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Games (via deep reinforcement learning)
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What is deep learning good at?

Image and language processing
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Many complex systems are structured
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|I o g u)n;n;.,i - ”&?
f {n @ & R ’
E\‘ 3 5

Biological species

Bacteria Archaea Eukaryota
Green
Filamentous Slime _
Spirochetss bacteria Entamoebae molds .ﬁwlmFaIs .
ungi

Gram Methanosarcina
positives|  Methanobacterium |  Habphiles

Proteobacteria ) Plants
. Methanococcus .
Cyanobacteria - Ciliaes
T.celer
] /) Th ~m ” T
P‘an“om} ces 4..9“..AO,?. oruSs Flag’-:'”at’?s
n:)" ."Cd icticum
Bacteroides Trichomonads
Cytophaga
Microsporidia
Thermotoga
) Diplomonads
Aquifex

Everyday scenes

Sleep area/ »>»Bedroom
Bed and Window
supported grourf/
(X2) & Curtain
V} Ny torage
N\ torage W area
V>BEd - area

Pillows/ Door Sft/ Door set/
[™~_pillow ﬁ N
: Closet \

Bed  Mattress fzslf/ Closet/ ‘group/ Cabinet
frame group/ group group/

helf Closet
>ne Closet Cabinet

Natural language

makes

l(‘unj_aml

nsubj  distributes

M”" \’(”

Bell products

l partmod lumud

dobyj

based amod  glectronic amod
l prep_in /mj_anNunj_und

Angeles computer building

l,,,, “Bell, based in Los Angeles, makes
and distributes electronic, computer
Los and building products.”

Code

12 %3 +3
AST | Puse deae




The standard deep learning toolkit...

“My data is vectors”: “My data is grids”: “My data is sequences”:
Multi-layer perceptron (MLP) Convolutional neural network (CNN) Recurrent neural network (RNN)
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...I1s not well-suited to reasoning over structured representations.

But neural networks that operate on graphs are.



Background: Graph Neural Networks

General idea

* Analogous to a convolutional network, but over arbitrary graphs (rather than just grids)
 Learn to reason about entities and their relations

Key historical survey papers

o Scarselli et al. (2009) "The Graph Neural Network Model".
Summarizes the initial papers on the topic from ~2005-2009. Very general formalism.

 Lietal (2015) “Gated graph sequence neural networks”.
Simplified the formalism, trained via backprop, used RNNs for sharing update steps across time.

 Bronstein et al. (2016) “Geometric deep learning: going beyond Euclidean data”.
Survey of spectral and spatial approaches for deep learning on graphs.

 Gilmer et al. (2017) “Neural Message Passing for Quantum Chemistry”.

Introduced “message-passing neural network” (MPNNSs) formalism, unifying various approaches such as
graph convolutional networks.

 Battaglia et al. (2018). *Relational inductive biases, deep learning, and graph networks”.

Introduced the “graph network” (GN) formalism, extends MPNNSs, unifies non-local neural networks/self-
attention/Transformer.



http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1015.7227&rep=rep1&type=pdf
http://Gated%20Graph%20Sequence%20Neural%20Networks
https://arxiv.org/abs/1611.08097
https://arxiv.org/abs/1704.01212
https://arxiv.org/abs/1806.01261

Graph Networks (GNs)

Why do we need another graph neural network variant?
 We designed GNs to be both expressive, and easy to implement

* A GN block is a “graph-to-graph” function approximator
 The output graph’s structure (humber of nodes and edge connectivity) matches the input graph’s
 The output graph-, node-, and edge-level attributes will be functions of the input graph’s

——————— = = S
————— —

Graph Network k
k (a type of Graph Neural Network) :
Battaglia et al., 2018, arXiv !
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Composing GN blocks

The GN’s graph-to-graph interface promotes stacking GN blocks,
passing one GN’s output to another GN as input

Shared GN core Encode-process-decode Recurrent GN architecture

6 SN pevcy IR sy B
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Battaglia et al., 2018, arXiv



Message-Passing NN (eg. Interaction Net) Non-Local NN (eg. Transformer)
Gilmer et al. 2017 Vaswani et al. 2017; Wang et al. 2017

et — — . —
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Graph Network
(a type of Graph Neural Network) |

. f
Battaglia et al. 2018 | Edge block  Node block Global block

Edge block Node block Global block ’
|

Relation Network

Deep Sets ,
' Raposo et al. 2017; Santoro et al. 2017

Zhang et al. 2017

Edge block Node block Global block
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Edge block Node block Global block Edge block Node block Global block

Battaglia et al., 2018, arXiv



Interaction Network: Learning simulation as message-passing

n-body System
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Interaction Network: Learning simulation as message-passing

n-body System

Edge function Message aggregation Node function
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Physical systems as graphs
Balls

Nodes: bodies Nodes: balls Nodes: masses
Edges: gravitational forces Edges: rigid collisions between Edges: springs and rigid
balls, and walls collisions

Battaglia et al., 2016, NeurlPS



1000-step rollouts of true (top row) vs predicted (bottom row)

n-body Balls String

True

Model

B

Battaglia et al., 2016, NeurlPS



True

Model

Zero-shot generalisation to larger systems

n-body Balls

Battaglia et al., 2016, NeurlPS



Interaction Network: Predicting potential energy

n-body System
~

® “f\\,

Trained to predict system’s

Node aggregation and global function ootential energy
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 Rather than making node-wise
predictions, nhode updates can be
used to make global predictions.

n-body mass-spring

Battaglia et al., 2016, NeurlPS



Visual interaction network: Simulate from input images

Multi-frame encoder (conv net-based)

X,Y Coordinates —_—
Channels
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Input Frames  2-Scale Pooling Output
Convolution Convolution State Code

OO
%

/

Interaction network

(_
X

‘A

Global affector

(Y m=
+

Watters et al., 2017, NeurlPS




Visual interaction network: Simulate from input images

Mass-springs Bouncing balls

True Model

Can even predict invisible objects, inferred from how they affect visible ones

Watters et al., 2017, NeurlPS



Learning symbolic physms with graph networks

i

t

Single timestep

Nodes < : ;
o }
: €L CkyVry, Vs ) i
Node Pairs :
First MLP _ : _y Convert to Symbolic Equation
Minimmize / (¢°) : via Symbolic Regression
Dimension > Messages (e;) .
Summed Mt
Message ; re. :
Second MLP L] :
N
Node (")
Update Backpropagation
to learn the
Updated simulator
Nodes
Next timestep

(see Miles’ poster in the atrium)
Cranmer et al., 2019, arXiv/NeurlPS 2019 workshop




Learning symbolic physics with graph networks

Experiments
2D and 3D n-body (1/r and 1/r2 force laws)
* Mass-spring system 0.1 _ 0.1

Results | "

* After training, message vectors are linear 0147 " o 0.1 77 o o
First Message Component Second Message Component
transforms of the true forces
* Symbolic regression of the message function’s
formula reveals the analytical form of the true
force laws

Architecture
Interaction network with message vectors
constrained to 2 or 3 dimensions

True Force Component
—-1.491,+0.43f,
=
=
True Force Component
-0.44 1, —-1.50f,
=)
=

(see Miles' poster in the atrium)
Cranmer et al., 2019, arXiv/NeurlPS 2019 workshop



Hamiltonian ODE Graph Network

Data
(@,P)n S0 4
O_—>

\/

Physics

! —O
(4, P)nt1 ?b

Sanchez-Gonzalez et al., 2019, arXiv/NeurlPS 2019 workshop



Data
(@,P)n S0 4
O_—>

\/

Physics

! —O
(4, P)nt1 ?b

Hamiltonian ODE Graph Network

DeltaGN

Sanchez-Gonzalez et al., 2019, arXiv/NeurlPS 2019 workshop



Hamiltonian ODE Graph Network

Data DeltaGN OGN / HOGN fa.p - ODE’s time derivatives
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Hamiltonian ODE Graph Network
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Hamiltonian ODE Graph Network

Ground truth True Ham. DeltaGN HOGN

Sanchez-Gonzalez et al., 2019, arXiv/NeurlPS 2019 workshop
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Rollout position error
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o O O O O
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Generalization to untrained time steps

Predictive accuracy vs test At
At = 0.1 @train At in [0.02, 0.2] @train

model
True Ham.
® DeltaGN
OGN
® HOGN
fF 19 1 1 1 1 1T 1 1 fF 19 1 1 1 1 1 1 1
goo.o'_!oooo 800.0‘_'0000
O.oc:> o oc:>c:> o

Time step @test Time step @test

« OGN and HOGN used RK4 integrator (we also tested lower order RK integrators)
 We also tested symplectic integrators, and found HOGN has better energy accuracy/conservation

Sanchez-Gonzalez et al., 2019, arXiv/NeurlPS 2019 workshop



General graph network processing pipeline

Edge block
For each edge, €r, Vs, ,Vy, , U,
are passed to an “edge-wise function”:

e;{; — ¢° (eka Vres Vs 11)

Node block
—/
For each node, €,,V;,U | are
passed to a “node-wise function”:
/ vV (=

Global block
Across the graph, €', v',u , are
passed to a “global function”;

u «— ¢%(€,v/,u)

Edge block Node block Global block




Systems: "DeepMind Control Suite" (Mujoco) & real JACO

Random Control System Trajectories

—

/
!
Pendulum Cartpole Swimmerb

J

dITr:
JACO Arm

Walker2d JACO

DeepMind Control Suite (Tassa et al., 2018)



Kinematic tree of the actuated system as a graph

Controllable physical system as a graph:
 Bodies = Nodes
 Joints — Edges

* Global properties

Sanchez-Gonzalez et al., 2018, ICML



Forward model: supervised, 1-step training w/ random control inputs

Input graph (1) Next graph (t+1)

Chained 100-step predictions

Prediction Fixed Swimmerb

Expected Predicted
Sanchez-Gonzalez et al., 2018, ICML



Forward model: Multiple systems & zero-shot generalization

Prediction Fixed Multiple Systems (with Cheetah)

Single model trained: GELTIVIVG,)

 Pendulum, Cartpole, Acrobot,
Swimmer6 & Cheetah /

W

Expected Predicted

Prediction Fixed SwimmerN (zero—shot prediction)

L | (Swimmer7)
Zero-shot generalization: Swimmer

* #training links: {3, 4,5,6,-,8,9, -, -, ...}
 #testinglinks: {-, -, -, -, 7, -, -, 10-14}

Expected Predicted

Sanchez-Gonzalez et al., 2018, ICML



Forward model: Real JACO data

Recurrent GN G — e e
0 @

Prediction Fixed Real JACO

Expected Predicted
Sanchez-Gonzalez et al., 2018, ICML




Action

Pendulum

projection magnitude

Inference: GN-based system identification

Unobserved system parameters (e.g. mass, length) are implicitly inferred

—_—

Observed Inferred |
.' dynamic ID phase abstract §
" sequence static graph

Fo OO

= O

o

I
(-

Unidentifiable condition |dentifiable condition
ID phase Prediction phase O ID phase Prediction phase
=
(c) 2 (@
O o
< wo-1
(d) = 1 (b)
-
Ef
—— Len: 0.1 ég ° _~
—— Len: 0.2 Q= — expected
—— Len: 0.3 _1 = = prediction
0 20 40 60 380 100 0 20 40 60 380 100
Timestep Timestep

Sanchez-Gonzalez et al., 2018, ICML



Inference: GN-based system identification

Unobserved system parameters (e.g. mass, length) are implicitly inferred

Observed Inferred '
i { dynamic ID phase  abstract §
 ' Seauence static graph

O O-E-C
.. FOr 1)

Prediction System |ID Cartpole
ID phase

Pem—_Ea—

Real time Slowed down 1/5
Sanchez-Gonzalez et al., 2018, ICML



Control: Model-based planning

The GN-based forward model is differentiable, so we can backpropagate through it to search for a
sequence of actions that maximize reward.

Control Fixed JACO
Imitate, full pose (1x)

Target pose Control trajectory

Sanchez-Gonzalez et al., 2018, ICML



Control: Multiple systems via a single model

Control Fixed Multiple Systems

!

Pendulum | Acrobot Cartpole
Balance (3x) Swing up (5x) Balance (3x)

(

Swimmer6 Cheetah
Move towards target (7x) Move forward (5x)

Sanchez-Gonzalez et al., 2018, ICML



Control: Zero-shot control

Control Fixed SwimmerN (zero—shot)
Move towards target (5x)

Swimmerd Swimmer4 SwimmerS Swimmerb Swimmer/ Swimmers8

(zero—shot) (zero—shot) (zero—shot) (zero—shot) (zero—shot)

Swimmer9 SwimmerilQ Swimmertl 1 Swimmer1l2 Swimmer1l3 Swimmer1l4

Sanchez-Gonzalez et al., 2018, ICML




Control: Multiple reward functions

Control Fixed Cheetah (k rewards)

Maximize target (3x)

Horizontal speed

Y

Squared vertical speed

T

Vertical position

&<

Squared angular speed

Control Fixed Walker2d (k rewards)
Maximize target (1x)

L L

Horizontal speed Vertical position

L

Inverse verticality Feet to head height

Sanchez-Gonzalez et al., 2018, ICML




Graph networks as forward models of multi-agent RL systems

“Stag hunt”

Step O with last actions

Tacchetti et al., 2019, ICLR



Graph networks as forward models of multi-agent RL systems

” ! Graph representation
Stag hunt bT e '

Step O with last actions

t t
Gin Gout

Tacchetti et al., 2019, ICLR



Graph networks as forward models of multi-agent RL systems

Environment Steps

17.0 -
13.6 -
10.2 -

©c W o
o H O
| | |

Trained model’s predictive accuracy:
medium number of correctly predicted future steps (random ~= 0.1)

CoopNav

BN RFM == NRI

3.20 -
2.560 -
1.92 -
1.28 -
0.64 -

0.00 -

E=S VAIN

CoinGame

I Feedforward

StagHunt
5.20 -
4.16 -
3.12 - |
2.08 - i
0.00 -
No-relation = 1 MLP+LSTM

Tacchetti et al., 2019, ICLR



Interpretable learned representations

Predicted actions and top 5 edges

Agent <—> Stag

Edge vector magnitude

0 - 0 -
I T T T . I T T T | I
-5 -3 -1 1 3 -5 -3 -1 1 3
Time until stag respawns Time until stag eaten

Agent <—> Other agent

)

O Stag Respawn

= 10
5

g 8
S

O -
2

O 2
5

[l 2 0

Before After

# of available apples

Tacchetti et al., 2019, ICLR



Agents learn faster with model-augmented observations

1. Train a set of agents to perform a game.

2. Train an RFM to predict the agents’ future actions.

3. Train a new, untrained agent, whose observations are
augmented with the RFM’s message magnitudes.

The new agent (blue curve) trains faster in all environments.

CoopNav StagHunt StagHunt - 4 players CoinGame
30 35
25 - 30
- 20
T 15
= 15
a 10
RFM + A2C 10
S —— A2C 5
0 0 0 0
... T T ... T T T ... T T T
0 1 2 3 0 1 2 3 0 1 2 3 0 20 40 60 80

Environment Steps [M]

Tacchetti et al., 2019, ICLR



Learning deep generative models of chemical graphs

* Generative model defines joint distribution over graph-generating decisions (structure and order).

* Analogous to a decision tree, where decisions are selected by a GNN:
1. Add node? If NO, terminate.
2. It YES, Add edge? If NO, goto (1).
3. If YES, Pick node to add edge to. Goto (2).

* Training optimizes the joint log-likelihood of structure and order, with Monte Carlo integration over
permutations.

Add node (0)? f\dd edg)e? Add node (1)? Add edge? Pick node (0) to
(yes/no) yes/ (yes/no) (yes/no) add edge (0,1)
I G | ® | ® | @ | ® J
1 ® ®
Generation steps
Add edge? Add node (2)? Add edge? Pick node (0) to Add edge?
s/ ) | 0 (ves/no) | /No) | ge (0,2) | o (yes/no)
. 0 o o —]
2 @ @ @

Li et al., 2018, arXiv



Learning deep generative models of chemical graphs

 GrammarVAE (Kusner et al., 2017) has qualitatively poorer samples from the prior.

. otk

L e LD
I8 @ go00 Hyod

Training Set

| NH
\ / NI~ |
Grammar VAE

= A
HC QO o Sw
aoko SAT DD P

B Ol
Our Model

 Our model learns a more accurate model than LSTMs, and can generate more novel molecules.

Arch Grammar  Ordering N NLL P%valid  %novel
LSTM Graph Fixed 1 22.06 85.16 80.14
LSTM Graph Random | O(n!)  63.25 91.44 91.26
Graph Graph Fixed 1 20.55 97.52 90.01
Graph Graph Random | O(n!) 58.36 95.98 95.54

Li et al., 2018, arXiv
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Structured agents for physical construction

Avoid touching obstacles

Pick up blocks and place them in the scene
(and optionally make them sticky)

Bapst et al., 2019, ICML



Initial

Final

Structured agents for physical construction

(a) Silhouette

r ™

| - —

r N
‘] —

\III---_J

+1 per target
-0.5 per sticky block

Bapst et al., 2019, ICML



Initial

Final

Structured agents for physical construction

\III---_

J
~N

(a) Silhouette (b) Connecting
4 N A

- J
4 )

-

e
-,

\III---_/\

+1 per target
-0.5 per sticky block

. — I
n R [ u—
=

III---_/

+1 per target
Free sticky blocks

Bapst et al.,

2019, ICML



Initial

Final

Structured agents for physical construction

| il

\III---_/

+1 per target
-0.5 per sticky block

\III---_/

+1 per target
Free sticky blocks

\III---_/

(a) Silhouette (b) Connecting (c) Covering
4 YA N A
\III---_/\III---_/\
4 N N
——  — -

Length covered
-2 per sticky block

Bapst et al., 2019, ICML



Initial

Final

Structured agents for physical construction

+1 per target
-0.5 per sticky block

+1 per target
Free sticky blocks

(a) Silhouette (b) Connecting (c) Covering (d) Covering Hard
4 Y4 ) Y4 )
\...---_/\...---_/\ \.-.---_/
4 N\ [ N\ 4 )

— g C— - ]
_ n n Lo

I | i n— —v— .I- I | ] —‘ _EJ

\...---_/\-..---_/\------_/\ [] y

Length covered
-2 per sticky block

Length covered
-0.5 per sticky block

Bapst et al., 2019, ICML



Graph net-based agent: model-free
Can be thought of as “graph building” agent

Observation (t) 4 Graph-based Argmax over ) Action (t)
Q-function edge Q-values
3 ‘
. I
/ “Place block D
on block B,
on its top left”

Bapst et al., 2019, ICML



Graph net-based agent: model-based
Can be thought of as “graph building” agent

Observation (t) 4 Graph-based Argmax over ) Action (t)
Q-function edge Q-values
L ‘
) I
A: / “Place block D
: on block B,
; on its top left”

Bapst et al., 2019, ICML



Actions

Absolute vs relative actions

Continuous
absolute

m

Continuous
relative

Discrete
absolute

Discrete
relative

Bapst et al., 2019, ICML



Results: “Silhouette” task

Absolute Actions Object-Centric Actions
| T
B 2 o B G
HE N I HE N I N S

Reward: +1 per target, -0.5 per sticky block

Bapst et al., 2019, ICML



Results: “Connecting” task

Absolute Actions Object-Centric Actions
| S 1 1 | S [ =1
| [ [ | [ [
[ [ [ R [ [
L —— | e —— |
HE N I HE BN I

Reward: +1 per target, free sticky blocks

Bapst et al., 2019, ICML



Results: “Covering” task

Absolute Actions Object-Centric Actions
D [
L ] [ L [l
[ T [
eSS S——— e —— |
H B B [ T TS S H B 8 B T 0 SRS

Reward: proportional to length covered, -2 per sticky block

Bapst et al., 2019, ICML



Results: “Covering hard” task

Absolute Actions Object-Centric Actions
I | AN |
o i
| T .
HE BN I HE N I

Reward: proportional to length covered, -0.5 per sticky block

Bapst et al., 2019, ICML
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Results: Absolute vs relative actions
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Results: Planning agent (using MCTS)
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Build Graph Nets in Tensorflow
github.com/deepmind/graph nets

# Provide your own functions to generate graph-structured data.
input_graphs = get_graphs()

# Create the graph network.

graph_net_module = gn.modules.GraphNetwork(
edge_model_fn=1lambda: snt.nets.MLP([32, 32]),
node_model fn=lambda: snt.nets.MLP([32, 32]),
global_model_fn=1lambda: snt.nets.MLP([32, 32]))

# Pass the 1input graphs to the graph network, and return the output graphs.
output_graphs = graph_net_module(input_graphs)

For GNN libraries in PyTorch, check out:

o pytorch_geometric: github.com/rustyls/pytorch geometric (for a GN analog, see MetalLayer)
 Deep Graph Library: github.com/dmlc/dgl



http://github.com/rusty1s/pytorch_geometric
http://github.com/dmlc/dgl
http://github.com/deepmind/graph_nets

Build Graph Nets in Tensorflow
github.com/deepmind/graph nets

Message-Passing NN (eg. Interaction Net)
Gilmer et al. 2017

Edge block

Zhano

Node block

Deep Sets \\
et al. 2017 1: o

Edge block

Node block

Graph Network

Global block ’
\

Global block

(a type of Graph Neural Network)

Non-Local NN (eg. Transformer)
Vaswani et al. 2017; Wang et al. 2017
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|

Edge block Node block Global block


http://github.com/deepmind/graph_nets

Build Graph Nets in Tensorflow

github.com/deepmind/graph nets

IPython Notebook demos

(A|| use same arChltecture Shortest path: predictions at each message-passing step
True Step 1 Step 4 Step 7 Step 10

Sort: item-to-item connections

True Predicted
Physics: rollout of mass-spring system pinned at ends

Sorting:

Predicting physics: U \\ﬁ

= True
- Predicted

Time 0 Time 8 Time 16 Time 32 Time 48


http://github.com/deepmind/graph_nets

Conclusions

* Graph neural networks: a first-class member of the deep learning toolkit.

* | earned message-passing on graphs supports simulation, as well as other
forms of structured control and decision-making.

* Models with rich internal structure offer unigue opportunities for interpretability.

e Build Graph Nets in Tensorflow: github.com/deepmind/graph nets.



http://github.com/deepmind/graph_nets
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