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Multidimensional SPM modes

Physics perspective:
1. Local stimulus: spectroscopic (3D) SPM modes
2. Phase transitions are hysteretic: First Order Reversal Curves
3. Phase transitions can be rate-controlled

SPM Perspective:
4. SPM requires resonance enhancement (frequency domain)

Instrumental limit: photodetector bandwidth (~10 MHz) x DAQ 
performance (32 Bit) 
• Single frequency/heterodyne: lock-in compression to ~ 1 kHz  
• Band excitation: 102 bins at  ~ 1 kHz  = 100 kHz
• G-mode: full streaming at ~10 MHz

We realized we 
are doing big 

data
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We have the data… We need to do something with it!

2006
Band excitation

2008
PCA

2010
NN: recognition

2012
BLU

2015
Multimodal Data mining

2017
CNNs

M.P. NIKIFOROV, A.A. VERTEGEL, V.V. REUKOV, G.L. THOMPSON, S.V. KALININ, and S. JESSE,
Functional recognition imaging using artificial neural networks: Applications to rapid cellular 
identification by broadband electromechanical response, Nanotechnology 20, 405708 (2009). 

2019
GANs, RL, Google
Colabs
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Opportunities in Materials Science

• “Improve”: Renewable energy, self-driving cars, transparent displays, new memory technologies
• “Discover”: Room temperature superconductivity, high mechanical stress materials
• “Engineer”: Quantum computing, single-atom catalysts, biomolecules

Functionality, manufacturability, cost
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“New directions in science are launched by new tools much more often than by
new concepts. The effect of a concept-driven revolution is to explain old things in
new ways. The effect of a tool-driven revolution is to discover new things that have
to be explained.”

Freeman Dyson
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Materials in the Chemical Space

• Materials and molecules are points in chemical space
• Finding “the right” material is then a 

search/optimization problem.
• Machine learning is great at this. Right?

• Chemical space is non-differentiable
• The pathways between different regions 

are non-obvious
• “Useful” functionalities can be very 

complex and poorly understood
• We can calculate bandgaps and ideal 

Young moduli
• Biological activities and 

superconductivity, not so much

We typically need outliers!

But:
• There are underlying physical laws that 

determine what is possible

• Full atomic coordinate space: un-tractable
• Chemical space: minima corresponding to (meta)stable compounds

CH4

CH3Cl

CH2Cl2
Reaction

Reaction
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Molecular Systems: 

Biology took 109 years for 
search: MCMC with ~1020

steps and ~1035-40 chains

M. Ceriotti Opentrons

M. Ahmadi

Chematica (B. Grzbowski)

• Chemical space is a graph: 1063 (only less then 30 atoms)
• Edges (reactions) can be optimized individually 
• Amenable to the literature mining (Chematica)
• Area of known compounds can be expanded via retrosynthesis
• Amenable to laboratory robotics

But: functionalities at the nodes are defined within the context 
(CO2 adsorption, water desalination, biological functionality)
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Solid Materials

Let’s think about it as a search problem:
• Alloying: need  maintain composition ~1%
• Doping: need  maintain composition ~ 10-6

• Grid search is out for D > 3 (experiment)
• MCMC type problem: how do we make it work?

S. Curtarolo

Discovery of copper HTSC, MgB2, iron pnictides. Serendipitous discovery followed by 
exploring large families. Could not predict – no theory
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The Solid Problem
Chemical space is heavily degenerate: can use mean field descriptors

• Symmetry, 
• Concentrations, 
• Order parameters
• Thermodynamic potentials

• Really interesting materials are those when it is not the case (relaxors, Kitaev materials) – some correlations 
and disorder in ground state. 

• Many physical properties cannot be predicted. Bandgaps ok, superconductivity not so much
• Large scale organization: defects, microstructures, etc.

How do we start describing structures of solids beyond symmetry-based methods, establish structure-property 
relationships, and use this information for prediction of materials and discovery of synthesis pathways? 
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Complex unit cell:

partial occupancies

Mesoscale: 
microstructures

L.Q. ChenC. Nelson

Nanoscale phase 
separation
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More then atoms

Atomic positions can be 
determined to <10-pm 

precision

Bond length: Chemical 
reactivity, catalytic 

activity

Bond angles: 
Magnetism 

and transport

Configurations 
and repeating 

elements?

J.J. Guo et al., 
Nat. Comm. 5, 5389 (2014)Nature 515, 487 (2014)



2002
Prototype 
correctors

2006

TEAM project

2010
Broad adoption 
of AC STEM

0.61 A resolution

2012
Segmented 
detectors

2014

4D STEM

2016
Vortex beams

Image 
atomic 
columns

Spectra from 
single atoms

Image light atoms 
and sensitive 
materials

Diffraction from 
subatomic 
volumes

Beams with 
orbital 
momentum

4D STEM

Vortex beams

In-situ holders

High-res EELS

Source
Detector

Sam
ple

DataFeedback

2018

Physics extraction

Atomic manipulation
1997
First AC (Nion)

Beam 
manipulation

The Lab on a Beam

Standard image: ~10 MB
Dynamic data:  ~ 100 MB/S
4D STEM: ~TB data  (limited by the availability of data infrastructure)
Potentially: Large Hadron Collider level data flows (from single microscope)

Challenge 1: 
Data Infrastructure
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Physics from STEM and SPM data
• Can we get materials specific information (e.g. atomic coordinates from STEM, scattering 

potentials from 4D STEM, etc.) from microscopy data, at which level of confidence, and how this 
knowledge is affected and can be improved from knowledge of imaging system (e.g. classical beam 
parameters, resolution function, all the way to full imaging system modelling), and knowledge of 
material.

• Can we use the materials-specific information with uncertainties determined by incomplete 
knowledge of imaging system or intrinsic limitations to infer physics and chemistry, either via 
correlative models or recovery of generative physics (force fields, exchange integrals, etc.)

• Can we use thus determined materials information, either correlative or causative, to reconstruct 
materials behaviors (phase diagrams, etc) in the broader parameter space (e.g. for temperatures 
and concentrations different for specific sample studied), and determine how reliability of such 
prediction depends on position in parameter space.

• Can we harness the data stream from the microscope to engender real time feedback, e.g. for 
autonomous experimentation and atomic manipulation
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Dynamic Atomic Changes

Observations of atomic 
dynamics induced by 
beam (or temperature, 
field, etc.) gives 
information on multiple 
atomic configurations as 
they form and evolve. 
Can we learn:

• Effective 
interaction 
parameters (e-ph
coupling)?

• Force fields?
• Phase transition 

dynamics



Staffordshire bullterrier 43 %

American pit bull terrier 23 %

Basenji 11 %

Wool 6.3 %

Velvet 5.5 %

Window screen 3.8 %

Meet Duffy: Pitbull-Shepard-Collie mix Randomly selected feature maps

Randomly selected feature maps

STEM of WS2

Top 3 predictions

Top 3 predictions

Very 
close

Deep learning for atomically resolved images
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Deep learning works like a charm for:
• Drift correction
• Denoising
• Data processing/dimensionality reduction
• Feature finding (physics is in the training set)
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Deep learning in AFM
Model trained on a single movie frame from the well-ordered phase and applied to the entire movie

Maxim Ziatdinov, Xin Li, Shuai Zhang, Harley Pyles, David Baker, James J. De Yoreo, Sergei V. Kalinin
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Deep learning in AFM
Model trained on a single movie frame from the well-ordered phase and applied to the entire movie

Maxim Ziatdinov, Xin Li, Shuai Zhang, Harley Pyles, David Baker, James J. De Yoreo, Sergei V. Kalinin



Defect Libraries

• Identify the “real” defects
• Theory to get energies, strains, etc

Analysis workflows

Open data

Open code: Jupyter papers
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From Correlation to Causation:

• Problems can be intractable combinatorically, but have simple constitutive laws

• Low dimensional non-linear manifold in the very high dimensional linear spaces

• Observational data: astronomy

Wikipedia, NASA
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Configuration coordinate

En
er

gy

Phase 1

Phase 2

Reaction path

Problems:
• There are 10(10 - 23) degrees of freedom
• Which (in most materials) correspond to very small number of collective variables (order parameters)
• Naturally, materials where this is likely not the case are really interesting
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Physics and chemistry from structural STEM data?

On mesoscale, materials functionalities can often be described 
via order parameter fields: 
o Mesoscopic order parameter is often known from macroscopic 

measurements
o What are the boundary conditions at surfaces and interfaces
o What are the roles of defects?
o Can we describe spatially inhomogeneous states (relaxors, charge 

ordered materials, MPB systems)? 
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Building the mesoscopic picture top down

Ordering behavior at the interfaces

Antiphase domain boundary

A.Y. Borisevich et al., PRL 109, 065702 (2012)

Model System: Lanthanum-strontium cobaltite
with topological defects and interfaces Fitting the experimentally observed atomic profiles

to the functional form of order parameter

Allows to analyze the interplay between ordering, chemical 
composition, and mechanical effects at domain walls, 
interfaces and structural defects
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Flexoelectricity by Computer vision
HAADF-STEM images

Vorticity/polar gradient
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STO
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Similarity map

Theory-experiment matching

• Polarization and tilt behavior at interfaces and topological defects: gradient terms 
and physical BCs

• Coupling with (electro)chemical boundary conditions
• Defect effects: transition from localized perturbation to collective responses

3 V

5 V 5.5 V

0 V
Longitudinal/transverse flexocoupling f11/f12 (f11 ~ -f12) 

Effect of flexoelectricity

The flexocoupling in both PTO and STO 
layers is considered, revealing different 
modulation effects.
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Physics from Microscopic Degrees of Freedom

Microscopic models
• Ising model
• Heisenberg model
• Kitaev model
• ….

Macroscopic observables:
• Property
• Average structure
• fluctuations

Real material

Macroscopic measurements
Scattering data

On atomistic scale, we often use lattice Hamiltonian models: 
o Can we determine local interactions from STEM or SPM data
o What if some information is lost (1 << observables << degrees of freedom)

A. Sefat

Can ML do it?
(Melko 2017)

Can ML do it?
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Can we study physics and chemistry locally?

( ) ( ) i
i
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Ising model

• Collection of two-state “spins” on a 
geometric lattice

• Interactions with nearest neighbors
• No long range depolarization fields
• Universal model that can represent physical 

(magnetism), chemical (alloys, surface 
adsorbates) systems
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Statistical distance minimization

Vlcek et al., ACS Nano (2017)

s = arccos pi qi
i=1

k

∑
⎛

⎝
⎜

⎞

⎠
⎟

Minimize statistical distance 
between histograms

• Utilize all available statistical information in the image
• Using generative model, infer parameters from the experiment. 

T = 1.7
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MoS2 – ReS2 Solid solutions by STEM
5% ReS2 55% ReS2 78% ReS2 95% ReS2

Data by Shize Yang and Matt Chisholm
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Thermodynamics of solid solution
Nearest and next-nearest interactions

L. Vlcek, S. Yang, Y. Gong, P. Ajayan, W. Zhou, M. F. Chisholm, M. 
Ziatdinov, R. K. Vasudevan, S. V. Kalinin, [submitted], 2019.

Pair Additive Many Body

x = 0.05 x = 0.55

x = 0.78 x = 0.95

1. Pair-additive Model

2. Many-body Model
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Exploring physics: statistical normal modes

• Traditioonally, the order parameter is defined based on symmetry 
and atomistic representation is established in the ad hoc manner

• But what if we define order parameter from the bottom up – based 
on the statistics of atomic distortions?

• And further correlate it to local chemical composition?
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# 2# 1# 0

Phase transition via statistical normal modes
Three dominant distortion modes

Mode distributions vs. global and local composition

5% ReS2

55% ReS2

78% ReS2

95% ReS2

Local symmetry breaking!
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Phase transition from the bottom up 
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Local symmetry breaking!Global symmetry breaking
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Transition to mesoscopic free energy
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Free energy functional for 2D materials

Local free energy term:

Opportunity:
• Phase diagrams
• Electronic phenomena induced by 

curvature via flexoelectric coupling
• Field- and doping induced transitions
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A Bit of (Ancient and Modern) WIsdom
…there are known knowns; there are things we know we know. We also know there are known 
unknowns; that is to say we know there are some things we do not know. But there are also 
unknown unknowns—the ones we don't know we don't know. D. Rumsfeld

Har kas ke bedanad va bedanad ke bedanad
Asb-e kherad az gombad-e gardun bejahanad
Har kas ke nadanad va bedanad ke nadanad
Langan kharak-e khish be manzel beresanad
Har kas ke nadanad va nadanad ke nadanad
Dar jahl-e morakkab'abad od-dar bemanad

Anyone who knows, and knows that he knows
Makes the steed of intelligence leap over the vault of heaven
Anyone who does not know, but knows that he does not know
Can bring his lame little donkey to the destination nonetheless
Anyone who does not know, and does not know that he does not know
Is stuck forever in the double ignorance

Naser od-Din Tusi (1201-1274)
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The World is Bayesian: Physics from Observations

• Experimentalists know the priors. Albeit they do not know that 
they know it, or how to convert them to algorithmic form

• How can we add Bayesian priors to:
– Reinforcement learning (functionality optimization in experiment)
– GANs (inverse problems, image reconstruction)
– VAEs (physical constraints on latent variables)

…there are known knowns; there are things we know we know. We also know there are known 
unknowns; that is to say we know there are some things we do not know. But there are also 
unknown unknowns—the ones we don't know we don't know. D. Rumsfeld

𝑃 𝑇ℎ𝑒𝑜𝑟𝑦 𝐷𝑎𝑡𝑎 = 
+(-./.⃓123456)+(123456)

+(-./.)

Hypothesis driven science:
What we want to learn

Forward model:
Theory Domain expertise:

High Performance 
Computing



Only one atom 
moves in well 

defined potential

One or few atoms 
move in defined 

potential

One or few atoms 
move in weakly 

changing potential

Extended defect 
dynamics

Point defect 
dynamics

Everything 
changes: defect 

formation, 
nucleation, 
mechanical 

deformation

The chemistry challenge
R. Ishikawa

O. Dyck O. Dyck O. Dyck A. Lupini M. Chi

What about chemistry?
o Markov state descriptions
o Potential energy landscape reconstructions
o Force fields (and excitation) from observed dynamics



37 (Mow + Vs)-I (Mow + Vs)-II Vw VsAdatom

DecodedExperimental

Sample: WS2 
E-beam energy: 60 kV

Data collected by Ondrej Dyck (CNMS/ORNL)

Learning the defect evolution
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Spatio-temporal trajectories

X

Y

Diffusion parameters for selected defect types

Diffusion coefficient: 3×10-4 nm2/s - 6×10-4 nm2/s
(within 2D random walk approximation)

▪ Identification of dominant point defects and their
characteristic statistical behaviors

▪ Analysis of diffusion parameters for the selected
defect species

▪ Study of transformation pathways and transition
probabilities for composite defects

Frame

0

1

r (
ar

b.
 u

ni
ts

)

Maksov et al., npj Computational Materials 5, 12 (2019)

Physics extraction
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Evolution of defects as Markov processSpatio-temporal trajectories

Maksov et al., npj Computational Materials 5, 12 (2019)

Physics extraction
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Beam induced reactions of Si atoms on the edge of graphene

Experimental data Network’s output

Reconstructing Si impurity configurations at graphene edge

Ziatdinov et al., ArXiv:1901.09322 (2019)



Chemical transformations on the edge

- Gaussian mixture model

Derived classes of Si-C edge configurations Transition probabilities matrix

- Discrete rotation symmetry + 
structural similarity algorithm - Markov state analysis

Ziatdinov et al., ArXiv:1901.09322 (2019)



Molecular machines

J.P. Sauvage, F. Stoddard, and B. Feringa

2016 Nobel Prize

Is There a Third Way?

“What I cannot create, I do 
not understand.”

― Richard Feynman

“What I cannot create, I do 
not understand.”

― Richard Feynman
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We induce local amorphous/crystalline transition in a defined area

• No crystallization observed away from interface
• Electron-beam induced solid phase epitaxy
• Control of beam position and speed
• We chose to explore, exploit, and understand this behavior

• Formation of 3D structures inside solid
• Epitaxial registration
• MD simulations have confirmed 

experimental observations
• Foundation for making atomically precise, 

multi-component, multi-layer systems

Synergy of STEM and SPM: Sculpting
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Beam Induced Transformations in Solids: Feedback

Start inside crystal,
Fast advance

Amorphous/x-line
interface

Growth of new crystalline atomic layer

Beam advances to next atomic layer

Stephen Jesse 
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Manufacturing at the Atomic Scale with Beams

~16 u.c. wide

Directed Crystal Growth in STO
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Atomic manipulations
Moving Si dopants

Assembling primitive structures

Ondrej 
Dyck

Stephen 
Jesse

Anastasia N. 
Alexandrova

Elisa Jimenez-
Izal

Dyck, O., Kim, S., Jimenez-Izal, E., Alexandrova, A. N., Kalinin, S. V. & Jesse, S. 
Building Structures Atom by Atom via Electron Beam Manipulation. Small 14, 
1801771, doi:doi:10.1002/smll.201801771 (2018).

Songkil 
Kim

Custom platform for dopant atom movement with 
real-time image updates during manipulation
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STEM: The Lab on the Beam

Need to find out :

• What are local atomic 
functionalities

• Why do atoms do it ?

• How we direct them 
to do what we want ?

X-ray and neutron 
scattering:
where the atoms are 
on average

Electron and probe 
microscopy: where 
exactly are the atoms

Dynamic 
microscopies: 
what the atoms do

• Nanotechnology
• Beyond Moore
• Molecular 

machines
• Materials 

design

Present
Time

What I cannot create, I do not understand
R. Feynman



Concluding:

• Data matters (but only if physics and chemistry is analyzed!)
• Building physics and chemistry from atomic level up
• E-beam atomic fabrication

Sergei V. Kalinin
sergei2@ornl.gov

Connect!

See cnms.ornl.gov  for more information.

YouTube

mailto:rvv@ornl.gov

