
Accelerating Scientific Discovery through
Interpretable Machine Learning &  

Intelligent Experimentation
Peter Frazier

Associate Professor, Operations Research & Information Engineering, Cornell
Staff Data Scientist, Uber

Eunice Kim 
(UCSD)

Lori Tallorin  
(UCSD)

Swagut Sahu  
(UCSD)

Jialei Wang 
(Cornell)

Nick Kosa  
(UCSD)

Pu Yang 
(Cornell)

Matt Thompson 
(Northwestern)

Mike Gilson 
(UCSD)

Nathan Gianneschi  
(Northwestern)

Mike Burkart  
(UCSD)

“Discovering de novo peptide
substrates for enzymes using
machine learning.” Nature
Communications, 2018

Here’s one way to use ML for
peptide design

1. Collect experimental training data
2. Train a supervised learning model
3. In silico, rank peptides by predicted
activity, and take the top 10

4. Evaluate activity for these top 10 peptides

False positive rate

The machine learning algorithm with a threshold corresponding to the red dot will label:
 20% of non-active peptides as active [ideally, this would be 0%]
 45% of active peptides as active [ideally, this would be 100%]

If 99.99% of peptides are not active,  
we’ll have to test X predicted-active peptides to find the first active one.

Tr
ue

 p
os

it
iv

e
ra

te

Challenge:  
Machine learning makes errors,  
especially with small amounts of training data

At the red dot, we label:
 5% of non-active peptides as active
 20% of active peptides as active

If 1 in 105 peptides are active,  
we’ll have to test >104 predicted-active peptides to find the first active one.

Random guesses
ML classifier

✤ Get more training data  

✤ Build prediction methods that perform well with less data
(and that experimentalists can understand and trust)

✤ Make good decisions about which experiments to perform
(Bayesian optimization; Active Learning)

Opportunities to improve ML's
effectiveness

✤ Get more training data  

✤ Build prediction methods that perform well with less data
(and that experimentalists can understand and trust)

✤ Make good decisions about which experiments to perform
(Bayesian optimization; Active Learning)

Opportunities to improve ML's
effectiveness

Interpretable models

✤ Get more training data  

✤ Build prediction methods that perform well with less data
(and that experimentalists can understand and trust)

✤ Make good decisions about which experiments to perform
(Bayesian optimization; Active Learning)

Opportunities to improve ML's
effectiveness

✤ Get more training data  

✤ Build prediction methods that perform well with less data
(and that experimentalists can understand and trust)

✤ Make good decisions about which experiments to perform
(Bayesian optimization; Active Learning)

Opportunities to improve ML's
effectiveness

Interpretable Bayesian optimization

Example:
Recommender

Systems

Step 1: Use ML to predict books Jack might enjoy
reading

40%

38%

35%

30%

40%

38%

35%

30%

What happens if we use the simple strategy of
going with the top 3 most likely to be enjoyed?

40%

10%

5%

What happens if we use the simple strategy of
going with the top 3 most likely to be enjoyed?

Probability he’ll like
this book, if he doesn’t
like the first one

Probability he’ll like
this book, if he doesn’t
like the first two

40%

10%

5%

The
probability
that Jack
likes at least
one of these
books is only  
1-.6*.9*.95= 48.7%

40%

Step 2: Take ML's most recommended book

Probability he’ll like
this book

40%

Step 3: Retrain assuming he doesn’t like it

50%

42%

37%

Probability he’ll like
this book, if he doesn’t
like the first one

Probability he’ll like
this book

40%

50%
Probability he’ll like
this book, if he doesn’t
like the first one

Step 4: Take ML’s most recommended book

Probability he’ll like
this book

40%

50%
Probability he’ll like
this book, if he doesn’t
like the first one

We are already up to a probability of 70%  
he’ll like one of these books

Probability he’ll like
this book

40%

50%
Probability he’ll like
this book, if he doesn’t
like the first one

Step 5: Retrain assuming he doesn’t like any of the
previously selected books. Take the best one.

Probability he’ll like
this book, if he doesn’t
like the first two 20%

15%

Probability he’ll like
this book

40%

50%
Probability he’ll like
this book, if he doesn’t
like the first one

Step 5: Retrain assuming he doesn’t like any of the
previously selected books. Take the best one.

Probability he’ll like
this book, if he doesn’t
like the first two 20%

Probability he’ll like
this book

40%

50%
Probability he’ll like
this book, if he doesn’t
like the first one

Providing a diverse selection increases the chance
he’ll like at least one from 48.7% to 1-.6*.5*.8=76%

Probability he’ll like
this book, if he doesn’t
like the first two 20%

Probability he’ll like
this book

We do not try to make every pick a winner

• We didn’t design the
selection so that he
would like every book
selected.

• We designed it so that
he would like at least
one.

• The last book may be
unlikely to be
selected. It is
designed as a good
backup, not a good
first pick.

These ideas come from
Bayesian optimization

Bayesian optimization optimizes time-consuming-to-evaluate
functions.

Bayesian optimization iterates 2 steps:
1.Build a Bayesian supervised learning model of the objective
2. Suggest experiments to run based on an acquisition function

Bayesian optimization is in a larger class of “optimal learning”
methods

We are using Bayesian optimization
to develop orthogonal protein labels

Eunice Kim 
(UCSD)

Lori Tallorin  
(UCSD)

Swagut Sahu  
(UCSD)

Jialei Wang 
(Cornell)

Nick Kosa  
(UCSD)

Pu Yang 
(Cornell)

Matt  
Thompson 
(UCSD/
Northwestern)

Mike Gilson 
(UCSD)

Nathan
Gianneschi  
(UCSD/
Northwestern)

Mike Burkart  
(UCSD)

Our goal is to build a way to
stick things to proteins

Our goal is to build a way to stick
things to proteins

arbitrary label, e.g., red dye
(anything attached to pin)

XXXSXXXXXXXXX

N

S

NH

NH

O
P
O
P

O
O

O

O

O
O
O

O O
O N

OP
O

O
OH

OH

N

N
N

NH2

OH

XXXSXXXXXXXXX

N

S

NH

NH

O
P
O

O
O

O

O

O
O

OH

OH

PPTase enzyme
(person sticking pin into pincushion)

Peptide  
substrate 
(pincushion),  
can be embedded in large protein  
(person wearing the pincushion)

Phosphopantetheine 
(pin)

arbitrary label, e.g., red dye
(anything attached to pin)

XXXSXXXXXXXXX

N

S

NH

NH

O
P
O
P

O
O

O

O

O
O
O

O O
O N

OP
O

O
OH

OH

N

N
N

NH2

OH

XXXSXXXXXXXXX

N

S

NH

NH

O
P
O

O
O

O

O

O
O

OH

OH

PPTase enzyme
(person sticking pin into pincushion)

Peptide  
substrate 
(pincushion),  
can be embedded in large protein  
(person wearing the pincushion)

Phosphopantetheine 
(pin)

Our goal is to build two orthogonal
ways to stick things to proteins

•We work with 2 different PPTase enzymes: Sfp and AcpS
•We want to find:  

(1) an Sfp-specific peptide substrate labeled by Sfp but not by AcpS  
(2) an AcpS-specific peptide substrate labeled by AcpS but not by Sfp

Our goal is to build two orthogonal
ways to stick things to proteins

• If a peptide is a substrate for Sfp and not AcpS, we call it a “Sfp-specific hit”

• AcpS-specific hits are defined similarly

• For the orthogonal labeling system to be useful, the peptide should be short  
(say, 8-12 amino acids)

• Otherwise they will change the behavior of the proteins where they are embedded

To make our orthogonal labeling system
useful, we need the substrates to be short

It is hard to find short hits;  
Math makes it easier.
• Hits are rare: about 1 in 105 among shorter peptides.

• Testing peptides is time-consuming

• We test 500 peptides at time. 500 << 105.

• To help us, we have some known hits, obtained from natural
organisms. They are too long to be used directly.

Here’s how we test peptides

We reduce the experimental effort
required to find minimal substrates

✤ We provide a method for
Peptide Optimization with Optimal Learning (POOL)

✤ POOL has 2 parts: 

1. Predict which peptides are “hits”, 
using a simple (interpretable) Bayesian classifier 

2. Use these predictions in an intelligent way 
to recommend a set of recommend to test next

We use (Bayesian) Naive Bayes

✤ Disadvantages: It's not deep

✤ Advantages:

✤ Easy to explain to collaborators

✤ Easy to understand & debug

✤ Easy to customize a prior to our application

✤ Strong prior => Robust to extremely small amounts of data

✤ Good quantification of uncertainty

✤ Computational scalability!

Naive Bayes assumes two
latent matrices

P (y(x) = 1|x, ✓hit, ✓miss) =
P (hit)

Q
i ✓

(hit)
i,xi

P (hit)
Q

i ✓
(hit)
i,xi

+ P (miss)
Q

i ✓
(miss)
i,xi

 , P(amino acid | hit)✓(hit)

 , P(amino acid | miss)✓(miss)

• Prior mean is proportional to the number of AA in the class
• The prior on columns far from the Serine is more concentrated close to the

mean

 , P(amino acid | hit)✓(hit)

 , P(amino acid | miss)✓(miss)

We put independent Dirichlet priors
on columns in these matrices

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0 1

0
1

Naive Bayes is ok,  
but far from perfect

• Graph uses training data
from ~300 peptides 
(most are misses.)

• Rates were estimated via
leave-one-out cross-
validation.

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

0 1

0
1

Given imperfect predictions,  
what should we test next?

• If predictions were perfect, we
could just test the shortest
peptide predicted to be a hit.

• Our predictions are not
perfect.

• How should we decide what to
test next?

Ranking by probability of a hit
does not work well

• One simple strategy is:
• Select those peptides with length < target.
• Rank them by predicted probability of a hit
• Test the top 300.

• The tested peptides are very similar. If the first
tested peptide is not a hit, the other ones probably
aren’t either.

Peptides TestedPr
ob

ab
ilit

y
of

 a
 s

ho
rt

hi
t

0 20 40 60 80

0.
0

1.
0

Ranking by
prob. of a hit

Mutating
known hits

Plot obtained via a
simulation experiment

Ranking by probability of a hit 
does not work well

Peptides TestedPr
ob

ab
ilit

y
of

 a
 s

ho
rt

hi
t

0 20 40 60 80

0.
0

1.
0

Ranking by
prob. of a hit

Mutating
known hits

POOL

POOL works better

Plot obtained via a
simulation experiment

Let’s do the experiment that maximizes
the probability we reach our goal

• Our goal is to find short hits.

• More specifically, our goal is*:
• Find at least one hit of length b or shorter

• Let’s run an experiment that maximizes the probability of
reaching this goal.

* This isn't really our full goal, but it's pretty close.

The best experiment is the solution to
a combinatorial optimization problem

• This can be formulated as this combinatorial optimization problem:

• Notation:
• E is the set of all peptides.
• S is the set of peptides to test.
• k is the number of peptides we can test in one experiment. 

Typically, k is between 200 and 500.
• A “short hit” is a hit whose length is less than b.

We can’t solve this exactly,  
so we approximate its solution  
using a greedy algorithm

• This combinatorial optimization problem is very challenging : 
The number of size-k sets of length b peptides is 20b choose k.  
If b=14 and k=500, this is 1019 choose 500.

• Instead, we build up the set S of peptides to test in stages.

• In each stage, find one peptide e to add to S that maximizes the
probability of reaching our goal:

• Add e to S and repeat, until S has k=500 peptides.

The greedy algorithm performs within
63% of optimal

Let P*(S) = P(at least one short hit in S).

We can implement the greedy
algorithm efficiently
• The greedy optimization step is equivalent to

• We can compute this probability by treating all peptides in S as
misses, and re-training our model

• Naive Bayes allows solving the above optimization problem
separately for each position in the peptide, making it fast to
solve

Here is the intuition why 
this approach works better 
than “rank by prob. hit”
• Finding the the single peptide to add that maximizes the probability

of reaching our goal:

• Is equivalent to:

• Compare this to the “rank by prob. hit” approach

POOL works better because its
peptides are more diverse

• Peptides added using the value of information approach tend to
be different from those already in S.

• Its recommendations are more diverse.

Peptides TestedPr
ob

ab
ilit

y
of

 a
 s

ho
rt

hi
t

0 20 40 60 80

0.
0

1.
0

Ranking by prob. of a hit

POOL

POOL’s recommendations are more diverse

Sfp-type peptides can also be selectively
labeled off-membrane, conjugated to GFP

We believe we were unable to label our AcpS-type GFP-
peptides because of endogeneous AcpS in E. coli used to
make them

AcpS-specific hit  
(w/ control)

Sfp-specific hit  
(w/ control)

Summary

• POOL (peptide optimization with optimal learning) uses a
BayesOpt-style approach to find short orthogonal peptide
substrates.

• POOL construct a batch of peptides to test by iteratively adding
the one that is most likely to succeed, if all others in the batch
fail

• This method has found hits shorter than the shortest previously
known.

Tallorin et al.“Discovering de novo peptide substrates for enzymes
using machine learning.” Nature Communications, 2018

Appendix

Using VOI to optimize  
P(≥1 short hit)  
has a shortcoming

✤ Under our Naïve Bayes model, it is usually possible to increase
P(hit) by increasing the peptide’s length.

✤ Thus, the experiments that maximize P(≥1 short hit) tend to have
length b-1.

✤ However, a hit strictly shorter than b-1 would be even better.

✤ To allow us to find such strictly shorter peptides, we might consider
an alternate goal: expected improvement.

✤ Let f(x) be the length of peptide x.

✤ is the length of the shortest hit found.

✤ Define the expected improvement for testing S as:

✤ An S that maximizes EI(S) could contain peptides shorter than b-1.

Optimizing expected
improvement would fix this

Efficiently optimizing expected
improvement is ongoing work
✤ Solving exactly is very challenging.

✤ EI(S) is also a monotone submodular function, and so the greedy
algorithm also has an approximation guarantee.

✤ However, actually finding the single peptide to add that maximizes
the expected improvement is itself extremely difficult.

✤ We are currently using an integer program to do this, but results are
pending.

We are greedily optimizing P(≥1 short hit) with
one tweak to make real recommendations 

✤ We have used the following
approach in recommending
experiments to our collaborators.

✤ We pre-select a random sequence of
lengths a1,...,ak strictly less than b,
and require that the nth peptide
selected has length less than an.

✤ We then apply the greedy probability
of improvement algorithm.

✤ This improves expected
improvement, without hurting P(≥1
short hit).

Expected improvement as a function of |S|,
estimated via Monte Carlo.

