Coordinates, Governing Equations and Limits of Model Discovery

J. Nathan Kutz

Department of Applied Mathematics University of Washington Email: **kutz@uw.edu**

IPAM at UCLA, October 16, 2019

Coordinates + Dynamics

and the second second

Kevrekidis, Coifman et al Noe et al Mezic et al Etc etc etc

Brian deSilva

Bethany Lusch

Steve Brunton

Doctrine of the Perfect Circle

W

Reduced Order Models

$\frac{d\mathbf{u}(t)}{dt} = L\mathbf{u}(t) + N(\mathbf{u}(t))$

$\mathbf{u}(t) \approx \mathbf{\Phi}_r \mathbf{a}(t)$

$\frac{d\mathbf{a}(t)}{dt} = \mathbf{\Phi}_r^T L \mathbf{\Phi}_r \mathbf{a}(t) + \mathbf{\Phi}_r^T N(\mathbf{\Phi}_r \mathbf{a}(t))$

Question #1 What is the nature of your data?

- quality
- quantity
- observability
- extrapolation vs interpolation

Model Discovery

Finding governing equations

Measurement

Dynamics

$$\mathbf{y}(t_k) = h(t_k, \mathbf{x}(t_k), \Xi)$$

Measurement model

Measurement noise

Interpretability

Vilfredo Pareto

Parsimony

The Ultimate Physics Regularization

of terms
of dimensions

What Could the Right Side Be?

Limited by your imagination

$$oldsymbol{\Theta}(\mathbf{X}) = \left[egin{array}{c|c|c|c|c|c|c|c|} 1 & \mathbf{X} & \mathbf{X}^{P_2} & \mathbf{X}^{P_3} & \cdots & \sin(\mathbf{X}) & \cos(\mathbf{X}) & \sin(2\mathbf{X}) & \cos(2\mathbf{X}) & \cdots & \mathbf{X}^{P_3} & \cdots & \mathbf{X}^{P_3} & \cdots & \mathbf{X}^{P_3} & \mathbf{X}^{P_$$

2nd degree polynomials

$$\mathbf{X}^{P_2} = \begin{bmatrix} x_1^2(t_1) & x_1(t_1)x_2(t_1) & \cdots & x_2^2(t_1) & x_2(t_1)x_3(t_1) & \cdots & x_n^2(t_1) \\ x_1^2(t_2) & x_1(t_2)x_2(t_2) & \cdots & x_2^2(t_2) & x_2(t_2)x_3(t_2) & \cdots & x_n^2(t_2) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ x_1^2(t_m) & x_1(t_m)x_2(t_m) & \cdots & x_2^2(t_m) & x_2(t_m)x_3(t_m) & \cdots & x_n^2(t_m) \end{bmatrix}$$

Sparse Identification of Nonlinear Dynamics (SINDy)

W

PDE	Form	Error (no noise, noise)	Discretization
KdV	$u_t + 6uu_x + u_{xxx} = 0$	$1\%{\pm}0.2\%,7\%{\pm}5\%$	$x \in [-30, 30], n = 512, t \in [0, 20], m = 201$
Burgers	$u_t + u u_x - \epsilon u_{xx} = 0$	$0.15\%{\pm}0.06\%, 0.8\%{\pm}0.6\%$	$x \in [-8, 8], n = 256, t \in [0, 10], m = 101$
Schrodinger	$iu_t+rac{1}{2}u_{xx}-rac{x^2}{2}u=0$	$0.25\%{\pm}0.01\%, 10\%{\pm}7\%$	$x \in [-7.5, 7.5], n = 512, t \in [0, 10], m = 401$
NLS	$iu_t+rac{1}{2}u_{xx}+ u ^2u=0$	$0.05\%{\pm}0.01\%,3\%{\pm}1\%$	$x \in [-5, 5], n = 512, t \in [0, \pi], m = 501$
KS	$u_t + uu_x + u_{xx} + u_{xxxx} = 0$	$1.3\%{\pm}1.3\%,70\%{\pm}27\%$	$x \in [0, 100], n = 1024, t \in [0, 100], m = 251$
R-D	$egin{aligned} & u_t = 0.1 abla^2 u + \lambda(A) u - \omega(A) v \ v_t = 0.1 abla^2 v + \omega(A) u + \lambda(A) v \ A = u^2 + v^2, \omega = -eta A^2, \lambda = 1 - A^2 \end{aligned}$	$0.02\% \pm 0.01\%, 3.8\% \pm 2.4\%$	x, y ∈[-10, 10], n=256, t∈[0, 10], m=201 subsample $3 \cdot 10^5$
Navier Stokes	$\omega_t + (\mathbf{u} \cdot abla) \omega = rac{1}{Re} abla^2 \omega$	$1\%\pm0.2\%$, $7\%\pm6\%$	$x \in [0, 9], n_x = 449, y \in [0, 4], n_y = 199, t \in [0, 30], m = 151$, subsample $3 \cdot 10^5$

Discrepancy Models

l'm not dumb

Instead of model discovery from scratch... ...we often start with partial knowledge of the physics

- Idealized Hamiltonian or Lagrangian system
- Knowledge of constraints, conservation laws, symmetries

Digital Twins

CAD-Based Sim.

KEY CHALLENGES

- Limited measurements & data
- Noise
- Multi-scale physics
- Latent variables
- Parametric dependencies
- Stochastic systems

Manifolds and Embeddings

Observables & Coordinates

Bernard Koopman 1931

W

Definition: Koopman Operator (Koopman 1931): For a dynamical system

$$\frac{d\mathbf{x}}{dt} = \mathbf{N}(\mathbf{x}),$$

where $\mathbf{x} \in \mathbb{R}^n$ is in a state space $\mathbf{x} \in \mathcal{M}$. The Koopman operator \mathcal{K} acts on a set of scalar observable variables g_j which comprise the vector $\mathbf{g} : \mathcal{M} \to \mathbb{C}$ so that

 $\mathscr{K}\mathbf{g}(\mathbf{x}) = \mathbf{g}(\mathbf{N}(\mathbf{x}))$.

W

Koopman Invariant Subspaces

$$\begin{aligned} \dot{x}_1 &= \mu x_1 \\ \dot{x}_2 &= \lambda (x_2 - x_1^2) \end{aligned} \implies \quad \frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} \mu & 0 & 0 \\ 0 & \lambda & -\lambda \\ 0 & 0 & 2\mu \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} \quad \text{for} \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_1^2 \end{bmatrix} \end{aligned}$$

$\mathbf{W} \qquad \qquad \mathbf{Burgers' Equation}$

 $u_t + uu_x - \epsilon u_{xx} = 0 \quad \epsilon > 0, \ x \in [-\infty, \infty]$

Cole-Hopf

$$u = -2\epsilon v_x/v$$

$$v_t = \epsilon v_{xx}$$

Kutz, Proctor & Brunton, Complexity (2018)

Neural Nets

"Supervised learning is a high-dimensional interpolation problem."

S. Mallat, PRSA (2016)

NNs for Koopman Embedding

W

Failure! (obviously)

Duffing Oscillator

$$\frac{\partial^2 u}{\partial t^2} + u + \epsilon u^3 = 0$$

Nonlinearity: Shifts Frequencies + Generates Harmonics

$$u(t) = A\sin\left[(1 + 3\epsilon A^2/8)t\right] + \frac{\epsilon A^3}{32} \left\{3\sin\left[(1 + 3\epsilon A^2/8)t\right] - \sin\left[3(1 + 3\epsilon A^2/8)t\right]\right\}$$

Handling the Continuous Spectra

W

The Pendulum

Lusch et al. Nat. Comm (2018)

W

Flow Around a Cylinder

Relax Koopman

Champion et al (arxiv 2019)

Generalization & Limits

"Supervised learning is a high-dimensional interpolation problem."

S. Mallat, PRSA (2016)

Parsimony

The Ultimate Physics Regularization

of terms
of dimensions