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Here’s one way to use ML for 
peptide design

1. Collect experimental training data 
2. Train a supervised learning model 
3. In silico, rank peptides by predicted 
activity, and take the top 10 

4. Evaluate activity for these top 10 peptides



False positive rate

The machine learning algorithm with a threshold corresponding to the red dot will label: 
 20% of non-active peptides as active [ideally, this would be 0%] 
 45% of active peptides as active [ideally, this would be 100%] 

If 99.99% of peptides are not active,  
we’ll have to test X predicted-active peptides to find the first active one.
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Challenge:  
Machine learning makes errors,  
especially with small amounts of training data

At the red dot, we label: 
 5% of non-active peptides as active 
 20% of active peptides as active 

If 1 in 105 peptides are active,  
we’ll have to test >104 predicted-active peptides to find the first active one.

Random guesses
ML classifier



✤ Get more training data  

✤ Build prediction methods that perform well with less data 
(and that experimentalists can understand and trust) 

✤ Make good decisions about which experiments to perform 
(Bayesian optimization; Active Learning)

Opportunities to improve ML's 
effectiveness
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✤ Get more training data  

✤ Build prediction methods that perform well with less data 
(and that experimentalists can understand and trust) 

✤ Make good decisions about which experiments to perform 
(Bayesian optimization; Active Learning)

Opportunities to improve ML's 
effectiveness

Interpretable Bayesian optimization



Example: 
Recommender 

Systems



Step 1: Use ML to predict books Jack might enjoy 
reading
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What happens if we use the simple strategy of 
going with the top 3 most likely to be enjoyed?
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What happens if we use the simple strategy of 
going with the top 3 most likely to be enjoyed?

Probability he’ll like 
this book, if he doesn’t 
like the first one

Probability he’ll like 
this book, if he doesn’t 
like the first two
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The 
probability 
that Jack 
likes at least 
one of these 
books is only  
1-.6*.9*.95= 48.7%
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Step 2: Take ML's most recommended book

Probability he’ll like 
this book
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Step 3: Retrain assuming he doesn’t like it
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Step 4: Take ML’s most recommended book

Probability he’ll like 
this book
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Probability he’ll like 
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We are already up to a probability of 70%  
he’ll like one of these books 

Probability he’ll like 
this book
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Step 5: Retrain assuming he doesn’t like any of the 
previously selected books.  Take the best one.
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like the first two 20%
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40%

50%
Probability he’ll like 
this book, if he doesn’t 
like the first one

Providing a diverse selection increases the chance 
he’ll like at least one from 48.7% to 1-.6*.5*.8=76%

Probability he’ll like 
this book, if he doesn’t 
like the first two 20%

Probability he’ll like 
this book



We do not try to make every pick a winner

• We didn’t design the 
selection so that he 
would like every book 
selected. 

• We designed it so that 
he would like at least 
one. 

• The last book may be 
unlikely to be 
selected.  It is 
designed as a good 
backup, not a good 
first pick.



These ideas come from 
Bayesian optimization 

Bayesian optimization optimizes time-consuming-to-evaluate 
functions. 

Bayesian optimization iterates 2 steps: 
1.Build a Bayesian supervised learning model of the objective 
2. Suggest experiments to run based on an acquisition function 

Bayesian optimization is in a larger class of “optimal learning” 
methods



We are using Bayesian optimization 
to develop orthogonal protein labels
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Our goal is to build a way to 
stick things to proteins
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Our goal is to build two orthogonal 
ways to stick things to proteins

•We work with 2 different PPTase enzymes: Sfp and AcpS
•We want to find:  

(1) an Sfp-specific peptide substrate labeled by Sfp but not by AcpS  
(2) an AcpS-specific peptide substrate labeled by AcpS but not by Sfp



Our goal is to build two orthogonal 
ways to stick things to proteins



• If a peptide is a substrate for Sfp and not AcpS, we call it a “Sfp-specific hit” 

• AcpS-specific hits are defined similarly 

• For the orthogonal labeling system to be useful, the peptide should be short  
(say, 8-12 amino acids) 

• Otherwise they will change the behavior of the proteins where they are embedded

To make our orthogonal labeling system 
useful, we need the substrates to be short



It is hard to find short hits;  
Math makes it easier.
• Hits are rare: about 1 in 105 among shorter peptides. 

• Testing peptides is time-consuming 

• We test 500 peptides at time.  500 << 105. 

• To help us, we have some known hits, obtained from natural 
organisms.  They are too long to be used directly.



Here’s how we test peptides



We reduce the experimental effort 
required to find minimal substrates

✤ We provide a method for                                                                 
Peptide Optimization with Optimal Learning (POOL) 

✤ POOL has 2 parts: 

1. Predict which peptides are “hits”, 
using a simple (interpretable) Bayesian classifier 

2. Use these predictions in an intelligent way 
to recommend a set of recommend to test next



We use (Bayesian) Naive Bayes

✤ Disadvantages: It's not deep 

✤ Advantages: 

✤ Easy to explain to collaborators 

✤ Easy to understand & debug 

✤ Easy to customize a prior to our application 

✤ Strong prior => Robust to extremely small amounts of data 

✤ Good quantification of uncertainty 

✤ Computational scalability!



Naive Bayes assumes two 
latent matrices

P (y(x) = 1|x, ✓hit, ✓miss) =
P (hit)

Q
i ✓

(hit)
i,xi

P (hit)
Q

i ✓
(hit)
i,xi

+ P (miss)
Q

i ✓
(miss)
i,xi

                 ,  P(amino acid | hit)✓(hit)

                 ,  P(amino acid | miss)✓(miss)



• Prior mean is proportional to the number of AA in the class 
• The prior on columns far from the Serine is more concentrated close to the 

mean

                 ,  P(amino acid | hit)✓(hit)

                 ,  P(amino acid | miss)✓(miss)

We put independent Dirichlet priors 
on columns in these matrices



False Positive Rate
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Naive Bayes is ok,  
but far from perfect

• Graph uses training data 
from ~300 peptides 
(most are misses.) 

• Rates were estimated via 
leave-one-out cross-
validation.
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Given imperfect predictions,  
what should we test next?

• If predictions were perfect, we 
could just test the shortest 
peptide predicted to be a hit. 

• Our predictions are not 
perfect. 

• How should we decide what to 
test next?



Ranking by probability of a hit 
does not work well

• One simple strategy is: 
• Select those peptides with length < target. 
• Rank them by predicted probability of a hit 
• Test the top 300. 

• The tested peptides are very similar.  If the first 
tested peptide is not a hit, the other ones probably 
aren’t either.
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Let’s do the experiment that maximizes 
the probability we reach our goal 

• Our goal is to find short hits. 

• More specifically, our goal is*: 
• Find at least one hit of length b or shorter 

• Let’s run an experiment that maximizes the probability of 
reaching this goal.

* This isn't really our full goal, but it's pretty close.



The best experiment is the solution to 
a combinatorial optimization problem

• This can be formulated as this combinatorial optimization problem: 

• Notation: 
• E is the set of all peptides. 
• S is the set of peptides to test. 
• k is the number of peptides we can test in one experiment. 

Typically, k is between 200 and 500. 
• A “short hit” is a hit whose length is less than b.



We can’t solve this exactly,  
so we approximate its solution  
using a greedy algorithm

• This combinatorial optimization problem is very challenging : 
The number of size-k sets of length b peptides is 20b choose k.  
If b=14 and k=500, this is 1019 choose 500. 

• Instead, we build up the set S of peptides to test in stages. 

• In each stage, find one peptide e to add to S that maximizes the 
probability of reaching our goal: 

• Add e to S and repeat, until S has k=500 peptides.



The greedy algorithm performs within 
63% of optimal

Let P*(S) = P(at least one short hit in S). 



We can implement the greedy 
algorithm efficiently
• The greedy optimization step is equivalent to 

• We can compute this probability by treating all peptides in S as 
misses, and re-training our model 

• Naive Bayes allows solving the above optimization problem 
separately for each position in the peptide, making it fast to 
solve



Here is the intuition why 
this approach works better 
than “rank by prob. hit”  
• Finding the the single peptide to add that maximizes the probability 

of reaching our goal: 

• Is equivalent to: 

• Compare this to the “rank by prob. hit” approach



POOL works better because its 
peptides are more diverse

• Peptides added using the value of information approach tend to 
be different from those already in S. 

• Its recommendations are more diverse.
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POOL’s recommendations are more diverse



Sfp-type peptides can also be selectively 
labeled off-membrane, conjugated to GFP 

We believe we were unable to label our AcpS-type GFP-
peptides because of endogeneous AcpS in E. coli used to 
make them



AcpS-specific hit  
(w/ control)

Sfp-specific hit  
(w/ control)



Summary

• POOL (peptide optimization with optimal learning) uses a 
BayesOpt-style approach to find short orthogonal peptide 
substrates. 

• POOL construct a batch of peptides to test by iteratively adding 
the one that is most likely to succeed, if all others in the batch 
fail 

• This method has found hits shorter than the shortest previously 
known.

Tallorin et al.“Discovering de novo peptide substrates for enzymes 
using machine learning.” Nature Communications, 2018



Appendix





Using VOI to optimize  
P(≥1 short hit)  
has a shortcoming 

✤ Under our Naïve Bayes model, it is usually possible to increase 
P(hit) by increasing the peptide’s length.

✤ Thus, the experiments that maximize P(≥1 short hit) tend to have 
length b-1.

✤ However, a hit strictly shorter than b-1 would be even better.

✤ To allow us to find such strictly shorter peptides, we might consider 
an alternate goal: expected improvement.



✤ Let f(x) be the length of peptide x.

✤                                                  is the length of the shortest hit found.

✤ Define the expected improvement for testing S as:

✤ An S that maximizes EI(S) could contain peptides shorter than b-1.

Optimizing expected 
improvement would fix this



Efficiently optimizing expected 
improvement is ongoing work
✤ Solving                                         exactly is very challenging.

✤ EI(S) is also a monotone submodular function, and so the greedy 
algorithm also has an approximation guarantee.

✤ However, actually finding the single peptide to add that maximizes 
the expected improvement is itself extremely difficult.

✤ We are currently using an integer program to do this, but results are 
pending.



We are greedily optimizing P(≥1 short hit) with 
one tweak to make real recommendations 

✤ We have used the following 
approach in recommending 
experiments to our collaborators.

✤ We pre-select a random sequence of 
lengths a1,...,ak strictly less than b, 
and require that the nth peptide 
selected has length less than an.

✤ We then apply the greedy probability 
of improvement algorithm.

✤ This improves expected 
improvement, without hurting P(≥1 
short hit).

Expected improvement as a function of |S|, 
estimated via Monte Carlo.


