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Neural network (differentiable program)

Model is learned from data as a differentiable transformation

Inputs Outputs

Difficult to interpret the actual 
learned model
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Neural network (differentiable program)

Model / probabilistic program / simulator

Model is learned from data as a differentiable transformation

Model is defined as a structured generative program

Inputs

Inputs

Probabilistic programming

Outputs

Outputs
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Model / probabilistic program / simulator

Probabilistic model: a joint distribution                   of random variables
● Latent (hidden, unobserved) variables
● Observed variables (data) 

Inputs Outputs

Probabilistic graphical models use graphs 
to express conditional dependence
● Bayesian networks
● Markov random fields (undirected)



Probabilistic programming

8

Model / probabilistic program / simulator

Probabilistic model: a joint distribution                   of random variables
● Latent (hidden, unobserved) variables
● Observed variables (data) 

Inputs Outputs

Probabilistic programming extends this to 
“ordinary programming with two added constructs”
● Sampling from distributions
● Conditioning by specifying observed values



Inference
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Model / probabilistic program / simulator

Use your model                   to analyze (explain) some given data
as the posterior distribution of latents       conditioned on observations

Inputs Outputs

See Edward tutorials for a good intro: http://edwardlib.org/tutorials/

Posterior:
Distribution of latents 
describing given data

Prior, describes latents

Likelihood:
How do data depend on latents?



Inference
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Inputs Simulated
data

Observed 
data

● Run many times

● Record execution traces                         ,

● Approximate the posterior

Model / probabilistic program / simulator
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Inputs Simulated
data

Observed 
data

● Run many times

● Record execution traces                         ,

● Approximate the posterior

Model / probabilistic program / simulator

This is importance sampling, other 
inference engines run differently



Inference reverses the generative process 
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Inputs Simulated data 
(detector response)

Real world system

Observed data 
(detector 
response)

Generative model / simulator (e.g., Sherpa, Geant)

Inputs



Live demo

Inference
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● Markov chain Monte Carlo
○ Probprog-specific: 

■ Lightweight 
Metropolis–Hastings

■ Random-walk 
Metropolis–Hastings

○ Sequential
○ Autocorrelation in samples
○ “Burn in” period

● Importance sampling
○ Propose from prior
○ Use learned proposal 

parameterized by observations
○ No autocorrelation or burn in
○ Each sample is independent (parallelizable)

● Others: variational inference, Hamiltonian Monte Carlo, etc.

Inference engines

14

We sample in trace space:
each sample (trace) is one full execution of 
the model/simulator!

prior proposal

posterior
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prior proposal

posterior

We sample in trace space:
each sample (trace) is one full execution of 
the model/simulator!



● Anglican (Clojure)
● Church (Scheme)
● Edward, TensorFlow Probability (Python, TensorFlow)
● Pyro (Python, PyTorch)
● Figaro (Scala)
● Infer.NET (C#)
● LibBi (C++ template library)
● PyMC3 (Python)
● Stan (C++)
● WebPPL (JavaScript)

For more, see http://probabilistic-programming.org

Probabilistic programming languages (PPLs)
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http://probabilistic-programming.org


Existing simulators
as probabilistic programs 
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for Physics Beyond the Standard Model.” NeurIPS 2019
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Bringing Probabilistic Programming to Scientific Simulators at Scale.” International Conference for High Performance Computing, 
Networking, Storage, and Analysis - SC19



A stochastic simulator implicitly defines a probability 
distribution by sampling (pseudo-)random numbers 
→ already satisfying one requirement for probprog

Key idea:
● Interpret all RNG calls as sampling from a prior distribution
● Introduce conditioning functionality to the simulator
● Execute under the control of general-purpose inference engines 
● Get posterior distributions over all simulator latents 

conditioned on observations

Execute existing simulators as probprog

20



A stochastic simulator implicitly defines a probability 
distribution by sampling (pseudo-)random numbers 
→ already satisfying one requirement for probprog

Advantages:
Vast body of existing scientific simulators (accurate generative 
models) with years of development: MadGraph, Sherpa, Geant4

● Enable model-based (Bayesian) machine learning in these
● Explainable predictions directly reaching into the simulator

(simulator is not used as a black box)
● Results are still from the simulator and meaningful

Execute existing simulators as probprog
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Several things are needed:

● A PPL with with simulator control incorporated into design

● A language-agnostic interface for connecting PPLs to simulators 

● Front ends in languages commonly used for coding simulators

Coupling probprog and simulators

22



Several things are needed:

● A PPL with with simulator control incorporated into design
pyprob

● A language-agnostic interface for connecting PPLs to simulators 
PPX - the Probabilistic Programming eXecution protocol

● Front ends in languages commonly used for coding simulators
pyprob_cpp

Coupling probprog and simulators
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https://github.com/probprog/pyprob 

A PyTorch-based PPL

Inference engines:
● Markov chain Monte Carlo

○ Lightweight Metropolis Hastings (LMH)
○ Random-walk Metropolis Hastings (RMH)

● Importance Sampling
○ Regular (proposals from prior)
○ Inference compilation (IC)

● Hamiltonian Monte Carlo (in progress)

pyprob

24
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https://github.com/probprog/pyprob 

A PyTorch-based PPL

Inference engines:
● Markov chain Monte Carlo

○ Lightweight Metropolis Hastings (LMH)
○ Random-walk Metropolis Hastings (RMH)

● Importance Sampling
○ Regular (proposals from prior)
○ Inference compilation (IC)

Le, Baydin and Wood. Inference Compilation and Universal Probabilistic Programming. AISTATS 2017 

pyprob

25

https://github.com/probprog/pyprob
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https://github.com/probprog/ppx

Probabilistic Programming eXecution protocol
● Cross-platform, via flatbuffers: http://google.github.io/flatbuffers/ 
● Supported languages: C++, C#, Go, Java, JavaScript, PHP, Python, 

TypeScript, Rust, Lua
● Similar to Open Neural Network Exchange (ONNX) for deep learning

Enables inference engines and simulators to be
● implemented in different programming languages
● executed in separate processes, separate machines across networks
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PPX

https://github.com/probprog/ppx
http://google.github.io/flatbuffers/
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E.g., SHERPA, GEANT
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PPX



https://github.com/probprog/pyprob_cpp 
A lightweight C++ front end for PPX

pyprob_cpp
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https://github.com/probprog/pyprob_cpp


Probprog and high-energy physics
“etalumis”
simulate
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Cori supercomputer, Lawrence Berkeley Lab
2,388 Haswell nodes (32 cores per node)
9,688 KNL nodes (68 cores per node)
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High-energy physics simulators

Atılım Güneş Baydin, Lei Shao, Wahid Bhimji, Lukas Heinrich, Lawrence F. Meadows, Jialin Liu, Andreas Munk, Saeid Naderiparizi, Bradley 
Gram-Hansen, Gilles Louppe, Mingfei Ma, Xiaohui Zhao, Philip Torr, Kyle Cranmer, Victor Lee, Prabhat, Frank Wood. 2019. “Etalumis: Bringing 
Probabilistic Programming to Scientific Simulators at Scale.” International Conference for High Performance Computing, Networking, Storage, and 
Analysis - SC19 

Atılım Güneş Baydin, Lukas Heinrich, Wahid Bhimji, Lei Shao, Saeid Naderiparizi, Andreas Munk, Jialin Liu, Bradley Gram-Hansen, Gilles Louppe, 
Lawrence Meadows, Philip Torr, Victor Lee, Prabhat, Kyle Cranmer, Frank Wood. 2019. “Efficient Probabilistic Inference in the Quest for Physics Beyond 
the Standard Model.” NeurIPS 2019

https://arxiv.org/abs/1907.03382

https://arxiv.org/abs/1807.07706

Best Paper Finalist

International Conference for High 
Performance Computing, Networking, 
Storage, and Analysis (SC19), 
Denver, CO, November 17–22, 2019

● PPL with HPC features:  multi-TB empirical distributions, distributed 
inference and training

● The largest scale posterior inference in a Turing-complete PPL; approx. 
25,000 latents expressed by Sherpa code base of 1M lines of C++ code

● Synchronous data parallel training of a dynamic 3DCNN–LSTM with 
PyTorch MPI, at the scale of 1,024 nodes (32,768 CPU cores) with 128k  
global minibatch size. Largest scale use of PyTorch MPI, largest 
minibatch size for this form of NN

https://arxiv.org/abs/1907.03382
https://arxiv.org/abs/1807.07706


pyprob_cpp and 
Sherpa
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Main challenges
Working with large-scale HEP simulators requires several innovations
● Wide range of prior probabilities, some events highly unlikely and not 

learned by IC neural network
● Solution: “prior inflation” 

○ Training: modify prior distributions to be uninformative
HEP: sample according to phase space

○ Inference: use the unmodified (real) prior for weighting proposals
HEP: differential cross-section = phase space * matrix element
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Main challenges
Working with large-scale HEP simulators requires several innovations
● Potentially very long execution traces due to rejection sampling loops
● Solution: “replace” (or “rejection-sampling”) mode

○ Training: only consider the last (accepted) values within loops
○ Inference: use the same proposal distribution for these samples 
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Experiments



Tau decay in Sherpa, 38 decay channels, coupled with an approximate 
calorimeter simulation in C++

Tau lepton decay
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Probabilistic addresses in Sherpa
Approximately 25,000 addresses encountered

... 39



Common trace types in Sherpa
Approximately 450 trace types encountered
Trace type: unique sequencing of addresses (with different sampled values)

... 40



Inference results with MCMC engine
Prior



Inference results with MCMC engine
Prior

MCMC Posterior 
conditioned on 
calorimeter

7,700,000 samples 
Slow and has to run single node



Convergence to true posterior
We establish that two independent RMH MCMC chains 
converge to the same posterior for all addresses in Sherpa
● Chain initialized with random trace from prior
● Chain initialized with known ground-truth trace

Gelman-Rubin convergence diagnostic

Autocorrelation

Trace log-probability



Convergence to true posterior
Important:
● We get posteriors over the 

whole Sherpa address 
space, 1000s of addresses

● Trace complexity varies 
depending on observed event

This is just a selected subset:
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Inference 
results with 
IC engine

MCMC true posterior
(7.7M single node)



Inference 
results with 
IC engine

IC posterior
after importance 
weighting320,000 samples

Fast “embarrassingly” parallel multi-node

IC proposal
from trained NN

MCMC true posterior
(7.7M single node)



Interpretability
Latent probabilistic structure of 10 most frequent trace types
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Latent probabilistic structure of 10 most frequent trace types
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Interpretability



Latent probabilistic structure of 10 most frequent trace types
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px

py

pz

Decay 
channel

Rejection 
sampling

Rejection 
sampling

Calorimeter

Interpretability



Latent probabilistic structure of 25 most frequent trace types
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px

py

pz

Decay 
channel

Rejection 
sampling

Rejection 
sampling

Calorimeter

Interpretability



Latent probabilistic structure of 100 most frequent trace types
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px

py

pz

Decay 
channel

Rejection 
sampling

Rejection 
sampling

Calorimeter

Interpretability



Latent probabilistic structure of 250 most frequent trace types

53

px

py

pz

Decay 
channel

Rejection 
sampling

Rejection 
sampling

Calorimeter

Interpretability
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Interpretability



What’s next?



● Autodiff through PPX protocol
● Learning simulator surrogates (approximate forward simulators)
● Rejection sampling loops (weighting schemes)
● Rare event simulation for compilation (“prior inflation”)
● Batching of open-ended traces for NN training
● Distributed training of dynamic networks

○ Recently ran on 32k CPU cores on Cori (largest-scale PyTorch MPI)
● User features: posterior code highlighting, etc.
● Other simulators: astrophysics, epidemiology, computer vision

Current and upcoming work

56
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Rejection 
sampling loops
in Sherpa (tau decay)



Workshop at Neural Information Processing Systems (NeurIPS) conference
December 14, 2019, Vancouver, Canada
● Machine learning for physical sciences
● Physics for machine learning

58https://ml4physicalsciences.github.io/ 

Invited talks: Alan Aspuru-Guzik, Yasaman Bahri, Katie Bouman, Bernhard Schölkopf, 
Maria Schuld, Lenka Zdeborova

Contributed talks: MilesCranmer, Eric Metodiev, Danilo Jimenez Rezende, 
Alvaro Sanchez-Gonzalez, Samuel Schoenholz, Rose Yu 

https://ml4physicalsciences.github.io/


Thank you for listening



Extra slides



Calorimeter
For each particle in the final state coming from Sherpa:

1. Determine whether it interacts with the calorimeter at all
(muons and neutrinos don't)

2. Calculate the total mean number and spatial distribution of 
energy depositions from the calorimeter shower
(simulating combined effect of secondary particles )

3. Draw a number of actual depositions from the total mean 
and then draw that number of energy depositions according 
to the spatial distribution



• Minimize
•

• Using stochastic gradient descent with Adam
• Infinite stream of minibatches

 
sampled from the model

Training objective and data for IC
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Gelman-Rubin and autocorrelation formulae

63
From Eric B. Ford (Penn State): Bayesian Computing for Astronomical Data Analysis
http://astrostatistics.psu.edu/RLectures/diagnosticsMCMC.pdf



Gelman-Rubin and autocorrelation formulae
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From Eric B. Ford (Penn State): Bayesian Computing for Astronomical Data Analysis
http://astrostatistics.psu.edu/RLectures/diagnosticsMCMC.pdf



Model writing is decoupled from running inference

● Exact (limited applicability)
○ Belief propagation
○ Junction tree algorithm

● Approximate (very common)
○ Deterministic

■ Variational methods
○ Stochastic (sampling-based)

■ Monte Carlo methods
● Markov chain Monte Carlo (MCMC)
● Sequential Monte Carlo (SMC)

■ Importance sampling (IS)
● Inference compilation (IC)

Inference engines
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Transform a generative model implemented as a probabilistic program 
into a trained neural network artifact for performing inference

Inference compilation
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● A stacked LSTM core
● Observation embeddings, 

sample embeddings, and 
proposal layers specified by 
the probabilistic program

sample 
value

sample 
address

sample 
instance

trace 
length

Inference compilation

67

Proposal distribution parameters



Tau decay in Sherpa, 38 decay channels, coupled with an approximate 
calorimeter simulation in C++

Tau lepton decay
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Observation: 3D calorimeter depositions (Poisson)
○ Particle showers modeled as Gaussian blobs, deposited energy 

parameterizes a multivariate Poisson
○ Shower shape variables and sampling fraction based on final 

state particle

Monte Carlo truth (latent variables) of interest:
● Decay channel (Categorical)
● px, py, pz momenta of tau particle (Continuous uniform)
● Final state momenta and IDs


