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Machine Learning for Physics and the Physics of Learning
SEPTEMBER 4 - DECEMBER 8, 2019

2% PARTICIPANT LIST B AcTivITIES /] APPLICATION

Overview

Machine Learning (ML) is quickly providing new powerful tools for physicists and chemists to extract essential
information from large amounts of data, either from experiments or simulations. Significant steps forward in
every branch of the physical sciences could be made by embracing, developing and applying the methods of

machine learning to interrogate high-dimensional complex data in a way that has not been possible before.

As yet, most applications of machine learning to physical sciences have been limited to the “low-hanging
fruits,” as they have mostly been focused on fitting pre-existing physical models to data and on discovering
strong signals. We believe that machine learning also provides an exciting opportunity to learn the models
themselves—that is, to learn the physical principles and structures underlying the data—and that with more
realistic constraints, machine learning will also be able to generate and design complex and novel physical

structures and objects. Finally, physicists would not just like to fit their data, but rather obtain models that are

physically understandable; e.g., by maintaining relations of the predictions to the microscopic physical
quantities used as an input, and by respecting physically meaningful constraints, such as conservation laws or

symmetry relations.

The exchange between fields can go in both directions. Since its beginning, machine learning has been inspired by methods from statistical physics. Many
modern machine learning tools, such as variational inference and maximum entropy, are refinements of techniques invented by physicists. Physics,
information theory and statistics are intimately related in their goal to extract valid information from noisy data, and we want to push the cross-pollination

further in the specific context of discovering physical principles from data.
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The Scientific Method as an Ongoing Process

Make
Observations

What do | see in nature?
This can be from one's
own experiences, thoughts,
or reading.

Think of
Interesting

Develop
General Theories

General theories must be H
consistent with most or all QueSthnS
available data and with other Why does that

current theories. pattern occur?

Refine, Alter,
Expand, or Reject
Hypotheses

Gather Data to
Test Predictions

Relevant data can come from the
literature, new observations, or
formal experiments. Thorough
testing requires replication to
verify results.

Formulate
Hypotheses

What are the general
causes of the
phenomenon | am
wondering about?

Develop
Testable
Predictions

If my hypotesis is correct,
then | expect a, b, c,...




A PROBABILISTIC PIPELINE

Criticize model

KNOWLEDGE &
QUESTION

B
- |

| |

Make assumptions Discover patterns Predict & Explore

—  Oi5Se | MmN,

[Box, 1980; Rubin, 1984; Gelman et al., 1996; Blei, 2014 ]

Slide from David Blei, Rajesh Ranganath, Shakir Mohamed, Dustin Tran



REINFORCEMENT LEARNING & SCIENTIFIC METHOD

Scientist trying to decide what experiment to do next
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AlphaGo Zero surpasses all other versions of AlphaGo
and, arguably, becomes the best Go player in the world.
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REINFORCEMENT LEARNING & SCIENTIFIC METHOD

Scientist trying to decide what experiment to do next

En vironm ent

Rewar
Interpreter
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Agent

Action



REINFORCEMENT LEARNING & SCIENTIFIC METHOD

Scientist trying to decide what experiment to do next

perform experiment,
gather data

-

Environment
S decide which
statistical analysis Re = | experiment to
War b perform
Interpreter

ate bt
updated knowledge o
based on analyzing

dats Agent



NOTATION / TERMINOLOGY

forward modeling
generation

simulation

)
parameters of interest p(x,z]|0,V)
X
Z observed data
y latent variables simulated data

nuisance parameters

inverse problem

measurement
parameter estimation



STATISTICAL DECISION THEORY IN 1T SLIDE

O - States of nature; X - possible observations; A - action to be taken
o(x|0) - statistical model (likelihood); n(0) - prior
0: X = A - decision rule (take some action based on observation)

L: © x A = R - loss function, real-valued function true parameter and
action

R(0,8) = EqelL(B, 8)] - risk

r(rt, ©) = Eqe) R(0,0)] - Bayes risk (expectation over O w.r.t. prior and
possible observations)

p(rt, O | x ) = Enexl L(O,0(x))] - expected loss (expectation over 6 w.r.t.
posterior 1(0]x) )



«. Research Scientist at Google Brain
trandustin@google.com

W () Blog

EXPECTED INFORMATION GAIN eD”St‘“Tra“

Active Learning & Control

Given data points {x, ¥}, how to select the next data point to fit the model?

Ex. Select data points which maximize expected information gain. [Lindley et al. 1956;
Mackay 1992; Houthooft et al. 2016]

arg 1max H[0|D] ywp(yl:nD) 0|y, X D]

Uncertainty determines which x is most informative and, therefore, the model’s
success.

[Hafner et al., 2019]

R

Slide from Dustin Tran at Hammers & Nails 2019



"ACTIVE SCIENCING”

[ Expt. config

Perform
experiment

\

y

—)[ prior

Observed
data

AN

/

Perform
inference

{IK

Bayes

posterior

-

Optimize
experiment

A /

Proposal | ¢

3

EIG



https://github.com/cranmer/active_sciencing

"ACTIVE SCIENCING”

I Expt. config |<— _________________________________________________ '

\
‘ Sim \

Perform
experiment

\ 4

rior Observed
P data

rior Simulated
\ / P data
Perform \ /
inference Perform
B inference
ayes
Bayes
\
|l posterior I
Optimize \
experiment
\ posterior
Proposal
\
Info
Gain

Expected
info gain

T

i EIG



https://github.com/cranmer/active_sciencing

Dustin Tran

.. Research Scientist at Google Brain
trandustin@google.com

W () Blog

EXPECTED INFORMATION GAIN

targ max H
’ £r

Slide from Dustin Tran at Hammers & Nails 2019



SYNTHESIS

xactive learning / sequential design / black box optimization “

Active Sciencing

simulation-based /
likelihood-free

inference engines

reusable workflows



BAYESIAN OPTIMIZATION

What experimental configuration should we evaluate next?
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BAYESIAN OPTIMIZATION

Build a probabilistic model for the EIG objective function

f(x)

Expected Information Gain
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BAYESIAN OPTIMIZATION

Use it to define an inexpensive acquisition function, and optimize that.
Use this as next configuration to evaluate expensive EIG

z;” =0.1000
1.5 . . .
— - True (unknown)
® ® Observations
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BAYESIAN OPTIMIZATION

Then evaluate EIG for that configuration. Repeat
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BAYESIAN OPTIMIZATION

Then evaluate EIG for that configuration. Repeat
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BAYESIAN OPTIMIZATION

Then evaluate EIG for that configuration. Repeat
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BAYESIAN OPTIMIZATION

Then evaluate EIG for that configuration. Repeat
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BAYESIAN OPTIMIZATION

Then evaluate EIG for that configuration. Repeat

r =0.2858

15 T |
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BAYESIAN OPTIMIZATION

Now that this experimental configuration is optimized (with simulation),
we perform the actual experiment

- - True (Iunknown)

® ® Observations

- - MGP(JJ)

— u(x)

Cl
————— /_,!’_
1io 1i5 2.0
Experimental Configuration

13/18



What is the probability model used for inference?

Shouldnt we use the same simulator we used to
evaluate the expected information gain?



PARTICLE PHYSICS

@ATLAS

EXPERIMENT
http://atlas.ch

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST



THE CAUSAL, GENERATIVE MODEL
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THE CAUSAL, GENERATIVE MODEL
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THE CAUSAL, GENERATIVE MODEL

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable
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UH OH!

The actual situation is much
more complicated.

It's not a Binomial distribution!
What is it?

| have no idea, but | could
simulate it!
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AN INTRACTABLE INTEGRAL

The probability of ending in bin & still corresponds to the cumulative probability of
all the paths from start to x: N T
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e But thisintegral can no longer be simplified analytically!

e Asn grows larger, evaluating p(x|6) becomes intractable since the number of
paths grows combinatorially.

e Generating observations remains easy: drop the balls.

Since p(x|@) cannot be evaluated, does this mean inference is no longer possible?



LIKELIHOOD-FREE INFERENCE

Parameters Observables
) > Z > T

Prediction (simulation): ¢ Well-understood mechanistic model

* Simulator can generate samples
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LIKELIHOOD-FREE INFERENCE

Parameters Observables
) > Z > T

Prediction (simulation): ¢ Well-understood mechanistic model

* Simulator can generate samples

Inference: e Likelihood function p(x|f) is intractable
e Goal: estimator p(z|0)



LATTICE FIELD THEORY

PHASES, PHASE TRANSITIONS, AND THE ORDER PARAMETER

QCD Lagrangian
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EPIDEMIOLOGY & POPULATION GENETICS

Generation 1 2 3 4
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TAXONOMY FOR SIMULATION

Deterministic: fluid mechanics, quantum state evolution, ODEs
and PDEs

e Often ditterentiable (at least in principle)

Stochastic: statistical physics (Ising model, etc.); particle
scattering process, ...

e Non-differentiable elements due to probabilistic control
flow (eq. it/then/else conditions)

Measurement noise: may or may not be included

* eg. Use of ML for theoretical physics often treats system as it
it can be exactly, directly observed
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A COMMON THEME, A COMMON LANGUAGE

ABC

Home
resources on approximate
Bayesian computational This website keeps track of developments in approximate Bayesian computation (ABC) (a.k.a.
methods likelihood-free), a class of computational statistical methods for Bayesian inference under

b e s PRI G RIS giasoa o s oo

intractable Ilkehhoods The site is meant to be a resource both for blologlsts and statisticians who

want to learn more about ABC and related methods. Recent publications are under Publications

2012. A comprehensive list of publications can be found under Literature. If you are unfamiliar
Home with ABC methods see the Introduction. Navigate using the menu to learn more.

ABC in Montreal ABC in Montreal (2014)

ABC in Montreal

Approximate Bayesian computation (ABC) or likelihood-free (LF) methods have developed mostly beyond the

radar of the machine learning community, but are lmpo'nt tools for 'a large and diverse se ment of the

sc1nt1ccommumtx “This is particularly true forsxstem and pe Eulgp_ggmglologx comEutatlonal

neuroscience, computer vision, healthcare sciences, but also many others.

Interaction between the ABC and machine learning community has recently started and contributed to
important advances. In general, however, there is still significant room for more intense interaction and
collaboration. Our workshop aims at being a place for this to happen.
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Markov chain Monte Carlo without likelihoods

Paul Marjoram*, John Molitor*, Vincent Plagnol’, and Simon Tavare'*

*Biostatistics Division, Department of Preventive Medicine, Keck School of Medicine, and TMolecular and Computational Biology, Department of Biological

Sciences, University of Southern California, Los Angeles, CA 90089

Communicated by Michael S. Waterman, University of Southern California, Los Angeles, CA, October 24, 2003 (received for review June 20, 2003)

Many stochastic simulation approaches for generating observa-
tions from a posterior distribution depend on knowing a likelihood
function. However, for many complex probability models, such
likelihoods are either impossible or computationally prohibitive to
obtain. Here we present a Markov chain Monte Carlo method for
generating observations from a posterior distribution without the
use of likelihoods. It can also be used in frequentist applications, in
particular for maximume-likelihood estimation. The approach is
illustrated by an example of ancestral inference in population
genetics. A number of open problems are highlighted in the
discussion.

One of the basic problems in Bayesian statistics is the
computation of posterior distributions. We imagine data D
generated from a model M determined by parameters 6, the
prior density of which is denoted by m(6). We assume unless
otherwise stated that the data are discrete. The posterior
distribution of interest is f( 6| D), which is given by

f(6|D) = P(D]6)m(6)/P(D), (1]

where P(D) = [ P(D|6)m(0)d is the normalizing constant.

In most scientific contexts, explicit formulae for such posterior
densities are few and far between, and we usually resort to
stochastic simulation to generate observations from f. Perhaps
the simplest approach for this is the rejection method:

Al. Generate 6 from (+).
A2. Accept 6 with probability # = P(D|6); return to A1

of ¢ therefore reflects a tension between computability and
accuracy. The method is still honest in that, for a given p and e,
we are generating independent and identically distributed ob-
servations from f(6|p(D, D) = &).

When D is high-dimensional or continuous, this approach can
be impractical as well, and then the comparison of D’ with D can
be made by using lower-dimensional summaries of the data. The
motivation for this approach is that if the set of statistics § = (S1,
..., Sp) is sufficient for 6, in that P(D|S, 6) is independent of
6, then f(6|D) = f(60|S). The normalizing constant P(S) is
typically larger than P(D), resulting in more acceptances. In
practice it will be hard, if not impossible, to identity a suitable
set of sufficient statistics, and we then might resort to a more
heuristic approach. Thus we seek to use knowledge of the
particular problem at hand to suggest summary statistics that
capture information about 6. With these statistics in hand, we
have the following approximate Bayesian computation scheme
for data O summarized by S:

D1. Generate 6 from ().

D2. Simulate D’ from stochastic model M with parameter 6, and
compute the corresponding statistics S'.

D3. Calculate the distance p(S, S') between S and §'.

D4. Accept 0 if p = &, and return to D1.

There are several advantages to these rejection methods,
among them the fact that they are usually easy to code, they
generate independent observations (and thus can use embar-
rassingly parallel computation), and they readily provide
estimates of Baves factors that can be used for model com-



ABC

D1. Generate 6 from (+).

D2. Simulate O’ from stochastic model M with parameter 6, and
compute the corresponding statistics S’.

D3. Calculate the distance p(S, $') between S and S’.

D4. Accept 6 1f p = g, and return to D].
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ICML 2017 Workshop on Implicit

Models

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden
structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models
specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their
learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density.
Probabilistic models defined only via the simulations they produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This
workshop's aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny,
where simulations produce hypothetical ancestry trees; they are used in physics to generate particle simulations for high energy processes.
Recently, implicit models have been used to improve the state-of-the-art in image and content generation. Part of the workshop's focus is to discuss
the commonalities among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

= Generative adversarial networks (a NIPS 2016 workshop) are implicit models with an adversarial training scheme.

= Recent advances in variational inference (a NIPS 2015 and 2016 workshop) have leveraged implicit models for more accurate approximations.
= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with implicit likelihoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference estimation.

We hope to bring together these different views on implicit models, identifying their core challenges and combining their innovations.
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https://github.com/cranmer/active_sciencing
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https://github.com/cranmer/active_sciencing

SYNTHESIS

active learning / sequential design / black box optimization

Active Sciencing

simulation-based /
likelihood-free

t reusable worktlows
‘\ inference engines
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reana

Reproducible research data analysis platform

Flexible Scalable Reusable Free
Run many computational Support for remote compute Containerise once, reuse Free Software. MIT licence.
workflow engines. clouds. elsewhere. Cloud-native. Made with € at CERN.

COMMON _@ (&~ CERN

WORKFLOW \

LANGUAGE ’ \J NS
kubernetes

II%% The SCAILFIN Project §
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ENCAPSULATING THE SIMULATION

dcker

README.md

Run HEP workflows from the web.

by Kyle Cranmer and Lukas Heinrich

An example notebook on how to generate simulated high energy physics collision events using the generator package
MadGraph. Simulated datasets obtained from this notebook can then be used to train and evaluate the performance of
generative models for physics.

Usage:

This repository has been equipped with a Dockerfile to encapsulate its software environment. It can be used with the mybinder
service to launch an ephemeral jupyter notebook server to run the notebook.

Click on the below badge and open the notebook adage. ipynb .

launch | binder

1 s 1 e 1 " 1
ESJ[ = I\V“l, N \V} - I ,“,B; - 1(1’”/(72

kinetic energies and self-interactions of the gauge hosons
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other electroweak parameters. This can be shown with Eq. (2.96), giving

kinetic energies and electroweak interactions of fermions
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ENCAPSULATING THE SIMULATION

docker
https://github.com/lukasheinrich/weinberg-test

eoe [im] L 104.197121.217 ¢ o & g
README'md i DiscoveryLinks v  Higgs v RooStats v ALEPHv Applev Newsv Life Stuff v ATLAS Wikipedia, inSpire Theory&Practice v nyuespace JCSS HCGv Evernote Web Equation job >
0006 ‘ (Busy) adage +
= Ju pyter adage Last Checkpoint: an hour ago (unsaved changes) A
File  Edit  View Inset  Cell  Kernel  Widgets  Help | Python2 @
kf I f h b + & @ B 4 ¢ M B C | Code 4 @  CellToolbar
Run HEP workflows from the web. e+ - |
by Kyle Cranmer and Lukas Heinrich
workflow #2 workflow #3

An example notebook on how to generate simulated high energy physics collision events using the generator package
MadGraph. Simulated datasets obtained from this notebook can then be used to train and evaluate the performance of

generative models for physics. s

Usage:

This repository has been equipped with a Dockerfile to encapsulate its software environment. It can be used with the mybinder \ /
service to launch an ephemeral jupyter notebook server to run the notebook.

Click on the below badge and open the notebook adage. ipynb . \

launch | binder

Display a menu

1 1 1
—_ W WHY i eIl
ESJ‘! - 1 T - IB[HIB - 1(’,,,,(’4,
[ JON ) M L] 104.197.121.217 ¢ O & g |
V I
kinetic energies and self-interactions of the gauge bosons -
Y u ter adage Last Checkpoint: an hour ago (autosaved) P
~)
1 1 1 File  Edit View Inset Cell  Kemel  Widgets  Help Notebook saved | Python2 O
L0 Iy L L Iy
+ LA"(i0y — zg7- W, — g YB,)L + Ry (i0, — zg'Y B,)R
2 2 2 + x @& B 4+ v M B C Code ¢ @ | CellToolbar
ST
kinetic energies and electroweak interactions of fermions for i,e in enumerate(jsonlines.Reader (open(inputfile))):
els = [p for p in e['particles'] if p['id'] == 11]
mus = [p for p in e[ 'particles'] if p['id'] == 13]
1 (') 1 1 l)’B ) 2 ‘P( ) assert len(mus) == 1
=+ — | 10, — —gT7 - W — =g g o’ — Vo assert len(els) == 1
2 o2 2 " mu = mus
= [0]
~~ el = els[0]
WL, Z~.and Higgs masses and couplings el _px, el py, el_pz = [el[x] for x in ['px','pPYy','Pz']]
mu_px, mu_py, mu_pz = [mu[x] for x in ['px','py','Pz']]
costheta = mu_pz/el pz
" . e Y Y costhetas.append(costheta)
+ g (Q'."' Tu(I) (Il‘ + ((IJLC')R + (JQL(.‘)(_»R + h..C.) return costhetas
D —— g
interactions between quarks and gluons fenmion masses and couplings to Higgs In [9]: labels = []
plt.figure(figsize=(8, 5))

for index,energy in enumerate(energies):
_s_s_ = plt.hist(analysis('workdir {}'.format(index)), bins = 30,
alpha = 0.5, color = plt.get_cmap('viridis')(float(index)/len(energies)),
histtype='stepfilled')
labels.append(r'$E_\mathrm{{beam}}={0:.2f}\,\mathrm{{GeV}}$'.format(energy))
plt.legend(labels, loc = 'upper center', frameon = False)
plt.xlabel(r'$\cos\thetas')
plt.ylabel( 'Events')
plt.show()
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SYNTHESIS

active learning / sequential design / black box optimization

Active Sciencing

simulation-based /
likelihood-free

inference engines

reusable workflows



A DEMO

Proof-of-principle algorithm can:

e measure parameter of theory (eg. Weinberg angle in
Standard Model of particle Physics) from raw data

e optimize experiment (eg. beam energy) for most
sensitive measurement

)

1.5 o
0.8 r
0.6

1.0 - 0.4
0.2 -

° L

-0.2

expected information gain
o
ol
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\ , -0.6 :
0.0 - \ : .
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Figure 2: Measured forward-backward asymmetries of
muon-pair production compared with the model indepen-

center of mass energy dent 8¢ results.


https://github.com/cranmer/active_sciencing

)\ Kyle Cranmer @KyleCranmer - Jun 11, 2017 v
Demo for YComb research
active learning + workflows + implicit models = #ActiveSciencing
@lukasheinrich_ @glouppe
github.com/cranmer/active...

——
Q 4 0 22 Q 61 a 1l

Danilo J. Rezende @DeepSpiker - Jul 19, 2017 v
This is great!

O 1 () O 3 T

Kyle Cranmer @KyleCranmer - Jul 19, 2017 v
Thanks!!!

O 1 n QO 2 w 1l

Danilo J. Rezende v
y @DeepSpiker

Replying to @KyleCranmer @lukasheinrich_ and @glouppe

You have the full loop of the scientific method in a python
notebook :)

3112 PM - Jul 19, 2017 - Twitter for iPhone



Demo for YComb research

active learning + workflows + implicit models = #ActiveSciencing
@lukasheinrich_ @glouppe

github.com/cranmer/active...

‘\ Kyle Cranmer @KyleCranmer - Jun 11, 2017 v

|
Q 4 0 22 Q 61 a 1l
Danilo J. Rezende @DeepSpiker - Jul 19, 2017 v
\ ; This is great!
O 1 () Q 3 a
\ Kyle Cranmer @KyleCranmer - Jul 19, 2017 v
Thanks!!!
O 1 () QO 2 w 1l

Replying to @KyleCranmer @lukasheinrich_ and @glouppe

You have the full loop of the scientific method in a python
notebook :)

3112 PM - Jul 19, 2017 - Twitter for iPhone

4 Danilo J. Rezende v
y @DeepSpiker

Reality check...

Keep in mind that

- the simulator model was specified
- the space of experimental
configurations was well specified

Still it was hard enough!
Going to open world of experimental

configurations and potential models
much harder.

Hypothesis generation also hard.



CONSIDERATIONS

The computational cost of this workflow
scales rapidly with computational cost
ot the LFl engine (c.f. nested loops)

e Benetit to amortized approaches that pay an up-front
training cost in return for faster repeated inference

e \Want the training technigues to be as sample efficient as
possible when the simulator is computationally expensive

e Anticipate a hierarchy of surrogate models:

https://github.com/cranmer/active_sciencing


https://github.com/cranmer/active_sciencing

APPROACHES TO LIKELIHOOD-FREE INFERENCE

Use simulator Learn simulator
(much more efficiently) (with deep learning)

B - conv (180w + 5b) non-linear
f— 'Qﬂgqég mGXPOOI COHV (450w + 10b) G @
. ¢ = O
( - ‘ non- Imear' ¢ = 0
) O =6
O 7,
o hon- Imear maxpool O 8
e fully-connected F%@
TN (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autoregressive models,

Optimization (AVO) Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

PROBABILISTIC PROGRAMING

ldea: hijack the random number generators and use Neural
Network to perform a very fancy type of importance sampling

probprog/pyprob

6 e Neural Network
oowered inference

NN

R
_ engine (python)

e real-world scientific
simulator (C++)

simulator C++

Pythia / Sherpa / GEANT / ...

Observation Mean Simulated Observation

nnnnnnnn

12
10

'

NERSC, Lawrence Berkeley National Lab

o N B O

arXiv:1807.07706 & 1907.03382



APPROACHES TO LIKELIHOOD-FREE INFERENCE

Use simulator Learn simulator
(much more efficiently) (with deep learning)

B - conv (180w + 5b) non-linear
f— 'Qﬂgqég mGXPOOI COHV (450w + 10b) G @
. ¢ = O
( - ‘ non- Imear' ¢ = 0
) O =6
O 7,
o hon- Imear maxpool O 8
e fully-connected F%@
TN (1600w + 10b)
e Approximate Bayesian e Generative Adversarial Networks (GANs),
Computation (ABC) Variational Auto-Encoders (VAE)
e Probabilistic Programming e Likelihood ratio from classitiers (CARL)
e Adversarial Variational e Autoregressive models,

Optimization (AVO) Normalizing Flows


https://cp4space.wordpress.com/2016/02/06/deep-learning-with-the-analytical-engine/

LIKELIHOOD RATIO TRICK

RBF SVM

e binary classifier: find function
s(x) that minimizes loss:

Lis| = / pl(| Ho) (0 — s(x))? da
" / p(e|Hy) (1 — s(x))2da

RBF SVM
!‘;“‘.‘.a * i.e. approximate the Bayes
'°.:.-.'."°.'..'.:": optimal classifier
H
(o — PGl
I p(x|Ho) + p(z|H1)

e which is 1-to-1 with the
likelihood ratio

p(z|Hq)
p(z|Hp)

-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%




LIKELIHOOD RATIO TRICK

RBF SVM

RBF SVM

® [ Signal [T

= 1.8

-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

e binary classifier: find function
s(x) that minimizes loss:

Lis| = / pl(| Ho) (0 — s(x))? da
" / p(e|Hy) (1 — s(x))2da

1 N

~ N Z(yi — s(z4))°

1=1

e |.e.approximate the Bayes
optimal classifier
H
s(z) = p(z|H))
p(z|Ho) + p(x|Hi)

e which is 1-to-1 with the
likelihood ratio

p(z|Hq)
p(z|Hp)




GANs AND THE LIKELIHOOD RATIO TRICK

The discriminator of a GAN approximates

p(x|G)
px|D) + p(x|G)

s(x) =

Which is one-to-one with the likelihood ratio
px|D) | 1
px|G) s(x)

Can do the same thing for any two points 8¢ & 01 in
parameter space ©. | call this a parametrized classifier

p(z[61)
x|6o) + p(x[61)

s(x;0p,01) =
(60, 61) p(

K.C., G. Louppe, J. Pavez: Approximating Likelihood Ratios with Calibrated Discriminative Classifiers [arXiv:1506.02169]


http://arxiv.org/abs/1506.02169

arXiv:1805.12244

LIKELIHOOD-FREE INFERENCE PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
arXiv:1808.00973
physics.aps.org/articles/v11/90

parameter 0 > N

l

L LR XS 0
observable |\_5—~ . /
L\ > T — | approximate

4
Q( )0 %
AKX
Q IAXY
X\ R R
** I‘
Y .
s likelihood F
1 | o g
I_ _____ 1 L[] » :
ratio
::
. AN F .,‘
arg min L[g] — 7(x|0) —>| i
g ““0. ‘“‘“‘,“
"---.--""‘

Simulation Machine Learning Inference

0;

The surrogate for the likelihood (ratio) used for inference

Currently a 2-stage process:
1. learning surrogate
2. Inference on parameters of simulator

Wanted: theory with joint treatment of the two stages


https://physics.aps.org/articles/v11/90

LEARNING THE LIKELIHOOD RATIO
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augmented data

Simulation | ~ Machine Learning
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arXiv:1805.12244

PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
arXiv:1808.00973
physics.aps.org/articles/v11/90

0,

0;

Inference

Recently, we realized we can extract more from the simulator.
We can use augmented data to improve training



https://physics.aps.org/articles/v11/90

MINING GOLD

B mmmmm  VVhile implicit density is
............ S intractable

oooooooooooooooooooooooooooooooooo
e o o o o o 0o o 0o 0o 0o 0o o @O * @ ° ° o o 0 0 0 0 0 0 0 0 0 o o

::::::::::::::::::::::::::::;:' S p(x|d) = /dzp(w,z\@)

e o o o o o o o o o o P O s e e e e e 0 e e e e e e 0

..................... vessossnnnn | Some quantities conditioned on
L3 latent z are tractable:
] — px|60)
o p(x|61) , p(z, z|60p)
< 0104 ¢ x~p(x|6o) * ° T(QZ, 2‘6’0, (91) — ( 9 )
Q . . 9 b
0.05 - I_H_#Fq’:—.\_l‘l P, 211
000 dpasaey™ * * e and similar to REINFORCE
0 5 10 15 20 25 30 , ,
x policy gradient

Vop(z, 2|0)|0,
p(xvzw())

t($,2|90) — = Vy logp(a:,z|9)|90



PUTTING IT ALL TOGETHER

— s(x|60,61) 5 - e r(X|60v61) —1.00 A
© Xe~p(x|0=60=0.0) o r(x, 2|6, 01), x ~ p(x|6 =06p)
Xe ~ p(x|60 =061 =0.6) ~ r(x, z|6g, 61), X ~ p(x|6 = 6) —1.25
S 4 -
_1.01 @0 ©®e0d 0 S —1.50 1
< x
& 0.81 j: 3 < -1.75
x ) o _ ]
™ 0.6 E 2.00
L) s 2 _
> N -2.25
0.4 4 13
X
0.2 by —2.50 1
' ! s ] — logr(x0l6, 61)
00{ © e 00 @ oemne ® logr(xo, 2|6,61), t(xo, 2|6)
T T T 0 T T T _3-00 T T T T
0 2 4 6 8 0 2 4 6 8 -1.0 -0.5 0.0 0.5 1.0
X X 6

770(Zt|2<t)

can think of simulator

as policy g in language of
reinforcement learning

log r(x|6, 6,)



LEARNING THE LIKELIHOOD RATIO
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arXiv:1805.12244

PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
arXiv:1808.00973
physics.aps.org/articles/v11/90
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0;

Inference


https://physics.aps.org/articles/v11/90

LEARNING THE LIKELIHOOD RATIO

parameter 0 >

l

latent 2 approximate
likelihood

L ratio

augmented data

arg min L[g] — 7(z|0) —>
g

arXiv:1805.12244

PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
arXiv:1808.00973
physics.aps.org/articles/v11/90

0;

Inference

Simulation Machine Learning
2D histogram —-= SALLY
-—-- CARL CASCAL
----- ROLR —-—-- RASCAL
S 0rs- New techniques
S 0150 require less data than
S o without augmented data
E 0.100 A /
g 0.075 A
1)
Lu 0.050 1 )
0025 | '\.}.\ —..-..—.-.E.*'.'.—.-\—}é.
0.000 e e R R
103 104 10° 106 107

Training sample size
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Two Examples



IMPACT ON STUDIES OF THE HIGGS BOSON

(based on a 42-Dim observation X)
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J Brehmer, J Pavez, G Louppe, K.C. PRL & PRD 2018 [arXiv:1805.00013 & arXiv:1805.00020]
"Better Higgs Measurements Through Information Geometry” [arXiv:1612.05261] & CARL [arxiv:1506.02169]



http://arxiv.org/abs/1506.02169
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arXiv:1909.02005

DARK MATTER

8 BREHMER AND MISHRA-SHARMA ET AL.

Latent space Z:
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TWO PARADIGMS IN MACHINE LEARNING

Max
Welling

Discriminative or Generative?

# -Deep Learning 9
(@] .
2. -Bayesian Networks
- -Kernel Methods "'g
g < -Probabilistic Programs e
= -Random Forests T ~
\ ) ) o - \
NI = -Simulator Models ',0‘
"/"“".\‘. -Boosting -% 0\.‘0
AL >

(X

e

A
W

Vs
AN

.

A

Advantages generative models:

Advantages discriminative models: « Inject expert knowledge W

Flexible map from input to target (low bias) * Model causal relations
Efficient training algorithms available » Interpretable
Solve the problem you are evaluating on. « Data efficient

m—% * Very successful and accurate! . More robust to domain shift Qn-'w

Facilitate un/semi-supervised learning

T e



Deep Generative Models



VARIATIONAL AUTO-ENCODER [Slides from D. Kingma NIPS 2015]

Auto-Encoding Variational Bayes

[Kingma and Welling, 2013/2014]
[Rezende et al, 2014]

Diederik (Durk) Max
Kingma Wellin
m qy(zx) = N(uo?) e 9

lu, o] = f“M(x,¢) = multilayer neural net

© = Objective: lower bound of log p(x).
/ m Jointly optimized w.r.t. ¢ and 6

m This is approx. maximum likelihood

m Simple SGD:
m Sampling small minibatches of data
m Sampling from approx. posterior

Danilo J. Rezende

Conv. net as encoder/decoder,
m This also minimizes an expected KL trained on faces
divergence

D (qy(2[x)|[p(2]x))

-> gives us cheap approx. inference for new
datapoints

L —

———

Kingma and Welling, Auto-encoding Variational Bayes, ICLR 2014
Rezende, Mohamed and Wierstra, Stochastic back-propagation and variational inference in deep latent Gaussian
models, ICML 2014



http://dpkingma.com/wordpress/wp-content/uploads/2015/12/talk_nips_workshop_2015.pdf

GENERATIVE ADVERSARIAL NETWORKS
/ X

Generative
Model

|

) ¥ "x(
| o

2 ] e

e g

“redshank ant monastery ‘

= ’
‘ % "m, ‘ . ' P 77 b‘ S
o l = ' & u

\

volcano
‘ e We want to
b > m For fixed G, find D which maximizes V (D, G),
4/ catch me m For fixed D, find G which minimizes V(D, G);
| ‘ 3 e In other words, we are looking for the saddle point

_ (D*, G*) = maxmin V(D, G).
if you can v

—

/

A

Leo is G Tom is D




TWO OBSERVATIONS

GANs and VAEs use deep neural network to transform
latent Z to observed X

e But resulting density p(x) is intractable
e Say the density is “implicit”
e Not directly usetul for likelihood-free inference

e ... and latent space z tor GAN and VAE has no specific
meaning or Interpretation

Are there other deep generative models that can help?

65



WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Autoregressive models defined by .. o000 0000000606066

T
p(x):HP(xt\wt—h---,an). Hidn 20 0000000000000
t=1

i @00 000000000000
have a tractable density. Train via

. : . Hdden 5 0 0 000000000000
maximum likelihood

Layer

mt @ © 0O 0000000000000

p&: Ep EHETElDe -

1 Second



WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Autoregressive models defined by .. o000 0000000606066

T
p(x):HP(xt\wt—h---,an). Hidn 20 0000000000000
t=1

i @00 000000000000
have a tractable density. Train via

. : . Hdden 5 0 0 000000000000
maximum likelihood

Layer

mt @ © 0O 0000000000000

p&: Ep EHETElDe -

1 Second



WAVENET: A GENERATIVE MODEL FOR RAW AUDIO

Autoregressive models defined by .. o000 0000000606066

T
p(x):HP(xt\wt—h---,an). Hidn 20 0000000000000
t=1

i @00 000000000000
have a tractable density. Train via

. : . Hdden 5 0 0 000000000000
maximum likelihood

Layer

mt @ © 0O 0000000000000

p&: Ep EHETElDe -

1 Second



FLOWS / BIJECTIONS

Approximations using Change-of-variables

Exploit the rule for change of variables for random variables:

= Begin with an initial distribution q,(z,|x).

= Apply a sequence of K invertible functions f;.

Sampling and Entropy
V¢ :fKO...szofl(Z())

Choice of Transformation Function

Otk

0 yA%

= Begin with a fully-factorised Gaussian and improve by change of variables.
= Triangular Jacobians allow for computational efficiency.

K
L =Eq (z)[108P(X, 2k ) ]-Ey (1) [108 90 (20)] = Eqy 5,) [Z logdet
pa

Planar Flow Real NVP Inverse AR Flow
P

-
-6
Yid 1" o Bt = e @)
) + 2as 10 © exp(s(z-1.1:4)) AN E)

=21,
Ya+1:0 = H(zk—1.

2 = zp—1 + uh(w 2p_1 +b)
[Rezende and Mohamed, 2016; Dinh et al., 2016; Kingma et al., 2016]

Linear time computation of the determinant and its gradient.

T — T

Distribution flows through a sequence of invertible transforms

[Rezende and Mohamed, 2015]




FLOWS WITH INVERTIBLE CONVOLUTIONS

https://arxiv.org/abs/1807.03039 https://arxiv.org/abs/1901.11137

Glow: Generative Flow

Emerging Convolutions for Generative Normalizing Flows
with Invertible 1x1 Convolutions

. Emiel H m'? Rianne van den Berg! Max Welling '3
Diederik P. Kingma", Prafulla Dhariwal* ¢ oogeboo anne van de ers ax We 8
OpenAl, San Francisco

4 step of flow x K
f in2 | | ! | in 2 J:—r—‘ J:—r—‘ in 2 ! ! ! !
. squeeze : : sk 1 = :: ::
affine coupling layer - "1 in1 | -
f out 1 out 2 out 1 out 2 out 1 out 2
[ I
invertible 1x1 conv @‘_ split ‘ l
3 4 | ] ]
SRR step of flow x K x (L—1) B | ‘[
4 t ] ‘ T =
squeeze { T T I
y [
N I | LI
I I
x
(a) One step of our flow. (b) Multi-scale architecture (Dinh et al., 2016).

Table 3. Performance of Emerging convolutions on CIFAR10, Im-
ageNet 32x32 and ImageNet 64x64 in bits per dimension (negative
logz-likelihood), and = reports standard deviation.

CIFARIO ImageNet  ImageNet

32x32 64x64
Real NVP  3.51 4.28 3.98
Glow 3.36 £0.002 4.09 3.81

Emerging  3.34 +0.002 4.09 3.81




FLOWS WITH CONTINUOUS TIME FFJORD

FFJORD: FREE-FORM CONTINUOUS DYNAMICS FOR
SCALABLE REVERSIBLE GENERATIVE MODELS

Will Grathwohl*™, Ricky T. Q. Chen*, Jesse Bettencourt’, Ilya Sutskever?, David Duvenaud’

p(z(t1))
(
4

+v
Method Train on One-pass Exactlog-  Free-form
data Sampling likelihood Jacobian
Variational Autoencoders v v X v
Generative Adversarial Nets v v X v
ié ~ Likelihood-based Autoregressive v X v X
% / \ .. | Normalizing Flows X v v X
> ;D;_%; Reverse-NF, MAF, TAN v X v X
- I FEIORD ] , E & | NICE, Real NVP, Glow, Planar CNF v v v X
1gurc 1: transtorms a Sim- @) FFJORD / v / v

ple base distribution at ¢y into the tar-

get distribution at ¢, by integrating over Table 1: A comparison of the abilities of generative modeling approaches.
learned continuous dynamics.



EQUIVARIANT FLOWS

Equivariant Hamiltonian Flows Equivariant Flows: sampling configurations for
multi-body systems with symmetric energies

Danilo J. Rezende* Sébastien Racaniere* Irina Higgins* Peter Toth*

Jonas Kohler *1 Leon Klein *f Frank Noé 18
*{danilor, sracaniere, irinah, petertoth}@google.com

t Freie Universitiit Berlin, Department of Mathematics and Computer Science.
t Freie Universitiit Berlin, Department of Physics.
¥ Rice University, Department of Chemistry.
{jonas.koehler, leon.klein, frank.noe}@fu-berlin.de
* Authors contributed equally to this work.

Abstract

This paper introduces equivariant hamiltonian flows, a method for learning
expressive densities that are invariant with respect to a known Lie-algebra of local
symmetry transformations while providing an equivariant representation of the
data. We provide proof of principle demonstrations of how such flows can be learnt,

as well as how the addition of symmetry invariance constraints can improve data 1. Permutation invariance: Swapping the labels of any two interchangeable particles
efficiency and generalisation. Finally, we make connections to disentangled repre- (1'17 ceT K) - (x o(1)s+ s T K))~
sentation learning and show how this work relates to a recently proposed definition. . . .

2. Rotation invariance: Any 2D/3D rotation of the system Rx = (Rz1,..., Rrk).

3. Translation invariance: Any 2D/3D translation x + v = (z1 + v, ..., T + v).

Target density Learned density Target density Learned density

" Kinetic energy ~Potential energy - Kinetic energy ~ Potential energy

4 - - 4.




QUANTUM FLOWS https://arxiv.org/abs/1904.05903

Can we use the idea for tlows directly on an orthonormal
basis of complex quantum wave functions?

e instead of p(z) = p(x) can we do @i(z) = Wi(x) ?

* yes!

1) Start with: [ 429:(2)9; (2) = o

2) Change variables: /dzq)i(z)qb;k(z) = /dx

3) Profit: 1 \e*
_ of |7 o™
Pi(x) = ¢i(f(x)) |det I :\O(@a\-



Correlation # Causation



DEEP GENERATIVE MODEL VS. SIMULATION

Generative
Model

I | | 1 1 1 1 I
om im m im 4m 5m 6m 7m
Key:
Muon
Electron

Charged Hadron (e.g. Pion)
— — — - Neutral Hadron (e.g. Neutron)
----- Photon

Silicon
Tracker

_ Electromagnetic
)}, " Calorimeter
/4

Hadron Superconducting
Calorimeter Solenoid

Iron return yoke interspersed
Transverse slice with Muon chambers
through CMS

D Bamey, CERN, Febrisuy 2004

http://torch.ch/blog/2015/11/13/gan.html Paganini, et. al. Phys.Rev.Lett. 120 (2018) no.4, 042003 ; & ATL-SOFT-PUB-2018-001



THE CAUSAL HIERARCHY

Judea Pearl
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SAME JOINT DISTRIBUTION, DIFFERENT CAUSAL MODEL

X = randn() y =1+ 2*randn() 22 Ehe ]

y=x+ 1+ sqgrt(3)*randn() X = (y-1)/4 + sqrt(3)*randn()/2

y=z+ 1+ sqrt(3)*randn()
X=Z

6 6 pearsonr = 0.47; g: $0.28 pearsonr = 04 p = 9.8&39
20, % 6 ® o
4 4 " ° :’
4
2 ’ o ®
2 ® 2 ‘
0 0 [ 1]
-2
2 |® k -2 ..
s o
- . o ° (%0
pearsonr = 0.51; p =2.5e-34 -4 o 0. o o ® ®
-2 0 2 -2 0 2 -2 0 2
X X X

https://colab.research.google.com/drive/1rjjjA7teiZVHIJCMTVD8KIZNuU3EjS7Dmu#scroll To=TlzzvcGOZdvW
https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/



CAUSATION > CORRELATION

andn()
X = randn() + 2*randn()
x=3

y =x+ 1+ sqrt(3)*randn() -1)/4 + sqrt(3)*randn()/2
x=3 + 1 + sqrt(3)*randn()

8 8 8 °
6 6 ‘ 6
4 4 4
2 2 2
> 0 > 0 > 0
-2 -2 -2

-4 -4 -4 !
-6 -6 -6

pearsonr=nan,p=1 pearsonr=nan, p=1 pearsonr=nan,p=1
-8 -8 -8
2.50 2.75 3.00 3.25 3.50 2.50 2.75 3.00 3.25 3.50 250 2.75 3.00 3.25 3.50
X X X

https://colab.research.google.com/drive/1rjjjA7teiZVHIJCMTVD8KIZNuU3EjS7Dmu#scroll To=TlzzvcGOZdvW
https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/
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er sample complexity to recover

» E.g. for transfer learning, agent learning,

domain adaptation, etc.

Yoshua Bengio on [arXiv:1901.10912]
and public FB discussion

Max Welling Isn’t this what Bernhard
Schoelkopf has been saying for a while?

Like - Reply - 6w

4@; Yann LeCun ...and Leon Bottou ?

Like - Reply - 6w

Leon Bottou Yoshua's paper says:
if you observe a distribution change
that comes from a causal effect,
then you'll adapt faster if your
generative model matches the
causal model.

Another way of seeing it is : the
right causal graph suggests a
particular factorization of the joint
distribution (a directed bayesian
network). A causal intervention
means that you only change one of
these factors (or a few factors)
while leaving the other ones
unchanged. Therefore if your
generative model is the right causal
model, meaning that it factorizes
the joint in the same way, it will be
easy to adapt it to the change
because only a few parameters
need changing (those associated
with the factors that actually
changed).

Said like this, it feels pretty trivial.
Yoshua proposes to use this to infer
the right causal model from a
plurality of observed distributions.

Dan Roy Max Welling yes. He's
been arguing for generative models
with causal structure for years as
the way to extract information for
rich environments. So not this

Max Welling Dan Roy | am, and |
think most of us, are keenly aware
that Josh has been the big
proponent of this view. And | think
most people agree with him on this
view. Integrating this view with
deep learning for more narrowly
defined tasks seems to me an
interesting intellectual pursuit
though. | think that's what'’s
happening here but | was not at the
talk ==



Inductive Bias

Compositionality

Symmetry

Causality

scale

scale




TI n N ¢ ,
e mesmg)n from Numan COgnition:

Rich| Structyr
, 8 Clture e e
y red models Of objects and thei relations are a powert,
'easoning about, and illl(flél(‘llll(| WIth, the world

Objects and relation:

y retflect de ISions
about how to repre:

made by avolution
ONt “l"

LS 1818 [ETRTRY: 1|
world In an efficiont an

1 useful way

Intelligence is about mode/ bullding, beyond IUSL recognizing patterns (Te,

Combinatorial generalization via abstraction and vInpositionalit

Peter Battaglia



Insight of data generating process informs inductive bias on architecture

Physical systems as graphs
Balls

/ T

Nodes: bodies Nodes: balls Nodes: masses
Edges: gravitational forces Edges: rigid collisions between Edges: springs and rigid
balls, and walls collisions

Battaglia et al., 2016, NeurlPS




Slides borrowed with permission from Peter Battaglia based on Battaglia et al., 2016, NeurlPS

1000-step rollouts of true (top row) vs predicted (bottom row)
n-body Balls String
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Slides borrowed with permission from Peter Battaglia based on Battaglia et al., 2016, NeurlPS

Zero shot generalisation to larger systems
n-body Balls
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Model
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NEW !

We incorporated two physically
informed inductive biases

e ODE integrators

e Hamiltonian mechanics

Hamiltonian Graph Networks with ODE Integrators

Alvaro Sanchez-Gonzalez Victor Bapst Kyle Cranmer
DeepMind DeepMind NYU
London, UK London, UK New York, USA

alvarosg@google.com vbapst@google.com kc90@nyu.edu

Peter Battaglia
DeepMind
London, UK
peterbattaglia@google.com
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JETS

Run: 329716
Event: 857582452
2017-07-14 10:48:51 CEST




CAUSAL, GENERATIVE MODEL FOR JETS
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QCD-INSPIRED RECURSIVE NEURAL NETWORKS

Insight of data generating process informs inductive bias on architecture

sssss L -
— e || ® Generative process is a tree-like,
— images )
AN N T ~stationary Markov Process

e Physics algorithms exist to
estimate the tree

towers

10!

1 / Background efficiency

e Tree-RNN needs much less data

|mages
—_— to train!

10° | | | | | | | |
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Signal efficiency

Louppe, Cho, Becot, KC [arXiv:1702.00748]



arXiv:1902.09914

The Machine Learning Landscape of Top Taggers

INDUCTIVE BIAS

G. Kasieczka (ed)!, T. Plehn (ed)?, A. Butter?, K. Cranmer?, D. Debnath?,
M. Fairbairn®, W. Fedorko®, C. Gay%, L. Gouskos”, P. T. Komiske®, S. Leiss!, A. Lister®,
S. Macaluso®*, E. M. Metodiev®, L. Moore?, B. Nachman,'%!!, K. Nordstrém!2-13,
J. Pearkes®, H. Qu”, Y. Rath!*, M. Rieger!4, D. Shih*, J. M. Thompson?, and S. Varma®

y=0, y_pred=0.1529

05330

AUC | Acc 1/ep (es = 0.3) #Param
single mean median

CNN [16] 0.981 | 0.930 914+14  995£15 966+18 610k
ResNeXt [30] 0.984 | 0.936 | 1122447 1246+28 1286431 1.46M
TopoDNN [18§] 0.972 | 0.916 2955 378+ 5 391 £ 8 59k
Multi-body N-subjettiness 6 [24] | 0.979 | 0.922 79218  802£12 783+13 57k
Multi-body N-subjettiness 8 [24] | 0.981 | 0.929 867+15  926£20 886+18 58k
TreeNiN [43] 0.982 | 0.933 | 1025+11 1209423  1167+24 34k 4"’“"’"’"
P-CNN 0.980 | 0.930 732+£24  838+£13 841+14 348k
ParticleNet [47] 0.985 | 0.938 | 1298+46 1383+45  1374+£41 498k
LBN [19] 0.981 | 0.931 83617  852£67 97120 705k
LoLa [22] 0.980 | 0.929 722£17  T68%£11 751£11 127k
Energy Flow Polynomials [21] 0.980 | 0.932 384 1k
Energy Flow Network [23] 0.979 | 0.927 633+31  734£13 729+£11 82k
Particle Flow Network [23] 0.982 | 0.932 891+18 1005£21  1005+29 82k
GoaT | 0.985 | 0.939 | 13684140 15494208 | 35k




CAUSAL, GENERATIVE MODELS FOR JETS

o

JUNIPR is a causal, generative model forjets. & ——
Can train on real data! “o I
Q.

tractable likelihood

n—1
Pee({p1,-.oa}) = | [T B, kR RY)
t=1

x P, (end |k, ... k(™).

... and it is interpretable

0.08
Pythia eTe™— qq
C/A clustering
0.06 ]
& = JUNIPR cont. prob.
= Pythia freq.
"2 0.04
2
2
a,
0.02
000 | LI | ! L LR | T L
0.002 0.01 0.1 0.5
z (all t’s)

Andreassen, Feige, Frye, Schwartz arXiv:1804.09720



COMPOSITIONALITY

Vocabulary of kernels + grammar for

composition

e physics goes into the construction of

a "Kernel” that describes covariance

of data

Structure Discovery in Nonparametric Regression
through Compositional Kernel Search

David Duvenaud, James Robert Lloyd, Roger Grosse,
Joshua B. Tenenbaum, Zoubin Ghahramani
International Conference on Machine Learning, 2013
pdf | code | poster | bibtex

(explGG+ G e GG+ G
dependent gaussian scale mixture
(e g. Karklin .md+.cwxh, 2005)

(MG +G)GMT +G)+ G
Bayesian clustered tensar factorization

(Sutskeveret al, 2009) UI(:‘UI LQ) 4+ G
’

W e \
bimary matrix factorization (exp(G) o G)G + G

(Meeds et al, 2006) spanse coding
\ ’ (eg. Okhausen and Field, 199)

MGMT +G)+ G (CC+C\C+C

co-clustering BG + G GG+ G h'm:.u dvnamical system

(e.g. Kemp et al, 2006) binary features  low-ramk spproximusion g : ‘
(Griffths and (Salakburdmoy and

\ A Ghahramani, 2005) M, 2008)

MG+ G

random walk
clustering /
\ o

no structure

Exploiting compositionality to explore a large space of
model structures
Roger Grosse, Ruslan Salakhutdinov, William T.

Freeman, Joshua B. Tenenbaum

Conference on Uncertainty in Artificial Intelligence, 2012

pdf | code | bibtex

CG+ G /

Mauna Loa atmospheric CO-

(Lin x SE + SE x ( Per + RQ) )

60 |
|
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20 }
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01 \
|
—20+ |
|
—40 : : : : : : : : : L, :
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
Lin x SE
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20| |
|
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|
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5
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“ i
|
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0
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Machine Learning for Physics and the Physics of Learning
SEPTEMBER 4 - DECEMBER 8, 2019

2% PARTICIPANT LIST B AcTivITIES /] APPLICATION

Overview

Machine Learning (ML) is quickly providing new powerful tools for physicists and chemists to extract essential
information from large amounts of data, either from experiments or simulations. Significant steps forward in
every branch of the physical sciences could be made by embracing, developing and applying the methods of

machine learning to interrogate high-dimensional complex data in a way that has not been possible before.

As yet, most applications of machine learning to physical sciences have been limited to the “low-hanging
fruits,” as they have mostly been focused on fitting pre-existing physical models to data and on discovering

strong signals. We believe that machine learning also provides an exciting opportunity to learn the models

themselves—thti to learn the hi-cly ricile and structures uelyig the data—and that with more
RS T TSRS CETTs - S v WeTEesr— . o —— . - ’

realistic constraints, machine learning will also be able to generate and design complex and novel physical

structures and objects. Finally, physicists would not just like to fit their data, but rather obtain models that are

physically understandable; e.g., by maintaining relations of the predictions to the microscopic physical
quantities used as an input, and by respecting physically meaningful constraints, such as conservation laws or

symmetry relations.

The exchange between fields can go in both directions. Since its beginning, machine learning has been inspired by methods from statistical physics. Many
modern machine learning tools, such as variational inference and maximum entropy, are refinements of techniques invented by physicists. Physics,
information theory and statistics are intimately related in their goal to extract valid information from noisy data, and we want to push the cross-pollination

further in the specific context of discovering physical principles from data.



BABY STEPS

Before we are able to discover new models on experimental
data, should be able to recover model from simulation

* should be able to recover ground truth with increasingly
fewer hints (in less restricted model space)

e Simulators have causal structure, can perform

interventions and test different approaches to causal
discovery

The ability to systematically improve on an existing simulator
model with real data may be easier than discovering new
model from scratch, and may be even more valuable in
practice

91



WHY DO WE CARE ABOUT INTERPRETABILITY?

-or a fixed task, one might not care about interpretability as
ong as the performance on the task is gooad

e Depending on context, “good”may mean that it
generalizes well, is robust to domain shift, performance
can be characterized and validated to be within some

tolerance, etc...

But tfor progress in science, we don't just want to solve
today’s task well.

e Forscience to progress we need to be able to generate
new hypotheses, design experiments, etc.

92
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GENERALIZATION

Teacher = Causal, Generative Model (Simulator)

Richer set of problems can be investigated.
Insight of data generating process informs inductive bias on architecture

——

N

algoritm

* Lenka Zdeborova



arXiv:1805.12244

HOW DO YOU USE THE GOLD? PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
arXiv:1808.00973
physics.aps.org/articles/v11/90

We have joint likelihood ratioe
p(il?, Rdy Rsy ~p 91)

With (. 2|6, 01), we define the functional

Ly [#(x]00, 61)] =/dx/dzp(w,z\91) [(f(wlﬁoﬁl)—r(x,z|eo,91))2]

One can show it is minimized by

r(x|6g,01) = argmin L, |7(x|0g, 01)]
v ’F($|90,91)

We want likelihood ratio

~ p(=|6o)
(@b, 01) = p(z|61)



https://physics.aps.org/articles/v11/90

LEARNING THE SCORE

Similar to the joint likelihood ratio,
we can calculate the joint score

t(z,2]00) = Vg log p(z, 24, 25, 2|0)

\ 4
We want score

t(z]0o) = Vg logp(z]0)

arXiv:1805.12244

PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
arXiv:1808.00973
physics.aps.org/articles/v11/90


https://physics.aps.org/articles/v11/90

arXiv:1805.12244

|_ EA R N | N G T H E S CO R E PRL, arXiv:1805.00013

PRD, arXiv:1805.00020
arXiv:1808.00973

Imi inint likels : hysics.aps.org/articles/v11/
Similar to the joint likelihood ratio, physics.aps.org/articles/v11/90

we can calculate the joint score

t(z,z]00) = Vg log p(z, 24, 25, 2|0)

6, Given [(x,z00)
we define the functional

Lt[?g(wwo)] _ /dx/dz p(x, z|0p) [(f(a:\@o) — t(x, 290))2]

One can show it is minimized by
t(x]6p) = arg min L.[t(x]6p)]

t(x]6o)
\ 4
We want score Again, we implement this minimization
t(x|0y) = Vg log p(x|0) through machine learning
0o


https://physics.aps.org/articles/v11/90

THE RIGGS BOSON

@ATLAS

EXPERIMENT
http://atlas.ch

Run: 204769
Event: 71902630
Date: 2012-06-10
Time: 13:24:31 CEST



THE CAUSAL, GENERATIVE MODEL

1 1 1
— i e ! LIz
Ly = Wi - W — 2B, B" — -Gy, G

v
Kinetic energies and self-interactions of the gauge hosons

1 1 1
+ LA"(i0, — 597‘ - W, — §Q'YBH)L + Ry"(i0, — ig'}’B,,)R

W

Kinetic energies and electroweak interactions of fermions

L, 1 L, 12 o
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+ 9"V T.9) Gy, + (GiLoR+G2Lé R+ hee.)

W
interactions between quarks and gluons fennion masses and couplings to Higgs



THE CAUSAL, GENERATIVE MODEL
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THE

CAUSAL, GENERATIVE MODEL
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THE CAUSAL, GENERATIVE MODEL

1 124 1 19 1 " ey
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v
Kinetic energies and self-interactions of the gauge hosons
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THE CAUSAL, GENERATIVE MODEL

Conceptually: Prob(detector response | particles )
Implementation: Monte Carlo integration over micro-physics

Consequence: evaluation of the likelihood is intractable

| |
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10° SENSORS — 1 REAL-VALUED QUANTITY

Most measurements and searches for new particles at the LHC are based on the
distribution of a single summary statistic

* choosing a good summary statistic (feature engineering) is a task for a skilled

ohysicist and tailored to the goal of measurement or new particle search

 likelihood p(x|0) approximated using histograms (univariate density estimation)

I 1
om m
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THE CRUX, AN INTRACTABLE INTEGRAL

MC Sampling
observed l

|

p(x|0) = [ dz p(z, z|0)

simulation

% 40 o

G ATLAS Preliminary

o 35 e Data )
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€300 B Background Z+jets, tt
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- 7 Syst.unc.
20
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THE CRUX, AN INTRACTABLE INTEGRAL

MC Sampling
observed l

|

p(x|0) = [ dzp(x, 2|0)

simulation
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This doesn’t scale if x is high dimensional!



HIGH DIMENSIONAL EXAMPLE

When looking for deviations from t

Higgs, we wou

d like leverage subt

ne standard model

e kinematic correlations

e thus each observation x is high-dimensional
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