer free energy of benzene-
like beads between water and the interfacial region of the
membrane. Though the present parametrization (i.e., collection
of SC5 beads) supplies a fragment that is too hydrophobic, we
note that the closest bead that exhibits lower hydrophobicity,
namely, SN0, produces strongly polar thermodynamics, in
qualitative disagreement with the reference data of the
compound. Though Figure 7b displays the thermodynamics
of an Nda bead, the overall shape of the PMF is similar. Akin to
the first compound, we thus rationalize the present discrepancy
by a lack of resolution in the choice of bead types between C5

and N0. This effect is here compounded by the sheer number
of beads.

6. DISCUSSION
This protocol makes a number of assumptions upon
segmenting a molecule into fragments. First, the method
assumes linearity of the partitioning free energies, that is, the
molecular free energy of partitioning is the sum of the
individual bead contributions. To the extent of the system sizes
studied here (i.e., up to ∼20 non-hydrogen atoms), this
assumption seems to hold, as illustrated in Figure 4. We expect
this assumption to break down for larger moleculesthe
threshold size remains unknown.
Evidently, the assignment of a partitioning free energy from

the content of an isolated fragment ignores the chemistry of the
neighboring atoms and, most importantly, the associated
connectivity. One would expect the sheer error made on the
boundary atoms to distort the partition-coefficient assignment.
Interestingly, the resolution of the CG model does not allow to
resolve such level of detail. Case in point, butane and octane in
the standard Martini force field are both built using the same
bead type, C1one and two such beads, respectivelythough
clearly octane is not the concatenation of two butane
molecules. The resolution of the CG model thus makes a
fragment-based prediction of the beads at all possible.
The prediction algorithm used here to assign bead types,

ALOGPS, is a neural network based on molecular fragments. In
turn, the algorithm is not capable of predicting any arbitrary
fragment but rather the most commonly found. In case
ALOGPS fails to predict the partitioning of a fragment, we
propose to fall back on an atom-based method, such as that of
Wildman−Crippen.61 Though the method is not as accurate
(the error is roughly twice as large as for ALOGPS39,40,61), it is

Figure 7. Potential of mean force curves of the insertion of solute molecules in a lipid membrane from CG (red, solid lines) and AA (blue, dashed
lines) simulations: (a) 4-ethylphenol in SOPC/water (DOPC/water in the CG simulations); (b) propanol in DMPC/water; (c) 5-phenylvaleric acid
in DOPC/water; and (d) dibenz[a,h]anthracene in POPC/water. Atomistic data from Jakobtorweihen et al.55 Cartoon representations depict both
the atomistic structure and CG mapping. Color-coding of the CG bead types: yellow (S*), cyan (C*), dark blue (N*), and amber (P*). The CG
bead sizes are not to scale.
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clearly octane is not the concatenation of two butane
molecules. The resolution of the CG model thus makes a
fragment-based prediction of the beads at all possible.
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ALOGPS, is a neural network based on molecular fragments. In
turn, the algorithm is not capable of predicting any arbitrary
fragment but rather the most commonly found. In case
ALOGPS fails to predict the partitioning of a fragment, we
propose to fall back on an atom-based method, such as that of
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FIG. S6. Inset: Correlation between permeability coefficients log10 P̃AA calculated from AA simulations [6, 7], and the log10 PAA

obtained by combining AA potentials of mean force G(z) with the effective diffusivity profile D(z) presented in Fig. S1. Urea
and Benzoic acid—see text—are marked with the labels “Ur”, “Benz”. Main: Correlation between permeability coefficient
calculated via AA and CG potentials of mean force (log10 PAA and log10 PCG, respectively), in both cases relying on the
effective diffusivity profile presented in Fig. S1. We present results for the compound extracted from Ref. 6 (“Carpenter et
al.”), Ref. 7 (“Lee et al.”) and Ref. 9 (“Mac Callum et al.”).

accuracy of the latter. As atomistic reference data, we first considered the previously introduced set of compounds
extracted from Refs. 6, 7. We systematically coarse-grained all these compounds through the Auto-Martini tool
[8], again excluding from the calculations all chemical compounds containing multiple intertwined rings. In the case
of atenolol and salbutamol, we had to account for the presence of discrepancies in the Alogps [10] prediction of
water/octanol partitioning free energy against experimental measurements for specific chemical fragments by slightly
fine-tuning the Auto-Martini output. For completeness, in Sec. S9 we report Gromacs input files with the final
force-field parametrization for the entire set of small molecules. Subsequently, we performed CG molecular dynamics
simulations as described in the Methods section of the main text and calculated the corresponding CG permeability
coefficients log10 PCG.

Given that the set contains only a limited number of compounds—most of them being beyond the upper limit in
molecular weight considered in this work—we further included in the analysis the subset of amino-acid side chains
discussed in Ref. 11, whose behavior in a DOPC membrane was analyzed in Ref. 9 by means of atomistic simulations.
Unfortunately, Ref. 9 doesn’t provide results for the atomistic diffusivity D(z). However, having established that the
use of the effective diffusivity provides consistent permeability coefficients within the degree of accuracy pursued in
this work (inset of Fig. S6), we employed this profile together with the atomistic G(z) to determine the permeability
coefficients log10 PAA of amino-acid side chains. The corresponding coarse-grained log10 PCG were again determined
by means of CG simulations.

A comparison between permeability coefficients obtained by means of atomistic and coarse-grained simulations
(log10 PAA and log10 PCG, respectively) for all 21 compounds is presented in Fig. S6 and Table S1. For consistency
among atomistic results, the log10 PAA of all compounds are calculated by considering the atomistic potential of mean

Correlation all-atom vs. 
coarse-grained
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As a result, the thermodynamic cycle shown in Fig. 1(c)
can be reconstructed from the knowledge of a single variable
and the Martini bead representation of the compound. The
error in doing so amounts to ⇡0.4 kcal/mol. These relation-
ships are validated from reference atomistic simulations of
amino-acid side chains,5 where we consider only atomistic
compounds whose Martini representation consists of a sin-
gle bead. While most points fall within the linear fit from the
single-bead coarse-grained data, we observe three statistically
significant outliers: asparagine (asn), isoleucine (ile), and glu-
tamine (gln). These molecules lie on the data corresponding
to two-bead compounds, although their Martini representation
consists of a single bead.18 The origin of such discrepancies
will be explained below. The comparison of atomistic and
Martini potentials of mean force for protein side-chains was
already performed in Ref. 18.

Remarkably, the relationships between transfer free ener-
gies displayed in Fig. 3 can further be linked to a compound’s
water/octanol free-energy �GW!Ol, given its accurate linear
relation with �GW!M, see Fig. 2. A fit of the data provided

�GW!M = ��GW!Ol + �, (4)

with � = 1.70, 1.75 and � = 2.51, 4.69 kcal/mol for one-
and two-bead compounds, with R2 = 0.97. Given a com-
pound’s experimentally determined bulk measurement and
Martini representation,30 we can thereby reconstruct the three
main points of the potential of mean force, as shown in
Fig. 4(a). We rationalize these findings by noting the suitabil-
ity of the octanol environment as a proxy for the membrane
interface. Similarly, we showed the appropriateness of octane
for the bilayer midplane (Fig. 2). Indeed, both water/alcohol

FIG. 4. (a) Representative potentials of mean force of various Martini com-
pounds as a function of the normal distance to the bilayer midplane. The color
range denotes the water/octanol partitioning of the small molecule. Large cir-
cles correspond to estimates from the thermodynamic relation extracted in
this work. (b) Two-dimensional map of the free energy surface G(z,�GW!M)
for a small molecule, as a function of its distance from the DOPC bilayer
midplane z and its membrane/water partitioning free energy �GW!M.

and water/alkane coefficients correlate with blood-brain par-
titioning.39 Therefore, the relationships in Fig. 3 stem directly
from the linear correspondence between water/octane and
water/octanol transfer free energies (which can be deduced
from the linear relations shown in Fig. 2). From the model’s
perspective, the linear relations are not entirely unexpected,
as Martini describes hydrophobicity by a set of equally sized
Lennard-Jones particles with varying well-depths. Interest-
ingly, these relationships also hold at the atomistic level. At
infinite dilution, the difference in partitioning of a single small
molecule between water and either octane or octanol is due
to a single hydrogen bond. We suspect that, at the atomistic
level, the impact of this hydrogen bond on the partitioning
behavior strongly informs the linearity observed, although
the exact mechanism remains unclear. We further remind the
reader that the relationships presented here depend strongly
on the molecular weight (see the differences between one-
and two-bead molecules in Fig. 3). Potentials of mean force
of larger compounds6 do not follow the relationships pre-
sented in Fig. 3. Whether other relationships can be deter-
mined for these molecules will be the subject of future
work.

The statistical errors displayed by the coarse-grained sim-
ulations are marginal, less than 0.1 kcal/mol. However, a com-
parison of experimental measurements of the water/octanol
partitioning free energies of several hundred small molecules
against Martini predictions yielded a mean-absolute error of
0.79 kcal/mol.30 Given the relation between the water/octanol
and water/midplane curves of Fig. 2, we deduce from it a mean
absolute error on features of the potential of mean force of
approximately 1.4 kcal/mol. Further, the error associated with
the fitted lines on Fig. 3 amounts to an overall error of roughly
1.8 kcal/mol in reconstructing the main points of the potential
of mean force—at the bilayer midplane and at the interface,
see circles in Fig. 4(a)—by using as input only the experimen-
tal water/octanol partitioning free energy of a compound. At
the atomistic level, very few potentials of mean force are avail-
able to provide errors across chemical compounds. Beyond the
estimation of free-energy differences between the three ther-
modynamic environments of interest [Fig. 1(c)], we provide
potentials of mean force for 14 one-bead and a subset of 40
two-bead compounds in the supplementary material, further
illustrating the simple relationship between the water/octanol
partitioning and the potential of mean force.

The linearity observed between the free-energy barrier
�GW!I (equivalently �GI!M) and the water/membrane parti-
tioning free-energy �GW!M suggests the possibility of look-
ing for an approximately smooth two-dimensional free-energy
surface G(z,�GW!M) across chemical space, hence as a func-
tion of �GW!M as well as of the distance from the bilayer
midplane z.

In the case of two-bead coarse-grained molecules, we then
constructed a two-dimensional map of the free-energy surface
G(z,�GW!M) starting from the set of 40 potentials of mean
force that were determined by means of umbrella sampling
simulations, covering a range of�GW!M ' [�8, 14] kcal/mol.
Results are shown in Fig. 4(b).

The correlations shown in Fig. 3 between �GW!I and
�GW!M for different compounds correspond, on this surface,

Only 1 independent variable: estimated 
from water/octanol partitioning
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between compounds that reduce to CG molecules made of a single bead (“unimers”) from

those made of two beads (“dimers”) amounts to a segregation between molecular weights.5

We populate the permeability surfaces with these compounds—projecting them onto the

two molecular descriptors: pKa and partitioning free energy. By coarse-graining every sin-

gle compound, we establish a map between chemical structure and its CG thermodynamic

property.
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Figure 3: Chemical-space coverage of GDB projected onto pKa and water/octanol parti-
tioning free energies, �GW!Ol. Acidic and basic pKa are shown in panels (a,b) and (c,d),
respectively. Panels (a,c) and (b,d) describe the coverage corresponding to coarse-grained
unimers and dimers, respectively. Regions highlighted in light blue display several represen-
tative chemical groups. Substitutions denoted by “?” correspond to H, alkyl, or aryl groups,
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FIG. 1. (a) Importance sampling across coarse-grained compounds via a Markov chain Monte Carlo scheme. Only the dark-blue
region is sampled. (b) Background: Simulation setup of a solute (yellow) partitioning between water (not shown) and the lipid
membrane. Foreground: Potential of mean force along the normal of the bilayer, G(z), and definition of the three transfer free
energies of interest between the three state points (red circles): bilayer midplane (“M”), membrane-water interface (“I”), and
bulk water (“W”). (c) The MC-sampled free energies (dark-blue region) form the training set for a machine learning model,
used to predict a larger subset of compounds (light-blue region). (d) Each coarse-grained compound represents a large number
of small molecules.

compounds that were not sampled by using machine
learning (ML; see Fig. 1c) [15]. Despite known lim-
ited capabilities to extrapolate beyond the training set,
we observe remarkable accuracy for the predicted com-
pounds. This excellent transferability can be associ-
ated to a simplified learning procedure at the CG res-
olution: structure-property relationships are easier to es-
tablish [13] and compound similarity is compressed due
to the reduction of chemical space. The range of re-
liable predictions is made clear by means of the ML
model satisfying linear thermodynamic relations across
compounds [12]—a more robust confidence metric com-
pared to the predictive variance. The CG results are
then systematically backmapped (Fig. 1d) to yield an
unprecedentedly-large database of free energies.

II. RESULTS

We consider the insertion of a small molecule across a
single-component phospholipid membrane made of 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) solvated
in water. The insertion of a drug is monitored along
the collective variable, z, normal distance to the bilayer
midplane (Fig. 1b). We focus on three thermodynamic
state points of the small molecule: the bilayer midplane
(“M”), the membrane-water interface (“I”), and bulk wa-
ter (“W”). We link these quantities in terms of transfer
free energies, e.g., �GW!M denotes the transfer free en-
ergy of the small molecule from water to the bilayer mid-
plane.

A. Importance sampling

We ran MC simulations across CG linear trimers and
tetramers (results for tetramers are shown in the SI),
randomly changing a bead type, calculating the relative
free energy di↵erence between old and new compound
in the three di↵erent environments, and accepting the
trial compound using a Metropolis criterion on the wa-
ter/interface transfer free energy �GW!I (Fig. 1a). This
criterion aimed at selecting compounds that favor parti-
tioning in the membrane.

The MC algorithm yielded an acceptance ratio of 0.2.
While initially most trial compounds contributed to ex-
pand the database, the sampling scheme quickly reached
a stable regime where roughly half of the compounds had
already been previously visited. Because each free-energy
calculation is expensive, we avoid recalculating identical
alchemical transformations to help e�ciently converge
the protocol.

A short MC sequence of accepted compounds is shown
in Fig. S1. We display the sequence within the network of
sampled compounds, each node being represented by the
set of Martini bead types involved. Interestingly we find
a large number of closed paths within this network. Since
the free energy is a state function, the closed path rep-
resents a thermodynamic cycle—it must sum up to zero.
We found negligible changes in the free energies regard-
less of whether or not this condition was enforced on the
closed path, meaning that our chain of transformations
does not compound significant statistical error.

Boosting the database with machine learning

39
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FIG. 1. (a) Importance sampling across coarse-grained compounds via a Markov chain Monte Carlo scheme. Only the dark-blue
region is sampled. (b) Background: Simulation setup of a solute (yellow) partitioning between water (not shown) and the lipid
membrane. Foreground: Potential of mean force along the normal of the bilayer, G(z), and definition of the three transfer free
energies of interest between the three state points (red circles): bilayer midplane (“M”), membrane-water interface (“I”), and
bulk water (“W”). (c) The MC-sampled free energies (dark-blue region) form the training set for a machine learning model,
used to predict a larger subset of compounds (light-blue region). (d) Each coarse-grained compound represents a large number
of small molecules.

compounds that were not sampled by using machine
learning (ML; see Fig. 1c) [15]. Despite known lim-
ited capabilities to extrapolate beyond the training set,
we observe remarkable accuracy for the predicted com-
pounds. This excellent transferability can be associ-
ated to a simplified learning procedure at the CG res-
olution: structure-property relationships are easier to es-
tablish [13] and compound similarity is compressed due
to the reduction of chemical space. The range of re-
liable predictions is made clear by means of the ML
model satisfying linear thermodynamic relations across
compounds [12]—a more robust confidence metric com-
pared to the predictive variance. The CG results are
then systematically backmapped (Fig. 1d) to yield an
unprecedentedly-large database of free energies.

II. RESULTS

We consider the insertion of a small molecule across a
single-component phospholipid membrane made of 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) solvated
in water. The insertion of a drug is monitored along
the collective variable, z, normal distance to the bilayer
midplane (Fig. 1b). We focus on three thermodynamic
state points of the small molecule: the bilayer midplane
(“M”), the membrane-water interface (“I”), and bulk wa-
ter (“W”). We link these quantities in terms of transfer
free energies, e.g., �GW!M denotes the transfer free en-
ergy of the small molecule from water to the bilayer mid-
plane.

A. Importance sampling

We ran MC simulations across CG linear trimers and
tetramers (results for tetramers are shown in the SI),
randomly changing a bead type, calculating the relative
free energy di↵erence between old and new compound
in the three di↵erent environments, and accepting the
trial compound using a Metropolis criterion on the wa-
ter/interface transfer free energy �GW!I (Fig. 1a). This
criterion aimed at selecting compounds that favor parti-
tioning in the membrane.

The MC algorithm yielded an acceptance ratio of 0.2.
While initially most trial compounds contributed to ex-
pand the database, the sampling scheme quickly reached
a stable regime where roughly half of the compounds had
already been previously visited. Because each free-energy
calculation is expensive, we avoid recalculating identical
alchemical transformations to help e�ciently converge
the protocol.

A short MC sequence of accepted compounds is shown
in Fig. S1. We display the sequence within the network of
sampled compounds, each node being represented by the
set of Martini bead types involved. Interestingly we find
a large number of closed paths within this network. Since
the free energy is a state function, the closed path rep-
resents a thermodynamic cycle—it must sum up to zero.
We found negligible changes in the free energies regard-
less of whether or not this condition was enforced on the
closed path, meaning that our chain of transformations
does not compound significant statistical error.
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region is sampled. (b) Background: Simulation setup of a solute (yellow) partitioning between water (not shown) and the lipid
membrane. Foreground: Potential of mean force along the normal of the bilayer, G(z), and definition of the three transfer free
energies of interest between the three state points (red circles): bilayer midplane (“M”), membrane-water interface (“I”), and
bulk water (“W”). (c) The MC-sampled free energies (dark-blue region) form the training set for a machine learning model,
used to predict a larger subset of compounds (light-blue region). (d) Each coarse-grained compound represents a large number
of small molecules.

compounds that were not sampled by using machine
learning (ML; see Fig. 1c) [15]. Despite known lim-
ited capabilities to extrapolate beyond the training set,
we observe remarkable accuracy for the predicted com-
pounds. This excellent transferability can be associ-
ated to a simplified learning procedure at the CG res-
olution: structure-property relationships are easier to es-
tablish [13] and compound similarity is compressed due
to the reduction of chemical space. The range of re-
liable predictions is made clear by means of the ML
model satisfying linear thermodynamic relations across
compounds [12]—a more robust confidence metric com-
pared to the predictive variance. The CG results are
then systematically backmapped (Fig. 1d) to yield an
unprecedentedly-large database of free energies.

II. RESULTS

We consider the insertion of a small molecule across a
single-component phospholipid membrane made of 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) solvated
in water. The insertion of a drug is monitored along
the collective variable, z, normal distance to the bilayer
midplane (Fig. 1b). We focus on three thermodynamic
state points of the small molecule: the bilayer midplane
(“M”), the membrane-water interface (“I”), and bulk wa-
ter (“W”). We link these quantities in terms of transfer
free energies, e.g., �GW!M denotes the transfer free en-
ergy of the small molecule from water to the bilayer mid-
plane.

A. Importance sampling

We ran MC simulations across CG linear trimers and
tetramers (results for tetramers are shown in the SI),
randomly changing a bead type, calculating the relative
free energy di↵erence between old and new compound
in the three di↵erent environments, and accepting the
trial compound using a Metropolis criterion on the wa-
ter/interface transfer free energy �GW!I (Fig. 1a). This
criterion aimed at selecting compounds that favor parti-
tioning in the membrane.

The MC algorithm yielded an acceptance ratio of 0.2.
While initially most trial compounds contributed to ex-
pand the database, the sampling scheme quickly reached
a stable regime where roughly half of the compounds had
already been previously visited. Because each free-energy
calculation is expensive, we avoid recalculating identical
alchemical transformations to help e�ciently converge
the protocol.

A short MC sequence of accepted compounds is shown
in Fig. S1. We display the sequence within the network of
sampled compounds, each node being represented by the
set of Martini bead types involved. Interestingly we find
a large number of closed paths within this network. Since
the free energy is a state function, the closed path rep-
resents a thermodynamic cycle—it must sum up to zero.
We found negligible changes in the free energies regard-
less of whether or not this condition was enforced on the
closed path, meaning that our chain of transformations
does not compound significant statistical error.
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FIG. 1. (a) Importance sampling across coarse-grained compounds via a Markov chain Monte Carlo scheme. Only the dark-blue
region is sampled. (b) Background: Simulation setup of a solute (yellow) partitioning between water (not shown) and the lipid
membrane. Foreground: Potential of mean force along the normal of the bilayer, G(z), and definition of the three transfer free
energies of interest between the three state points (red circles): bilayer midplane (“M”), membrane-water interface (“I”), and
bulk water (“W”). (c) The MC-sampled free energies (dark-blue region) form the training set for a machine learning model,
used to predict a larger subset of compounds (light-blue region). (d) Each coarse-grained compound represents a large number
of small molecules.

compounds that were not sampled by using machine
learning (ML; see Fig. 1c) [15]. Despite known lim-
ited capabilities to extrapolate beyond the training set,
we observe remarkable accuracy for the predicted com-
pounds. This excellent transferability can be associ-
ated to a simplified learning procedure at the CG res-
olution: structure-property relationships are easier to es-
tablish [13] and compound similarity is compressed due
to the reduction of chemical space. The range of re-
liable predictions is made clear by means of the ML
model satisfying linear thermodynamic relations across
compounds [12]—a more robust confidence metric com-
pared to the predictive variance. The CG results are
then systematically backmapped (Fig. 1d) to yield an
unprecedentedly-large database of free energies.

II. RESULTS

We consider the insertion of a small molecule across a
single-component phospholipid membrane made of 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) solvated
in water. The insertion of a drug is monitored along
the collective variable, z, normal distance to the bilayer
midplane (Fig. 1b). We focus on three thermodynamic
state points of the small molecule: the bilayer midplane
(“M”), the membrane-water interface (“I”), and bulk wa-
ter (“W”). We link these quantities in terms of transfer
free energies, e.g., �GW!M denotes the transfer free en-
ergy of the small molecule from water to the bilayer mid-
plane.

A. Importance sampling

We ran MC simulations across CG linear trimers and
tetramers (results for tetramers are shown in the SI),
randomly changing a bead type, calculating the relative
free energy di↵erence between old and new compound
in the three di↵erent environments, and accepting the
trial compound using a Metropolis criterion on the wa-
ter/interface transfer free energy �GW!I (Fig. 1a). This
criterion aimed at selecting compounds that favor parti-
tioning in the membrane.

The MC algorithm yielded an acceptance ratio of 0.2.
While initially most trial compounds contributed to ex-
pand the database, the sampling scheme quickly reached
a stable regime where roughly half of the compounds had
already been previously visited. Because each free-energy
calculation is expensive, we avoid recalculating identical
alchemical transformations to help e�ciently converge
the protocol.

A short MC sequence of accepted compounds is shown
in Fig. S1. We display the sequence within the network of
sampled compounds, each node being represented by the
set of Martini bead types involved. Interestingly we find
a large number of closed paths within this network. Since
the free energy is a state function, the closed path rep-
resents a thermodynamic cycle—it must sum up to zero.
We found negligible changes in the free energies regard-
less of whether or not this condition was enforced on the
closed path, meaning that our chain of transformations
does not compound significant statistical error.

3

B. Machine learning

We trained an ML model using the vector of wa-
ter/octanol partitioning of each Martini bead type—one
of their salient properties [10] (see Methods). When
trained on most of the MC-sampled data, we obtained
out-of-sample mean absolute errors (MAE) as low as
0.2 kcal/mol for �GW!I and �GI!M, on par with the
statistical error of the alchemical transformations (see
Fig. S3). Remarkably, the prediction of �GW!M con-
verges to an MAE lower than 0.05 kcal/mol, illustrative
of the strong correlation between water/octanol and wa-
ter/membrane free energies in Martini [12]. For all three
quantities we monitor a correlation coe�cient above 97%,
indicating excellent performance.

Next, we train our ML model on the entire dataset of
MC-sampled compounds. We use this model to predict
all other CG linear trimers—a similar protocol was ap-
plied to tetramers. Because of the importance-sampling
scheme, the predicted compounds will typically feature
di↵erent characteristics, e.g., more polar compounds that
would preferably stay in the aqueous phase. As such
the ML model is technically extrapolating outside of the
training set. As a measure of homogeneity between train-
ing and validation sets, Fig. 2 displays the distributions of
confidence intervals (see Methods) between out-of-sample
predictions and the expansion of the dataset. While we
find significant overlap between the MC and ML distri-
butions for trimers, we observe larger deviations in the
case of tetramers.
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predicted compounds. (a) Trimers and (b) tetramers.

The extrapolation can also be seen in the projections
of predicted transfer free energies, highlighting distinct
coverages of sampled and predicted trimer compounds
(Fig. 3). Yet, the main panels (a) and (b) display notable
linear relations between transfer free energies—similar
behavior is found for tetramers (Fig. S4). Importantly,
similar linear relations had already been observed for CG
unimers and dimers, highlighting thermodynamic rela-
tions for the transfer between di↵erent e↵ective bulk en-
vironments [12]. We also argue that the ML models do
not simply learn linear features, since we optimize inde-
pendent models for the di↵erent predicted transfer free

energies. They also o↵er higher accuracy compared to
simple linear fits: mean-absolute error (MAE) of 0.3 and
0.5 kcal/mol for the ML and linear fit, respectively, across
a small set of 50 reference compounds spanning the entire
dataset. The linear behavior displayed across both sam-
pled and predicted compounds testifies to the robustness
of the ML model, despite the extrapolation.
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FIG. 3. (a) Transfer free energies from water to interface
�GW!I as a function of the compounds water/membrane
partitioning free energy, �GW!M. The dark and light blue
points depict corresponding quantities for trimers estimated
from MC sampling (3B-MC) and the ML predictions (3B-
ML), respectively. Linear fits highlight the molecular-weight
dependence. (b) Transfer free energies from the interface to
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A systematic coarse-graining of compounds in the
GDB [16] using Auto-Martini [10] was performed to
identify small organic molecules that map to CG lin-
ear trimers. We identified 1.36 million compounds, for
which we can associate all three transfer free energies,
�GW!M, �GW!I, and �GI!M. We note that the sam-
pled and predicted CG representations amount to similar
numbers of compounds, such that the ML boosting in-
troduced here o↵ers an additional 0.8 million compounds
to the database. The database is provided as supporting
material for further data analysis.
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FIG. 1. (a) Importance sampling across coarse-grained compounds via a Markov chain Monte Carlo scheme. Only the dark-blue
region is sampled. (b) Background: Simulation setup of a solute (yellow) partitioning between water (not shown) and the lipid
membrane. Foreground: Potential of mean force along the normal of the bilayer, G(z), and definition of the three transfer free
energies of interest between the three state points (red circles): bilayer midplane (“M”), membrane-water interface (“I”), and
bulk water (“W”). (c) The MC-sampled free energies (dark-blue region) form the training set for a machine learning model,
used to predict a larger subset of compounds (light-blue region). (d) Each coarse-grained compound represents a large number
of small molecules.

compounds that were not sampled by using machine
learning (ML; see Fig. 1c) [15]. Despite known lim-
ited capabilities to extrapolate beyond the training set,
we observe remarkable accuracy for the predicted com-
pounds. This excellent transferability can be associ-
ated to a simplified learning procedure at the CG res-
olution: structure-property relationships are easier to es-
tablish [13] and compound similarity is compressed due
to the reduction of chemical space. The range of re-
liable predictions is made clear by means of the ML
model satisfying linear thermodynamic relations across
compounds [12]—a more robust confidence metric com-
pared to the predictive variance. The CG results are
then systematically backmapped (Fig. 1d) to yield an
unprecedentedly-large database of free energies.

II. RESULTS

We consider the insertion of a small molecule across a
single-component phospholipid membrane made of 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) solvated
in water. The insertion of a drug is monitored along
the collective variable, z, normal distance to the bilayer
midplane (Fig. 1b). We focus on three thermodynamic
state points of the small molecule: the bilayer midplane
(“M”), the membrane-water interface (“I”), and bulk wa-
ter (“W”). We link these quantities in terms of transfer
free energies, e.g., �GW!M denotes the transfer free en-
ergy of the small molecule from water to the bilayer mid-
plane.

A. Importance sampling

We ran MC simulations across CG linear trimers and
tetramers (results for tetramers are shown in the SI),
randomly changing a bead type, calculating the relative
free energy di↵erence between old and new compound
in the three di↵erent environments, and accepting the
trial compound using a Metropolis criterion on the wa-
ter/interface transfer free energy �GW!I (Fig. 1a). This
criterion aimed at selecting compounds that favor parti-
tioning in the membrane.

The MC algorithm yielded an acceptance ratio of 0.2.
While initially most trial compounds contributed to ex-
pand the database, the sampling scheme quickly reached
a stable regime where roughly half of the compounds had
already been previously visited. Because each free-energy
calculation is expensive, we avoid recalculating identical
alchemical transformations to help e�ciently converge
the protocol.

A short MC sequence of accepted compounds is shown
in Fig. S1. We display the sequence within the network of
sampled compounds, each node being represented by the
set of Martini bead types involved. Interestingly we find
a large number of closed paths within this network. Since
the free energy is a state function, the closed path rep-
resents a thermodynamic cycle—it must sum up to zero.
We found negligible changes in the free energies regard-
less of whether or not this condition was enforced on the
closed path, meaning that our chain of transformations
does not compound significant statistical error.

3

B. Machine learning

We trained an ML model using the vector of wa-
ter/octanol partitioning of each Martini bead type—one
of their salient properties [10] (see Methods). When
trained on most of the MC-sampled data, we obtained
out-of-sample mean absolute errors (MAE) as low as
0.2 kcal/mol for �GW!I and �GI!M, on par with the
statistical error of the alchemical transformations (see
Fig. S3). Remarkably, the prediction of �GW!M con-
verges to an MAE lower than 0.05 kcal/mol, illustrative
of the strong correlation between water/octanol and wa-
ter/membrane free energies in Martini [12]. For all three
quantities we monitor a correlation coe�cient above 97%,
indicating excellent performance.

Next, we train our ML model on the entire dataset of
MC-sampled compounds. We use this model to predict
all other CG linear trimers—a similar protocol was ap-
plied to tetramers. Because of the importance-sampling
scheme, the predicted compounds will typically feature
di↵erent characteristics, e.g., more polar compounds that
would preferably stay in the aqueous phase. As such
the ML model is technically extrapolating outside of the
training set. As a measure of homogeneity between train-
ing and validation sets, Fig. 2 displays the distributions of
confidence intervals (see Methods) between out-of-sample
predictions and the expansion of the dataset. While we
find significant overlap between the MC and ML distri-
butions for trimers, we observe larger deviations in the
case of tetramers.
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The extrapolation can also be seen in the projections
of predicted transfer free energies, highlighting distinct
coverages of sampled and predicted trimer compounds
(Fig. 3). Yet, the main panels (a) and (b) display notable
linear relations between transfer free energies—similar
behavior is found for tetramers (Fig. S4). Importantly,
similar linear relations had already been observed for CG
unimers and dimers, highlighting thermodynamic rela-
tions for the transfer between di↵erent e↵ective bulk en-
vironments [12]. We also argue that the ML models do
not simply learn linear features, since we optimize inde-
pendent models for the di↵erent predicted transfer free

energies. They also o↵er higher accuracy compared to
simple linear fits: mean-absolute error (MAE) of 0.3 and
0.5 kcal/mol for the ML and linear fit, respectively, across
a small set of 50 reference compounds spanning the entire
dataset. The linear behavior displayed across both sam-
pled and predicted compounds testifies to the robustness
of the ML model, despite the extrapolation.
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FIG. 3. (a) Transfer free energies from water to interface
�GW!I as a function of the compounds water/membrane
partitioning free energy, �GW!M. The dark and light blue
points depict corresponding quantities for trimers estimated
from MC sampling (3B-MC) and the ML predictions (3B-
ML), respectively. Linear fits highlight the molecular-weight
dependence. (b) Transfer free energies from the interface to
the membrane �GI!M as a function of the compound’s wa-
ter/membrane partitioning free energy, �GW!M. The cover-
ages are projected down along a single variable on the sides.
Error bars for 3B-MC are on par with the datapoint sizes (not
shown).

A systematic coarse-graining of compounds in the
GDB [16] using Auto-Martini [10] was performed to
identify small organic molecules that map to CG lin-
ear trimers. We identified 1.36 million compounds, for
which we can associate all three transfer free energies,
�GW!M, �GW!I, and �GI!M. We note that the sam-
pled and predicted CG representations amount to similar
numbers of compounds, such that the ML boosting in-
troduced here o↵ers an additional 0.8 million compounds
to the database. The database is provided as supporting
material for further data analysis.
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FIG. 1. (a) Importance sampling across coarse-grained compounds via a Markov chain Monte Carlo scheme. Only the dark-blue
region is sampled. (b) Background: Simulation setup of a solute (yellow) partitioning between water (not shown) and the lipid
membrane. Foreground: Potential of mean force along the normal of the bilayer, G(z), and definition of the three transfer free
energies of interest between the three state points (red circles): bilayer midplane (“M”), membrane-water interface (“I”), and
bulk water (“W”). (c) The MC-sampled free energies (dark-blue region) form the training set for a machine learning model,
used to predict a larger subset of compounds (light-blue region). (d) Each coarse-grained compound represents a large number
of small molecules.

compounds that were not sampled by using machine
learning (ML; see Fig. 1c) [15]. Despite known lim-
ited capabilities to extrapolate beyond the training set,
we observe remarkable accuracy for the predicted com-
pounds. This excellent transferability can be associ-
ated to a simplified learning procedure at the CG res-
olution: structure-property relationships are easier to es-
tablish [13] and compound similarity is compressed due
to the reduction of chemical space. The range of re-
liable predictions is made clear by means of the ML
model satisfying linear thermodynamic relations across
compounds [12]—a more robust confidence metric com-
pared to the predictive variance. The CG results are
then systematically backmapped (Fig. 1d) to yield an
unprecedentedly-large database of free energies.

II. RESULTS

We consider the insertion of a small molecule across a
single-component phospholipid membrane made of 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) solvated
in water. The insertion of a drug is monitored along
the collective variable, z, normal distance to the bilayer
midplane (Fig. 1b). We focus on three thermodynamic
state points of the small molecule: the bilayer midplane
(“M”), the membrane-water interface (“I”), and bulk wa-
ter (“W”). We link these quantities in terms of transfer
free energies, e.g., �GW!M denotes the transfer free en-
ergy of the small molecule from water to the bilayer mid-
plane.

A. Importance sampling

We ran MC simulations across CG linear trimers and
tetramers (results for tetramers are shown in the SI),
randomly changing a bead type, calculating the relative
free energy di↵erence between old and new compound
in the three di↵erent environments, and accepting the
trial compound using a Metropolis criterion on the wa-
ter/interface transfer free energy �GW!I (Fig. 1a). This
criterion aimed at selecting compounds that favor parti-
tioning in the membrane.

The MC algorithm yielded an acceptance ratio of 0.2.
While initially most trial compounds contributed to ex-
pand the database, the sampling scheme quickly reached
a stable regime where roughly half of the compounds had
already been previously visited. Because each free-energy
calculation is expensive, we avoid recalculating identical
alchemical transformations to help e�ciently converge
the protocol.

A short MC sequence of accepted compounds is shown
in Fig. S1. We display the sequence within the network of
sampled compounds, each node being represented by the
set of Martini bead types involved. Interestingly we find
a large number of closed paths within this network. Since
the free energy is a state function, the closed path rep-
resents a thermodynamic cycle—it must sum up to zero.
We found negligible changes in the free energies regard-
less of whether or not this condition was enforced on the
closed path, meaning that our chain of transformations
does not compound significant statistical error.

3

B. Machine learning

We trained an ML model using the vector of wa-
ter/octanol partitioning of each Martini bead type—one
of their salient properties [10] (see Methods). When
trained on most of the MC-sampled data, we obtained
out-of-sample mean absolute errors (MAE) as low as
0.2 kcal/mol for �GW!I and �GI!M, on par with the
statistical error of the alchemical transformations (see
Fig. S3). Remarkably, the prediction of �GW!M con-
verges to an MAE lower than 0.05 kcal/mol, illustrative
of the strong correlation between water/octanol and wa-
ter/membrane free energies in Martini [12]. For all three
quantities we monitor a correlation coe�cient above 97%,
indicating excellent performance.

Next, we train our ML model on the entire dataset of
MC-sampled compounds. We use this model to predict
all other CG linear trimers—a similar protocol was ap-
plied to tetramers. Because of the importance-sampling
scheme, the predicted compounds will typically feature
di↵erent characteristics, e.g., more polar compounds that
would preferably stay in the aqueous phase. As such
the ML model is technically extrapolating outside of the
training set. As a measure of homogeneity between train-
ing and validation sets, Fig. 2 displays the distributions of
confidence intervals (see Methods) between out-of-sample
predictions and the expansion of the dataset. While we
find significant overlap between the MC and ML distri-
butions for trimers, we observe larger deviations in the
case of tetramers.
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The extrapolation can also be seen in the projections
of predicted transfer free energies, highlighting distinct
coverages of sampled and predicted trimer compounds
(Fig. 3). Yet, the main panels (a) and (b) display notable
linear relations between transfer free energies—similar
behavior is found for tetramers (Fig. S4). Importantly,
similar linear relations had already been observed for CG
unimers and dimers, highlighting thermodynamic rela-
tions for the transfer between di↵erent e↵ective bulk en-
vironments [12]. We also argue that the ML models do
not simply learn linear features, since we optimize inde-
pendent models for the di↵erent predicted transfer free

energies. They also o↵er higher accuracy compared to
simple linear fits: mean-absolute error (MAE) of 0.3 and
0.5 kcal/mol for the ML and linear fit, respectively, across
a small set of 50 reference compounds spanning the entire
dataset. The linear behavior displayed across both sam-
pled and predicted compounds testifies to the robustness
of the ML model, despite the extrapolation.
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FIG. 3. (a) Transfer free energies from water to interface
�GW!I as a function of the compounds water/membrane
partitioning free energy, �GW!M. The dark and light blue
points depict corresponding quantities for trimers estimated
from MC sampling (3B-MC) and the ML predictions (3B-
ML), respectively. Linear fits highlight the molecular-weight
dependence. (b) Transfer free energies from the interface to
the membrane �GI!M as a function of the compound’s wa-
ter/membrane partitioning free energy, �GW!M. The cover-
ages are projected down along a single variable on the sides.
Error bars for 3B-MC are on par with the datapoint sizes (not
shown).

A systematic coarse-graining of compounds in the
GDB [16] using Auto-Martini [10] was performed to
identify small organic molecules that map to CG lin-
ear trimers. We identified 1.36 million compounds, for
which we can associate all three transfer free energies,
�GW!M, �GW!I, and �GI!M. We note that the sam-
pled and predicted CG representations amount to similar
numbers of compounds, such that the ML boosting in-
troduced here o↵ers an additional 0.8 million compounds
to the database. The database is provided as supporting
material for further data analysis.
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High-throughput thermodynamics
- Coarse-graining reduces the size of 

chemical space: fewer simulations 
- Structure-property relationships: CG 

suggests low-dimensional 
representation

Force fields across chemical space
- Physics encode long-range interactions 
- Symmetries reduce the interpolation 

space 
- Learning from QM (atomistic) or 

physicochemical properties (CG)
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