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Themes

• DFT (electronic structure) in a nutshell

• Along comes ML

• New opportunities?
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Standard atomistic simulations: Molecular dynamics

• Solve Newton’s equations for nuclei at given 
temperature and pressure.

• Use simple force fields between nuclei

• Can do a million atoms for many picoseconds

• But, cannot break bonds!
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Electronic Structure Problem: Diversity

• For all everyday matter
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Basic Electronic Structure Problem

• Just want E(R)
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DFT in a Nutshell
Kieron Burke[a,b] and Lucas O. Wagner*[a,b]

The purpose of this short essay is to introduce students and

other newcomers to the basic ideas and uses of modern

electronic density functional theory, including what kinds of

approximations are in current use, and how well they work (or

not). The complete newcomer should find it orients them well,

while even longtime users and aficionados might find

something new outside their area. Important questions

varying in difficulty and effort are posed in the text, and are

answered in the Supporting Information. VC 2012 Wiley

Periodicals, Inc.

DOI: 10.1002/qua.24259

Electronic Structure Problem

For the present purposes, we define the modern electronic struc-

ture problem as finding the ground-state energy of nonrelativistic

electrons for arbitrary positions of nuclei within the Born-Oppen-

heimer approximation.[1] If this can be done sufficiently accurately

and rapidly on a modern computer, many properties can be pre-

dicted, such as bond energies and bond lengths of molecules,

and lattice structures and parameters of solids.

Consider a diatomic molecule, whose binding energy curve

is illustrated in Figure 1. The binding energy is given by

EbindðRÞ ¼ E0ðRÞ þ
ZA ZB
R

% EA % EB (1)

where E0(R) is the ground-state energy of the electrons with

nuclei separated by R, and EA and ZA are the atomic energy

and charge of atom A and similarly for B. The minimum tells us

the bond length (R0) and the well-depth (De), corrected by

zero-point energy (!hx=2), gives us the dissociation energy (D0).

The Hamiltonian for the N electrons is

Ĥ ¼ T̂ þ V̂ee þ V̂; (2)

where the kinetic energy operator is

T̂ ¼ % 1

2

XN

j¼1

r2
j ; (3)

the electron–electron repulsion operator is

V̂ee ¼
1

2

X

i 6¼j

1

jri % rjj
; (4)

and the one-body operator is

V̂ ¼
XN

j¼1

vðrjÞ: (5)

For instance, in a diatomic molecule, v(r) ¼ % ZA/r % ZB/|r % R|.

We use atomic units unless otherwise stated, setting

e2 ¼ !h ¼ me ¼ 1, so energies are in Hartrees (1 Ha ¼ 27.2 eV

or 628 kcal/mol) and distances in Bohr radii (1 a0 ¼ 0.529 Å).

The ground-state energy satisfies the variational principle:

E ¼ min
W

hWjĤjWi; (6)

where the minimization is over all antisymmetric N-particle

wavefunctions. This E was called E0(R) in Eq. (1).*

Many traditional approaches to solving this difficult many-

body problem begin with the Hartree–Fock (HF) approxima-

tion, in which W is approximated by a single Slater determi-

nant (an antisymmetrized product) of orbitals (single-particle

wavefunctions)[2] and the energy is minimized.[3] These include

configuration interaction, coupled cluster, and Møller-Plesset

perturbation theory, and are mostly used for finite systems,

such as molecules in the gas phase.[4] Other approaches use

reduced descriptions, such as the density matrix or Green’s

function, but leading to an infinite set of coupled equations

that must somehow be truncated, and these are more com-

mon in applications to solids.[5]

More accurate methods usually require more sophisti-

cated calculation, which takes longer on a computer. Thus,

there is a compelling need to solve ground-state electronic

structure problems reasonably accurately, but with a cost in

Figure 1. Generic binding energy curve. For N2, values for R0 and De are
given in Table 1. [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

[a, b] K. Burke, L. O. Wagner
Department of Chemistry, University of California, Irvine, California 92697
Department of Physics, University of California, Irvine, California 92697
E-mail: lwagner@uci.edu

*Explain why a vibrational frequency is a property of the ground-state of the
electrons in a molecule.

VC 2012 Wiley Periodicals, Inc.
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Why electronic structure problem is evil

• Quantum mechanics really needed for electrons

• It’s a many-body problem:  Every electron sees 
every other one, as well as nucleus.

• Chemical accuracy is about 1 in 107 for 
electronic energy of 500 atoms.

• Ab initio quantum chemistry: When # electrons 
doubles, computer cost increases by 128.
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Mathematical form of problem

• Differential 
equation in 3N 
coordinates:
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Hamiltonian

Hamiltonian for N electrons in the presence of external potential v(r):
Ĥ = T̂ + V̂ee + V̂ ,

where the kinetic and elec-elec repulsion energies are

T̂ = ≠1
2

Nÿ

i=1

Ò2

i , V̂ee =
1
2

Nÿ

i=1

Nÿ

j ”=i

1
|ri ≠ rj |

,

and di�erence between systems is N and the one-body potential

V̂ =
Nÿ

i=1

v(ri)

Often v(r) is electron-nucleus attraction

v(r) = ≠
ÿ

–

Z–

|r ≠ R–|

where – runs over all nuclei, plus weak applied E and B fields.
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Schrödinger equation

6N-dimensional Schrödinger equation for stationary states

{T̂ + V̂ee + V̂ } = E  ,  antisym

The one-particle density is much simpler than  :

n(r) = N

ÿ

‡1

. . .
ÿ

‡N

⁄
d

3
r2 . . . d

3
rN | (r‡1, r2‡2, . . . , rN‡N)|2

and n(r) d
3
r gives probability of finding any electron in d

3
r around r.

Wavefunction variational principle:
I E [ ] © È |Ĥ| Í is a functional

I Extrema of E [ ] are stationary states, and ground-state energy is

E = min
 

È |T̂ + V̂ee + V̂ | Í

where  is normalized and antisym.
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The greatest free lunch ever: DFT

• 1964: Hohenberg and Kohn proved a theorem 
showing lowest energy can be found by search 
over electronic densities (much simpler than 
wavefunction)

• 1965: Created Kohn-Sham (KS) equations of 
fake non-interacting electrons (not many-body 
anymore) which, when solved, yield lowest E 
and density alone. 
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KS equations (1965)
Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

;
≠1

2Ò2 + vS(r)
<

„j(r) = ‘j„j(r),
Nÿ

j=1

|„j(r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = v(r) +
⁄

d
3
r

n(rÕ)

|r ≠ rÕ| + vXC[n](r), vXC(r) =
”EXC

”n(r)
Knowing EXC[n] gives closed set of self-consistent equations.
Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 14 / 39

KS potential of He atom

n(r)

!2 !1 0 1 2

!4

!2

0

v(r)

vS(r)

≠2
r

z

Every density has (at most) one KS
potential.a
Red line: vS(r) is the exact KS
potential.

a Accurate exchange-correlation
potentials and total-energy components for
the helium isoelectronic series, C. J.

Umrigar and X. Gonze, Phys. Rev. A 50,

3827 (1994).

Kieron (UC Irvine) ABC of ground-state DFT Weizmann14 15 / 39
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The kicker

• Need a formula for a small fraction of 
electronic energy, called XC energy, in terms 
of density, containing all quantum many-body 
effects.

• First formula (1965) good for solids, but not 
accurate enough for chemistry.

• Next formulas (1990) give useful accuracy for 
chemistry and materials. 
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Today’s commonly-used XC approximations

• Local density approximation (LDA)
– Uses only n(r) at a point.

• Generalized gradient approx 
(GGA) 
– Uses both n(r) and |Ñn(r)|
– Should be more accurate, corrects 

overbinding of LDA
– Examples are PBE and BLYP

• Hybrid:
– Mixes some fraction of HF with GGA
– Examples are B3LYP and PBE0 
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I. INTRODUCTION

Ĥ = T̂ + V̂ee + V̂ (1)

T [n] ⇡ T
LDA
S [n] =

3(3⇡)2/3

10

Z
d
3
r n

5/3(r) (2)

Vee[n] ⇡ U [n] =
1

2

Z
d
3
r

Z
d
3
r
0 n(r)n(r

0)

|r� r0| (3)

V [n] =

Z
d
3
r n(r) v(r) (4)

Ĥ| i = E| i (5)

E = min
 

h |Ĥ| i (6)

E
TF = min

n

⇢
T

LDA
S [n] + U [n] +

Z
d
3
r v(r)n(r)

�
(7)

E
GGA
XC =

Z
d
3
r e

GGA
XC (n(r), |rn(r)|) (8)

E
hyb
XC = a (EX � E

GGA
X ) + E

GGA
XC (9)
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Modern research to find XC energy
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Youtube: Teaching the theory in DFT
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Alphabet soup
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Applications

• Computers, codes, algorithms always improving
• Making bona fide predictions
• E.g., a new better catalyst for Haber-Bosch process 

(‘fixing’ ammonia from air) was predicted after 
about 25,000 failed experiments (Norskov’s group)

• Now scanning chemical and materials spaces using 
big data methods for materials design (materials 
genome project).

• World’s hottest superconductor (203K) is hydrogen 
sulfide, predicted by DFT calculations, then made.

• Latest generation of intel chips (needed for Mac 
airbook) is half-size and Pb-free with help of DFT.
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Highest temperature superconductors

 

Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride
Compounds under High Pressure

Ying Sun,1 Jian Lv,1 Yu Xie,1 Hanyu Liu,1,* and Yanming Ma1,2,†
1Innovation Center of Computational Physics Methods and Software and State Key Laboratory for Superhard Materials,

College of Physics, Jilin University, Changchun 130012, China
2International Center of Future Science, Jilin University, Changchun 130012, China

(Received 24 December 2018; published 26 August 2019)

The recent theory-orientated discovery of record high-temperature superconductivity (Tc ∼ 250 K) in
sodalitelike clathrate LaH10 is an important advance toward room-temperature superconductors. Here, we
identify an alternative clathrate structure in ternary Li2MgH16 with a remarkably high estimated Tc of
∼473 K at 250 GPa, which may allow us to obtain room-temperature or even higher-temperature
superconductivity. The ternary compound mimics a Li- or electron-doped binary hydride of MgH16. The
parent hydride contains H2 molecules and is not a good superconductor. The extra electrons introduced
break up the H2 molecules, increasing the amount of atomic hydrogen compared with the parent hydride,
which is necessary for stabilizing the clathrate structure or other high-Tc structures. Our results provide a
viable strategy for tuning the superconductivity of hydrogen-rich hydrides by donating electrons to
hydrides via metal doping. Our approach may pave the way for finding high-Tc superconductors in a
variety of ternary or quaternary hydrides.

DOI: 10.1103/PhysRevLett.123.097001

Superconductivity in a known hydride was first reported
in 1970, when Th4H15 was identified to have a Tc of 8 K at
ambient pressure [1]. An important direction towards
which to search for high-temperature superconductors in
hydrogen-rich metal hydrides was proposed by considering
that hydrogen in a high content can play a critical role in the
creation of the superconductivity of the compounds [1].
However, this approach was not widely adopted until
Ashcroft’s suggestion [2] that high-pressure conditions
can metallize hydrogen-rich materials that are insulators
at ambient pressure. Subsequently, there has been much
research on hydrogen-rich hydrides under high pressures
[3–6]. Breakthroughs were achieved in SH3 and LaH10

systems, which had high Tc of ∼200 and 250–260 K,
respectively [7–13].
Theoretical studies have been crucial in these discov-

eries. Solid SH2 was predicted to transform into a high-
temperature superconductor above 100 GPa [7].
Subsequent experimental work found two superconducting
states with Tc of 30–150 and ∼200 K, where isotope effect
measurements indicated that the materials were Bardeen-
Cooper-Schrieffer superconductors [8]. The superconduc-
tivity at ∼200 K was explained by SH3 arising from the
decomposition of SH2 under high pressure [9,14–18]. SH3

adopts a cubic structure with two interpenetrating perov-
skite sublattices, where atomic H is located symmetrically
between each pair of S atoms and forms strong sixfold
polar covalent S-H bonds. This three-dimensional network
of covalently bonded H appears only in SH3 [8,9] and
SeH3 [19,20].

Two theoretical studies have predicted high supercon-
ductivity in sodalitelike clathrate LaH10 at Tc ∼ 280 K
above a pressure of 2 Mbar [10,11]. Two subsequent
experiments synthesized the predicted stoichiometry and
Fm3̄m structure of LaH10 and measured high supercon-
ductivities of Tc ¼ 260 and 250 K at high pressures of 190
and 170 GPa, respectively [12,13], setting a record high Tc
for superconductors. In clathrate LaH10, the bonds between
H and La atoms are purely ionic, whereas the H atoms form
sodalitelike clathrate cages consisting of weakly covalent
H-H bonds with a H-H distance of ∼1.2 Å. A similar H
clathrate structure was first proposed for CaH6 [21] and was
found to be ubiquitous in alkaline-earth and rare earth
hydrides [10,11,22,23]. The high superconductivity of
these clathrate hydrides arises from H atoms, where the
H electrons contribute substantially to the electron density
of states at the Fermi level [10,11,21–23]. Thus, clathrate
hydrides are the most promising candidates for room-
temperature superconductors.
Nearly all binary hydrides have been investigated by

structure searching simulations [3–5], among which, the
ionic clathrate structure in rare-earth and alkali-earth
hydrides [10,11,21–23] and the covalent sixfold cubic
structure in SH3 [8,9] and SeH3 [19] give the highest
possible Tc values above 200 K. There are many other
binary hydrides, some of which have even higher H
content, (e.g., MgH12 [24], MgH16 [24], YH24 [10], and
AsH8 [25]); however, the predicted Tc values are much
lower (Tc < 150 K). These hydrides contain a large
amount of H2-like or H3-like (e.g., KH5 [26]) molecular

PHYSICAL REVIEW LETTERS 123, 097001 (2019)
Editors' Suggestion Featured in Physics

0031-9007=19=123(9)=097001(5) 097001-1 © 2019 American Physical Society
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In quantum chemistry
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Projector-Based Embedding Eliminates Density Functional
Dependence for QM/MM Calculations of Reactions in Enzymes and
Solution
Kara E. Ranaghan, Darya Shchepanovska, Simon J. Bennie, Narin Lawan,† Stephen J. Macrae,§

Jolanta Zurek, Frederick R. Manby, and Adrian J. Mulholland*
Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, U.K. BS8 1TS

*S Supporting Information

ABSTRACT: Combined quantum mechanics/molecular me-
chanics (QM/MM) methods are increasingly widely utilized
in studies of reactions in enzymes and other large systems.
Here, we apply a range of QM/MM methods to investigate
the Claisen rearrangement of chorismate to prephenate, in
solution, and in the enzyme chorismate mutase. Using
projector-based embedding in a QM/MM framework, we
apply treatments up to the CCSD(T) level. We test a range of
density functional QM/MM methods and QM region sizes.
The results show that the calculated reaction energetics are
significantly more sensitive to the choice of density functional
than they are to the size of the QM region in these systems.
Projector-based embedding of a wave function method in
DFT reduced the 13 kcal/mol spread in barrier heights
calculated at the DFT/MM level to a spread of just 0.3 kcal/mol, essentially eliminating dependence on the functional.
Projector-based embedding of correlated ab initio methods provides a practical method for achieving high accuracy for energy
profiles derived from DFT and DFT/MM calculations for reactions in condensed phases.

■ INTRODUCTION
The award of the 2013 Nobel Prize for Chemistry to Martin
Karplus, Michael Levitt, and Arieh Warshel recognized the
development of multiscale methods and the important role
these methods can now play in the understanding of biological
systems.1−3 Multiscale techniques have greatly benefited from
recent advances in computer hardware and software and can
provide insight into biological4 and solid state systems.5,6

Hybrid quantum mechanics/molecular mechanics (QM/MM)
techniques are an exemplar of multiscale modeling methods.
They combine an electronic structure treatment of a small
region (e.g., the active site of an enzyme) with an empirical
MM force field treatment of the bulk of the system. Most QM/
MM studies apply semiempirical or density functional theory
(DFT) methods for the QM part of the calculation. DFT
methods potentially offer a good combination of accuracy and
computational cost but suffer from some well-known
limitations and are not systematically improvable.7,8 When
different density functionals give different results for the same
system, it is not obvious which result should be preferred. DFT
can be quite inaccurate for some applications, which may lead
to qualitatively incorrect mechanistic conclusions.9−11 It is now
possible to apply potentially highly accurate correlated ab initio
electronic structure methods e.g. coupled cluster, in QM/MM
calculations. Such methods allow the calculation of activation

barriers to within chemical accuracy (1 kcal/mol, considered
the “gold standard” of quantum chemical techniques)11−13

necessary for reliable predictions of mechanism and detailed
comparison with experiment. With the availability of such
highly accurate ab initio methods in QM/MM calcula-
tions,11−14 focus falls again on other aspects in achieving
reliable predictions, for example, the appropriate choice of size
of the QM/MM region, and treatment of the boundary
between QM and MM regions.15 QM/MM methods can
provide an accurate description of molecular interactions15,16

and chemical properties but of course involve approximations
that should be tested (such as the limitations of empirical MM
force fields and effects at the QM/MM boundary). It is
possible to test consistency between QM and MM
representations in various ways, e.g. by free energy calculations,
calculating the difference between QM and QM/MM
treatments of particular chemical species.4,17,18 An obvious
question in any QM/MM application is what size should the
QM and MM regions be. This has been investigated by e.g. the
convergence of energetic properties with respect to the QM
region, with some suggesting that QM regions must be 100s of

Special Issue: Women in Computational Chemistry
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We also applied projector-based embedding techniques to
calculate the energetics of the reaction in BsCM. When
projector-based embedding techniques are applied to treat
subsystem A with SCS-MP2 with subsystem B included by the
same range of DFT functionals (Figure 7(b)), the spread in
energy barriers predicted by the different density functionals is
eliminated, and there is only a 0.3 kcal/mol difference in the
calculated barrier [Δ‡V = 15.3 kcal/mol at the SCS-MP2-in-
PBE/aug-cc-pVDZ//B3LYP/6-31G(d)/CHARMM27 level
and Δ‡V = 15.6 kcal/mol at the SCS-MP2-in-M06-L/aug-cc-
pVDZ//B3LYP/6-31G(d)/CHARMM27 level]. If thermal
and ZPE contributions to the barrier of −1.6 kcal/mol are
considered,12 then our estimate of Δ‡H = 13.7−14.0 kcal/mol,
in good agreement with the experimental value of Δ‡H = 12.7
± 0.4 kcal/mol.47 The difference in energy barrier between the
enzyme (∼14 kcal/mol) and solution (∼18.4 kcal/mol) is 4.4
kcal/mol, somewhat lower than the expected ΔΔ‡H = 8 kcal/
mol.47 As for the reaction in solution, the ab initio potential
energy profile shows a more defined transition state located at
the same value of the reaction coordinate with all methods (r =
−0.4 Å). There is also very little difference in the values for the
reaction energy, with more exothermic values when projector-
based embedding is included in the calculation, ranging from
−20.6 to −21.4 kcal/mol. The reaction energy is similar for the

reaction in both the enzyme and solution with projector-based
embedding included in the energy calculations.
To test the impact of the QM region size on these QM/MM

calculations we included 1 or 2 further arginine side chains in
the QM region (without further QM/MM optimization of the
profiles). Figure 8(a) shows the profiles obtained for the 1 QM

arginine (1ARG: Arg90) and 3 QM arginine side chains
(3ARG: Arg90, Arg7 + Arg63) cases, respectively, calculated
with B3LYP/aug-cc-pVDZ//B3LYP/6-31G(d)/CHARMM27
and BH&HLYP/aug-cc-pVDZ//B3LYP/6-31G(d)/
CHARMM27 QM/MM methods. For clarity, only the
1ARG and 3ARG cases are discussed here. Profiles for all
the QM region sizes at the B3LYP/aug-cc-pVDZ//B3LYP/6-
31G(d)/CHARMM27 are shown in Figure S9, and the
corresponding SCS-MP2-in-B3LYP profiles are shown in
Figure S10. For both the B3LYP and BH&HLYP methods
increasing the size of the QM region by the addition of 2
further arginine residues (26 atoms, changing the charge on
the QM region from −1e to +1e) increases the calculated
barrier height by ∼3 kcal/mol. To test the dependence of the

Figure 7. (a) Potential energy profiles for the rearrangement of
chorismate to prephenate in BsCM at the DFT/aug-cc-pVDZ//
B3LYP/6-31G(d)/CHARMM27 level of theory, using the PBE,
BH&HLYP, M06, M06-2X, M06-L, and B3LYP functionals. (b)
Projector-based embedding profiles at the SCS-MP2-in-DFT/aug-cc-
pVDZ//B3LYP/6-31G(d)/CHARMM27 level of theory for the same
range of DFT functionals. All energies are relative to the reactant (r =
−1.8 Å).

Figure 8. (a) Potential energy profiles for the rearrangement of
chorismate to prephenate in BsCM for different QM region sizes
calculated with commonly used functionals B3LYP and BH&HLYP
(all at the DFT/aug-cc-pVDZ//B3LYP/6-31G(d)/CHARMM27
levels). All energies are relative to the reactant (r = −1.8 Å). The
shaded area represents the difference in energy between the two
functionals for that system. (b) SCS-MP2-in-B3LYP/aug-cc-pVDZ//
B3LYP/6-31G(d)/CHARMM27 profiles for the different QM region
sizes. All energies are relative to the reactant (r = −1.8 Å).

Journal of Chemical Information and Modeling Article

DOI: 10.1021/acs.jcim.8b00940
J. Chem. Inf. Model. 2019, 59, 2063−2078
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Electronic Structure Problem: Impact

• Absurdly useful: Nvidia estimates 1/6th world’s 
supercomputers run DFT calculations.
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Difficulties with this research

• Truly multidisciplinary in a deep way – very hard 
to understand each other’s methods and goals

• Not the latest shiny toy, e.g., not quantum 
computing or machine learning

• But just a little progress in this field can have 
enormous impact overnight.
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Paying the price of the KS equations

• By using fake electrons, cost increases by factor 
of 8 when size doubles.

• Limits current sizes to 500 atoms on a single 
machine in a day.

• If we could avoid this, might be able to do 106

atoms.
• Again, a rule exists, TS[n], and some folks try to 

find it, but never accurately and generally 
enough.
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Machine learning
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Machine learning in electronic structure

• Explosion of interest in last 5 years
• Machine learning/big data/data science very broad 

terms
• Some examples:

– Searching databases of materials calculations to find 
optimal functionality

– Searching chemical compound space (SCHNET, ANI,..)
– Accelerated sampling
– Designing interatomic potentials (Behler,,Csanyi,..)
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Original team for ML DFT (2010)

• Most with Klaus Mueller of TU Berlin, 
computer science.

• ML now being applied directly to, e.g., 
molecular energies from geometries for 
drug design, many by Matthias Rupp

• Our efforts are focused on finding Ts[n] 
from examples, work by John Snyder 
(Humboldt fellow at TU Berlin/MPI Halle)
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Demo problem in DFT

• Represent the density on a grid with spacing

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

Prototype

• N non-interacting same-spin fermions confined to 1d box

• ML-DFA for KE:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

• Define class of potential:

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing
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Performance for Ts
Performance

LDA ~ 223 kcal/mol, Gradient correction ~ 159 kcal/mol

2

x ⇤ 1, with hard walls. For continuous potentials v(x),
we can solve the Schrödinger equation numerically with the
lowest N orbitals occupied, finding the KE T (N) and the
electronic density n(x), which is the sum of the squares of
the occupied orbitals. Our aim is to construct a ML-DFA
for the kinetic energy T [n] that bypasses the need to solve
the Schrödinger equation, enabling a 1d analog of orbital-
free DFT. In 1d orbital-free DFT, the local approximation,
as used in Thomas-Fermi theory, is typically accurate to
within 10%, and the addition of the leading gradient cor-
rection reduces the error to about 1%[]. Unfortunately, even
this small an error in the total KE is too large to give accu-
rate chemical properties.

The first step is to choose a representation for the density.
We discretize n(x) on a uniform grid, xj = j/(G � 1),
j = 0, . . . , G � 1, with spacing �x = 1/(G � 1). Next
we specify a class of potentials to generate a dataset from.
We choose a linear combination of 3 Gaussian dips with
di�erent depths, widths, and centers:

v(x) = �
3X

i=1

ai exp(�(x� bi)
2/(2c2i )). (1)

We generate potentials vj(x) for j = 1, . . . , 2000, randomly
sampling ai ⌅ [1, 10], bi ⌅ [0.4, 0.6], and ci ⌅ [0.03, 0.1].
For each potential vj(x), we solve for the KE Tj,N and den-
sity nj,N ⌅ RG on the grid using Numerov’s method, for
N = 1, . . . , 4. For G = 500, the error in Tj,N due to dis-
cretization is less than 1.5⇥10�7, which is too small to limit
the accuracy of the functional. We use samples 1 through
M for training, and designate samples 1001 through 2000
as the test set.

We use kernel ridge regression (KRR) to approximate the
KE functional. KRR is a non-linear version of regression
with regularization to prevent overfitting [10]. In KRR, the
ML-DFA takes the form

T̂ (n) = T̄
MX

j=1

�jk(nj ,n), (2)

where �j are weights to be determined, nj are training den-
sities and k is the kernel, which measures similarity between
densities. Here T̄ =

PM
j=1 Tj/M , arbitrarily chosen as the

KE scale, and Tj is the exact KE of nj . We choose the
Gaussian kernel, used commonly in ML:

k(n,n⇥) = exp(�⇧n� n⇥⇧2/(2⌅2)), (3)

where ⌅ is a hyperparameter called the length scale. The
weights are found by minimizing the cost function

C(↵) =
MX

j=1

�T 2
j + ⇥2⇧↵⇧2, (4)

where �Tj = T̂ (nj) � Tj and ↵ = (�1, . . . ,�M ). The
second term is known as a regularizer, and penalizes large
weights to prevent overfitting. The hyperparameter ⇥ is
called the noise level. Minimizing C(↵) gives

↵ = (K + ⇥2I)�1T, (5)

whereK is the kernel matrix with elementsKij = k(ni,nj),
I is the identity matrix, and T = (T1, . . . , TM ).
The hyperparameters, ⌅ and ⇥, are determined through

cross-validation: The training set is partitioned into 10 bins
of equal size. For each bin, the functional is trained on the
remaining samples and ⌅ and ⇥ are optimized by minimizing
the mean absolute error (MAE) on the bin. The partitioning
is repeated up to 40 times and the hyperparameters are
given by the median over all bins.
Table I gives the performance of the ML-DFA (Eq. 2)

trained on M N -electron densities and evaluated on the
corresponding N -electron test set. The mean KE of the
test set for N = 1 is 5.40 Hartree (3390 kcal/mol). To con-
trast, the LDA in 1d is T loc[n] = ⇤2

R
dxn3(x)/6 and the

von Weizsäcker functional is TW[n] =
R
dxn⇥(x)2/(8n(x)).

For N = 1, the MAE of T loc on the test set is 223
kcal/mol and the modified gradient expansion approxima-
tion[], TMGEA[n] = T loc[n] � c TW[n], has a MAE of 159
kcal/mol, where c = 0.0556 has been chosen to minimize
the error. For the ML-DFA, both the mean and maximum
absolute errors improve asM increases, and improve slightly
as N increases. At M = 80, we have already achieved
“chemical accuracy,” i.e., a MAE below 1 kcal/mol. At
M = 200, even the maximum absolute error on the entire
test set is below this mark. In addition, incorporating dif-
ferent N into the training set has little e�ect on the overall
performance.

N M � ⇥ |�T | |�T |std |�T |max

1

40 2.4� 10�5 238 3.3 3.0 23.

60 1.0� 10�5 95 1.2 1.2 10.

80 6.7� 10�6 48 0.43 0.54 7.1

100 3.4� 10�7 43 0.15 0.24 3.2

150 2.5� 10�7 33 0.060 0.10 1.3

200 1.7� 10�7 28 0.031 0.053 0.65

2 100 1.3� 10�7 52 0.13 0.20 1.8

3 100 2.0� 10�7 74 0.12 0.18 1.8

4 100 1.4� 10�7 73 0.078 0.14 2.3

1-4† 400 1.8� 10�7 47 0.12 0.20 3.6

TABLE I. Dependence of the performance of the ML-DFA on
the number of training densities, M , and electron number,
N . The noise level, �, and the length scale, ⇥, are deter-
mined via cross-validation. The performance is given by the
mean (|�T |), standard deviation (|�T |std), and maximum
(|�T |max) of the absolute errors, in kcal/mol, of the func-
tional evaluated on the test set. †Training set includes nj,N

for j = 1, . . . , 100 and N = 1, . . . , 4.

With such unheard of accuracy, it is tempting to declare
“mission accomplished,” but this would be premature. A
functional that predicts only the energy is useless in prac-
tice, since DFT uses functional derivatives in self-consistent
procedures to find the density within a given approximation.
For non-interacting fermions in a potential v(x), minimizing

kcal/mol
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We don’t just need the energy

• The KS equations are solving the following 
equation for us:

• If we had an explicit approximation for 
TS[n], we could solve this directly.
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functional derivative?

Functional derivative 3

the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by

1

�x
⌅nT̂ (n) =

M�

j=1

�⇥
j(nj � n)k(nj ,n) (7)

where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).

JS: should I add a fig with sample self-consistent vs exact densities? puts us

over 4 pgs... could put in supplemental material

The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
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where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.
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ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
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of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
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100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
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where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
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expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
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m. A coarse optimization yields m = 15 and ⌃ = 5 (see
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.
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report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
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mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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To identify the origin of this behavior, we apply a standard
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minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
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of the total energy for each iteration:
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where n(j+1) is the next density, ⇤ is a small number and
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large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.
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• Functionals are 
defined on infinite-
dimensional spaces

• With finite 
interpolation, can 
always find bad 
directions

• Can we make a 
cruder definition 
that will work for 
our purposes?
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To identify the origin of this behavior, we apply a standard
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all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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the total energy gives

⇥T [n]

⇥n(x)
= µ� v(x), (6)

which can be used to find the ground-state density within a
given approximation for T [n], while µ is adjusted to produce
the required particle number. The (discretized) functional
derivative of the ML-DFA is given by
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where �⇥
j = �j/(⇧2�x). In Fig. 2, we compare the func-

tional derivative of the ML-DFA with the exact derivative
for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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for a sample density. If it captures any information about
the derivative, it is drowned out by oscillations. This is typ-
ical of the ML-DFA’s performance on the test set, and does
not improve with increasing M .
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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which can be used to find the ground-state density within a
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the required particle number. The (discretized) functional
derivative of the ML-DFA is given by
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FIG. 2. We compare the functional derivative of the ML-
DFA, evaluated on a sample test density with N = 1, M =
100, � = 3.4 � 10�7 and ⇥ = 43, with the exact functional
derivative.

To identify the origin of this behavior, we apply a standard
ML tool: principal component analysis (PCA). The space of
all densities is contained in RG, but we assume only a few
directions in this space are relevant. For a given density n,
find m training densities (nj1 , . . . ,njm) which are closest
to n. Construct the covariance matrix of directions from n
to each training density

C =
1

m
X⇤X, (8)

where X = (nj1 � n, . . . ,njm � n)⇤. Diagonalizing
C ⇤ RG�G gives eigenvalues ⌅j and eigenvectors xj ordered
such that ⌅j ⇥ ⌅j+1. The xj with larger ⌅j are directions
showing substantial variation in the dataset. Those with ⌅j

below some cuto� are irrelevant (see supplemental mate-
rial). In these extraneous dimensions, there is infinitesimal
variation within the dataset, producing noise in the func-
tional derivative. By projecting the functional derivative

onto the subspace spanned by the relevant dimensions, we
can eliminate this noise. This projection is given by

Pm,�(n) = V ⇤V, (9)

where V = (x1, . . . ,x�)⇤ and ⌃ is the number of relevant
eigenvectors. In Fig 1, the projected functional derivatives
show near exact agreement, for m = 15 and ⌃ = 5.
The final test of the ML-DFA is to produce a density that

minimizes the total energy and check its error. Typically, we
expect the error to be larger than that of the functional eval-
uated on the exact density. For example, T loc on particles
in 1d flat boxes always gives a ratio of 4. (Although, for
a parabolic potential, T loc on the minimizing density is ex-
act). To find a minimizing density for a given potential,
we perform a gradient descent search restricted to the local
PCA subspace: Starting from a guess n(0), take a small step
the opposite direction of the projected functional derivative
of the total energy for each iteration:

n(j+1) = n(j) � ⇤Pm,�(n
(j))(v+⌅nT̂ (n

(j))/�x), (10)

where n(j+1) is the next density, ⇤ is a small number and
v is the discretized potential. The search is unstable for
large ⌃, inaccurate for small ⌃ but relatively insensitive to
m. A coarse optimization yields m = 15 and ⌃ = 5 (see
supplemental material).
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The overall performance of the ML-DFA in finding self-
consistent densities is given in Table II. The MAE is an order
of magnitude larger than that of the ML-DFA on the exact
densities—a bit worse than T loc. We do not find a unique
density, but instead a set of similar densities depending on
the initial guess. In addition, the density with lowest to-
tal energy does not have the smallest error. Although the
search does not produce a unique minimum, it produces a
range of similar but valid approximate densities, each with
a small error. Even with an order of magnitude larger error,
we can still reach chemical accuracy, now on self-consistent
densities. No previous approximate KE DFA comes close to
this performance.

N |�T sc| |�T sc|std |�T sc|max |�T sc|/|�T |

1 3.0 5.3 46. 21.

2 1.4 3.0 37. 9.7

3 0.88 1.5 14. 6.8

4 0.62 0.82 6.3 8.1

TABLE II. Errors in the KE of self-consistent densities. We
report the mean (|�T |), standard deviation (|�T |std), and
maximum (|�T |max) of the absolute errors, in kcal/mol, of the
ML-DFA evaluated on self-consistent densities for 500 mini-
mizations (see Eq. 10) with randomly chosen potentials and
initial guesses within the test set. The last column is the ratio
of the MAE on the self-consistent densities to the MAE on
the exact densities. The functional is trained with M = 100,
and parameters � and ⇥ as in Table I.
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Using standard methods from machine learning, we introduce a novel technique for density functional
approximation. We use kernel ridge regression with a Gaussian kernel to approximate the non-interacting
kinetic energy of 1d multi-electron systems. With fewer than 100 training densities, we can achieve
mean absolute errors of less than 1 kcal/mol on new densities. We determine densities for which our
new functional will fail or perform well. Finally, we use principle component analysis to extract accurate
functional derivatives from our functional, enabling an orbital-free minimization of the total energy to
find a self-consistent density. This empirical method has two parameters, set via cross-validation, and
requires no human intuition. In principle, this general technique can be extended to multi-dimensional
systems, and be used to approximate exchange-correlation density functionals.

More than 10,000 papers per year report solutions to
electronic structure problems using Kohn-Sham (KS) den-
sity functional theory (DFT) [1, 2], all approximating the
exchange-correlation (XC) energy as a functional of the elec-
tronic spin densities. The quality of the results depends
crucially on these density functional approximations (DFAs)
[]. Present DFAs often fail for strongly correlated systems[],
rendering the methodology useless for some of the most
interesting problems.

There is a never-ending search for improved XC approxi-
mations. The original local density approximation (LDA) of
Kohn and Sham [2] is uniquely defined by the properties of
the uniform gas, and has been argued to be a universal limit
of all systems [3, 4]. But the refinements that have proved
useful in chemistry and materials are not, and di�er both in
their derivations and details. Traditionally, physicists have
championed a non-empirical approach, deriving approxima-
tions from quantum mechanics and avoiding fitting to spe-
cific finite systems[]. But chemists typically use a few [5, 6]
or several dozen [7] parameters to improve accuracy on a
limited class of molecules. Non-empirical functionals can be
considered controlled extrapolations that work well across a
broad range of systems and properties, bridging the divide
between molecules and solids. Empirical functionals are lim-
ited interpolations that are more accurate for the molecular
systems they are fitted to, but often fail for solids. A re-
cent example is the van der Waals functional of Langreth
and Lundquist [8], and an empirical derivative for which no
derivation was deemed necessary[]. Passionate debates are
fueled by this cultural divide.

Machine learning (ML) is a powerful tool for finding pat-
terns in high-dimensional spaces. It employs algorithms by
which the computer learns from empirical data via induc-
tion. ML has been very successful in many applications,
including neuroscience ?? and chemistry [9]. In this work,
we apply ML methodology to a prototype density functional
problem: non-interacting spinless fermions confined to a
1d box, subject to a smooth potential. The accuracy we
achieve in approximating the kinetic energy (KE) of this
system is far beyond the capabilities of present human-
designed approximations and is su⇥cient to produce highly

accurate self-consistent densities—the functional derivative
is extremely accurate. We also define key technical concepts
needed to apply ML to DFT problems.
Empirical DFAs employ the basic types of approximations

derived from general principles, fitting the parameters to
training sets of energy di�erences[]. They explore only an
infinitesimal fraction of all possible functionals and use rel-
atively few data points. The ML-derived DFA (ML-DFA)
achieves chemical accuracy using many more inputs, with-
out reference to any of the underlying physics. Intuition
is kept to a minimum but remains necessary to specify the
basic mechanism and representation of data.
We illustrate the accuracy of the ML-DFA in Fig. 1, in

which the functional was constructed from 100 densities on
a dense grid. The successful construction of this functional
opens up a new approach to functional approximation, en-
tirely distinct from previous approaches: The ML-DFA con-
tains on the order of 104 empirical numbers and satisfies
none of the standard exact conditions.
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FIG. 1. Comparison of a sample projected (see within) func-
tional derivative of the ML-DFA with the projected exact
derivative.

The prototype DFT problem we consider is N non-
interacting spinless Fermions confined to a 1d box, 0 �

m = 15, � = 5



Lessons

• Exact noise-free data infinitely available for 
Ts[n], every cycle of every KS calculation in the 
world provides examples.

• Need very accurate derivatives to get accurate 
density from Euler equation.

• Can find ways to bypass this.
• Functionals can be made arbitrarily accurate 

with sufficient data.
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large systems, real applications

2

II. TECHNICAL BACKGROUND

Kernel ridge regression (KRR) is a non-linear version
of regression with regularization to prevent overfitting [3].
(introduce as gaussian process regression instead?) For
KRR, our machine learning approximation (MLA) takes the
form

TML(n) =

M!

j=1

!jk(nj ,n), (1)

where !j are weights to be determined, nj are training
densities and k is the kernel, which measures similarity
between densities. We choose a Gaussian kernel, common
in ML:

k(n,n!) = exp(!#n! n
!#2/(2"2)), (2)

where the hyperparameter " is called the length scale. The
weights are found by minimizing the cost function

C(!) =

M!

j=1

#T 2

j + $#!#2, (3)

where #Tj = TML

j ! Tj and ! = (!1, . . . ,!M ). The
second term is a regularizer that penalizes large weights
to prevent overfitting. The hyperparameter $ controls
regularization strength. Minimizing C(!) gives

! = (K + $I)"1
T , (4)

where K is the kernel matrix, with elements Kij =
k(ni,nj), and I is the identity matrix.

The hyperparameters " and $ are determined via leave-
one-out (LOO) cross validation, Define an ensemble of
functionals {TML

i,",#(n)} where the ith training density
is excluded. The hyperparameters are optimized by
minimizing the ensemble mean absolute error (MAE):

%($,") =
1

M

M!

i=1

|TML

i,",#(ni)! Ti| (5)

In recent work [? ], we demonstrated for the first time,
the ability of ML to approximate density functionals, for
a simple 1d model. However, in that work, the fermions
are confined to live inside a box, restraining the variety of
possible densities. In particular, there is no analog of a
binding energy curve, where a density is centered on two
sites whose separation varies continuously from small to
infinite.

In the present work, we consider one-dimensional
diatomic ’molecules’. The one-body potential attraction
of an ’atom’ of nuclear charge Z is chosen to be soft-
Coulombic[? ]

v(x) = ! Z$
1 + x2

, (6)

as this has been used in a variety of contexts. We use the
same form and strength for the internuclear repulsion:

VNN (R) =
Z2

$
1 +R2

(7)

Fig. 2 shows the densities and potentials for the united
atom, equilibrium bond length, and stretched diatomic.
[J, because you have no e-e interaction, your equilibrium
molecules looks very much like the united atom limit, not
like a molecule. We need to adjust the nuc rep to make
this look more like a molecule, or use self-consistent XC
calculations].

To generate a dissociation curve like that of Fig 1, we
consider bond lengths up to R = 15, and so place the entire
system on a 500 point grid from x = !20 to 20. We then
solve the Schrödinger equation numerically using Numerov’s
method [? ]. We doubly-occupy the lowest Z orbitals, so
that N = 2Z, where N is the number of fermions. We
extract various energies and the density as a function of R
for di"erent values of N .

To construct the model, we choose M training densities
at evenly spaced R between 0 and 15. Table I shows the
performance of the MLA.

III. CHALLENGES OF SELF-CONSISTENCY

A KE functional that predicts only the energy is useless
in practice, since the minimization:

&T [n]

&n(x)
= µ! v(x), (8)

where v(x) is the potential and where µ is adjusted to
produce the required particle number, requires an accurate
functional derivative (gradient). Fig. 3 shows the gradient
of our MLA evaluated at the ground-state density is very
di"erent from the exact.

FIG. 2. The electronic density and potential for Z = 1, atR =
0 (solid), equilibrium bond length (dashed), and stretched at
R = 15 (dot-dashed).

The prototype DFT problem we consider is N noninter-
acting spinless fermions confined to a 1D box, 0 ! x ! 1,
with hard walls. For continuous potentials vðxÞ, we solve
the Schrödinger equation numerically with the lowest N
orbitals occupied, finding the KE and the electronic density
nðxÞ, the sum of the squares of the occupied orbitals. Our
aim is to construct a MLA for the KE T½n% that bypasses
the need to solve the Schrödinger equation—a 1D analog
of orbital-free DFT [14]. (In 3D orbital-free DFT, the local
approximation as used in the Thomas-Fermi theory, is
typically accurate to within 10%, and the addition of the
leading gradient correction reduces the error to about 1%
[15]. Even this small an error in the total KE is too large to
give accurate chemical properties.)

First, we specify a class of potentials from which we
generate densities, which are then discretized on a uniform
grid of G points. We use a linear combination of three
Gaussian dips with different depths, widths, and centers,

vðxÞ ¼ '
X3

i¼1

ai exp½'ðx' biÞ2=ð2c2i Þ%: (1)

We generate 2000 such potentials, randomly sampling
1< a< 10, 0:4< b< 0:6, and 0:03< c< 0:1. For each
vjðxÞ, we find for N up to four electrons, the KE Tj;N and
density nj;N in RG on the grid using Numerov’s method
[16]. For G ¼ 500, the error in Tj;N due to discretization is
less than 1:5 ( 10'7. We take 1000 densities as a test set,
and chooseM others for training. The variation in this data
set for N ¼ 1 is illustrated in Fig. 2.

Kernel ridge regression is a nonlinear version of regres-
sion with regularization to prevent overfitting [17]. For
kernel ridge regression, our MLA takes the form,

TMLðnÞ ¼ !T
XM

j¼1

!jkðnj;nÞ; (2)

where !j are weights to be determined, nj are training
densities, and k is the kernel, which measures similarity
between densities. Here, !T is the mean KE of the training

set, inserted for convenience. We choose a Gaussian kernel,
common in ML,

kðn;n0Þ ¼ exp½'kn' n0k2=ð2"2Þ%; (3)

where the hyperparameter " is called the length scale. The
weights are found by minimizing the cost function,

C ð!Þ ¼
XM

j¼1

"T2
j þ #k!k2; (4)

where "Tj ¼ TML
j ' Tj and ! ¼ ð!1; . . . ;!MÞ. The sec-

ond term is a regularizer that penalizes large weights to
prevent overfitting. The hyperparameter # controls regulari-
zation strength. Minimizing Cð!Þ gives

! ¼ ðK þ #IÞ'1T; (5)

where K is the kernel matrix with elements K ij ¼ kðni;njÞ,
and I is the identity matrix. Then " and # are determined
through tenfold cross validation: the training set is partitioned
into 10 bins of equal size. For each bin, the functional is
trained on the remaining samples, and" and# are optimized
by minimizing the mean absolute error (MAE) on the bin.
The partitioning is repeated up to 40 times, and the hyper-
parameters are chosen as the median over all bins.
Table I gives the performance of TML [Eq. (2)] trained on

MN-electron densities and evaluated on the corresponding
test set. ThemeanKEof the test set forN ¼ 1 is 5.40 hartree
(3390 kcal=mol). To contrast, the LDA in 1D is Tloc½n% ¼
$2

R
dx n3ðxÞ=6 and the von Weizsäcker functional is

TW½n% ¼ R
dx n 0ðxÞ2=½8nðxÞ%. For N ¼ 1, the MAE of

Tloc on the test set is 217 kcal=mol, and the modified
gradient expansion approximation [19], TMGEA½n% ¼
Tloc½n% ' cTW½n%, has a MAE of 160 kcal=mol, where
c ¼ 0:0543 has been chosen to minimize the error (the
gradient correction is not as beneficial in 1D as in 3D).
For TML, both the mean and maximum absolute errors
improve as N or M increases (the system becomes more
uniform as N ! 1 [3]). At M ¼ 80, we have already

FIG. 2 (color online). The shaded region shows the extent of
variation of nðxÞ within our data set for N ¼ 1. Exact (red, solid)
and a self-consistent (black, dashed) density for potential of Fig. 3.

FIG. 1 (color online). Comparison of a projected (see within)
functional derivative of our MLA with the exact curve.
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Challenges for DFT

• Orbital-free DFT

residues near the entrance and exit of the pore that favor
or disfavor the passage of ions solely based on their charge
[32].

Acid-sensing ion channels (ASICs) are cation channels
whose gating is controlled by extracellular pH. Equi-
librium MD simulations of ASIC1 at different ionic
solutions and concentrations examining multiple titration
states of various acidic residues have been used to
identify potential proton and cation binding sites and
to study cation/H+-induced protein conformational
changes [33].

Membrane transporters and carriers
In contrast to membrane channels that provide a passive
permeation pathway for their substrates, transport in
membrane transporters is mediated by close interaction
and engagement of the protein and the substrate. This is
necessary owing to the active (energy-dependent) nature
of the transport process during which the energy provided
by various sources, for example, ATP hydrolysis or an
ionic gradient across the membrane, is used to actively
‘pump’ the substrate across the membrane, often against
its electrochemical gradient. Shown in Figure 3, mem-
brane transporters are structurally much more diverse
than membrane channels, as they need to harvest various
sources of energy in the cell and efficiently couple them
to substrate transport. They are also far slower than
channels, since several stepwise protein conformational
changes of various magnitude are usually involved in their
mechanism. Along with the recent availability of struc-
tures for several different membrane transporters, MD
simulations have been employed to investigate dynamical
properties and details of the mechanism of function.
Although the time scale of the entire transport cycle

proves to be usually beyond the reach of transporter
MD simulations, such simulations have proven successful
in describing individual steps and transitions involved in
such cycles.

ABC transporters
ATP-binding cassette (ABC) transporters use ATP to
drive active transport of substrates across the membrane.
ATP binding and hydrolysis in the nucleotide binding
domains (NBDs) drive conformational changes of the
transmembrane domains (TMDs), thus switching sub-
strate accessibility between the cytoplasmic and extra-
cellular sides of the membrane. Elucidating the
conformational changes induced by ATP binding and
hydrolysis in the NBDs and the coupling of NBDs and
TMDs constitute two major themes in simulation studies
of ABC transporters.

The dimeric structures of the NBDs of maltose transpor-
ter (MalK) and an archaeal ABC transporter (MJ0796)
have been extensively used in simulation studies. Earlier
MD simulations of MalK performed on the three crystal
forms of MalK verified the nucleotide dependence of
opening and closing of the NBDs [34]. Simulations on the
order of 20 ns performed on different nucleotide-bound
forms of MJ0796 identified the rotation of the helical
subdomain as the primary response to ATP replacement
by ADP [35], while longer simulations (30–50 ns) were
employed to investigate the mechanism of dimer separ-
ation [36]. Using even longer simulations (! 70 ns) of
MalK, and through simulating the immediate effect of
ATP hydrolysis (conversion to ADP-Pi), it was proposed
that the hydrolysis reaction itself is the initial trigger for
dimer opening [37]. It was also shown that despite the
presence of two nucleotide-binding sites, only one ATP

132 Theory and simulation

Figure 3

Membrane transporters studied recently. Shown in the same format as in Figure 1, each transporter is colored according to domain with substrates
and direction of transport indicated. These transporters are found in a variety of cellular membranes including the cytoplasmic membrane (e.g.
MalEFGK), the bacterial outer membrane (BtuB), and the mitochondrial inner membrane (AAC).
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By-passing KS
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MD simulations testing ML method
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Malondialdehyde
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[174] By-passing the Kohn-Sham equations with machine learning Felix Brockherde, Leslie Vogt, Li Li, Mark E Tuckerman, Kieron 

Burke, Klaus-Robert Müller, Nature Communications 8, 872  (2017).



Lessons

• Our 1d gradient methods become prohibitively 
expensive in 3d.

• Instead of using Ts[n], learn n[v](r).
• Much smarter than learning E[vs]
• Works for H2 and H2O and …
• ..MD of malonaldehyde using ML forces with 

Leslie Vogt and Mark Tuckerman.
• Created non-local orbital-free density 

functional running much faster than solving KS 
equations
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Theory

fact, there is no requirement in approximate DFT to always perform a self-consistent calculation, as
shown by the recent successes of density-corrected DFT [15, 16, 17]. Moreover, the density in this
case is only serving as a (very useful) label for the different potentials, and is an extremely useful
representation for learning other properties, such as the energy itself. The ML algorithm automatically
trains to find the CC energy as a functional of the approximate density. In the results section, we show
that it is as easy to train to extract the CC energy from the DFT density as it is to train the DFT
energy itself, i.e., the self-consistency of an approximate DFT calculation confers no special advantage
in learning the map.

We then take a second step in the spirit of Ramakrishnan et al. [18], in which we learn only the
difference between the DFT and CC energies as a functional of the DFT density. As CC energies are
far more accurate than standard DFT methods for the weakly correlated systems we study, we can
refer to this as the error in the DFT energy. We call this �-DFT. In fact, we show that the error
in the training curve for �-DFT drops far faster than those for learning either the DFT or the CC
energies themselves, i.e., the error in DFT is much more amenable to interpolation than the DFT
energy itself. This allows us to extract CC energies from standard DFT calculations, with essentially
no additional cost (beyond the initial generation of training data). We even find that we can construct
a sufficiently accurate ML-HK map from potentials to DFT densities to be used as input into our
�-DFT, so as to produce no significant increase in error. Thus, we have created a DFT scheme that
costs no more than standard DFT calculations, but yields CC accuracy, for cases where many energy
evaluations are required.

Our new theoretical tools are illustrated by application to the water molecule, as shown in Fig. 1a.
We use the same PBE density as a functional of the potential, n[v](r), as in Ref. [19], but now with
various ML maps of the energy as a functional of the density, E[n]. We refer to these combinations
using generic notation when describing the models, with the specific electronic structure methods (e.g.

using the PBE functional[13]) detailed in the Methods section. In our nomenclature, EDFT[nDFT]
denotes a standard DFT calculation, and a subscript ML indicates that the map is found via machine
learning. Thus Ref. [19] showed that, with sufficient training, EDFT

ML [nDFT
ML ] could be made sufficiently

accurate to run MD simulations, bypassing the need to solve the KS equations.
However, the EDFT energies of conformers sampled during finite-temperature MD simulations

do not reflect the potential energy surface determined by more accurate CC calculations, as shown
for water in Fig. 1b. The DFT energy errors are not a simple function of the energy relative to the
minimum energy geometry (see Supplemental Fig. 5), as short O-H bond lengths tend to be too high
in energy and stretched bonds are overstabilized. While MD trajectories based on CC energies are
prohibitively expensive without ML methods, the following sections demonstrate that self-consistent
sampling of the more accurate CC potential energy surface can be achieved by using a machine-learned
energy functional, even for molecules such as resorcinol, where the DFT energies near conformational
energy barriers are quantitatively incorrect.

Results

Theory
Routine DFT calculations use some approximate XC functional and solve the Kohn-Sham equations
self-consistently. But an alternative approaches have long been considered (e.g., Ref [5]), in which the
exact energy, E, is found by correcting an approximate self-consistent DFT calculation:

E = EDFT[nDFT] + �E[nDFT], (1)

where DFT denotes the approximate DFT calculation, and �E, evaluated on the approximate density,
is defined to yield the exact energy. This is not the exact functional of standard KS DFT, but can

4
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B Using non-self-consistent densities

Our model appears to violate one of the basic results of density functional theory, as it produces
CCSD(T) energies from PBE densities. Hohenberg and Kohn[41] showed that, for any given approxi-
mate energy functional, one can minimize the energy functional to find a self-consistent formula for the
density. The Kohn-Sham scheme is defined[2] to find that density when only the exchange-correlation
contribution to the energy is approximated. The purpose of this section is show how the self-consistent
density could be found, at least in principle, and also to argue that the energetic consequences of
using the PBE density would be negligible here.

There is an exact formula for extracting the energy from any approximation for the ground-state
energy for a given external potential[3]:

n(r) =
�E[v]

�v(r)
(8)

where E[v] is the ground-state energy associated with one-body potential v(r). This could be used to
extract a density pointwise from any such approximation: Add a small narrow Gaussian centered at r0
to v(r), and note the corresponding change in energy. In the limit of infinitely narrow, infinitely weak
perturbations, this yields the density at r0. Of course, such a procedure is highly impractical in a
standard basis set of atom-centered Gaussians, but could be easily employed to find specific moments
of the density. If the perturbation is a weak static electric field, the prescription yields the dipole
moment, as can be seen by multiplying both sides by r and integrating over all space.

Almost all electronic structure calculations in chemistry and materials science are aimed at finding
accurate ground-state energies and the many properties that can be derived from them, such as
geometries and barriers. The error in any DFT calculation can be split into two contributions, the
functional error and a density-driven error (the energy error due to an incorrect density)[16]. In most
DFT calculations (including all those given here), the self-consistent density is so accurate that the
energy error is dominated by the functional error[17]: using the exact density in the approximate
functional has negligible effect on the energy error. Recent arguments that attempt to distinguish the
quality of functionals by constructing metrics of density errors[42] have not held up when analyzed in
terms of energies[17].

We can use Eq. (8) to analyze the present situation. We know it must be satisfied by the PBE
density and energy functional. Thus the difference between the PBE and CCSD(T) densities is simply

�n(r) =
��EPBE[v]

�v(r)
. (9)

This will be a very small energy for normal systems. The fact that the energy difference is easier
to learn than the PBE energy itself suggests a smoothness of energy difference with respect to the
potential, making density differences tiny.

We also note an additional twist on this question in the context of machine learning. Long ago,
Görling and Levy[5] and others pointed out that one could define an exact energy functional on an
approximate density, such as the HF density. In fact, as was noted in Li et al[?], to learn accurate
energies, a very crude representation of the density suffices, so long as it forms a sufficiently useful
feature for the energy. In a prototype problem (particle in a box with potential well), even a very
small grid (far too coarse to find accurate solutions to the Schrodinger equation) but essentially exact
energies, one could still use kernel ridge regression to find a highly accurate ML functional.

Thus use of PBE densities to find CCSD(T) energies is both practical and theoretically allowed
and well understood. On the practical side, it completely avoids the need to extract CCSD(T) densities
to train upon. Because the density is not needed to perform a CCSD(T) calculation, it is not available
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Correlation-energy density-functional formulas from correlating first-order density matrices
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Explicit formal formulas for exact density-functional correlation energies are derived and expressed in terms
of correlating first-order density matrices (one-matrices) that are functionals of the density. The correlation
energy for a full calculation is considered, as well as one intended as an addition to a completed calculation
that excludes correlation. Several constraints for the one-matrices are shown.
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In a full electronic structure density-functional calcula-
tion, the ground-state energy is obtained by utilizing the uni-
versal functional F[n) Accord. ing to the constrained-search
definition,

F[n]=T,[n]+U[n]+E,[n]+E,[n], (2)

where

where W„'" yields the density n and minimizes
(T+V„), where T=X, i——,V;, and where V„
=X; i XJ,+i~r;—r) . It is convenient to partition F[n]
into the noninteracting Kohn-Sham kinetic energy [1], the
classical electron repulsion energy, the exchange energy, and
the correlation energy. Namely,

here that E,[n] can be expressed entirely in terms of a cor-
relating one-matrix, and we strongly suggest that the latter be
actively studied.
In the second part of this paper, we consider that

correlation-energy functional, E,[n], which is intended to be
used as a tack-on to a completed self-consistent exchange-
only calculation. Formulas are put forth that give E,[n] in
terms of a correlating one-matrix that is a functional of n.
For the purpose of its approximation, a strong pointwise con-
straint is derived involving E,[n].
We shall follow the constrained-search proof in Ref. [4]

for the adiabatic connection, but here the coupling-constant
k shall multiply T rather than V„.Accordingly, define "II'),
as that wave function that is constrained to yield n and si-
multaneously minimizes (kT+ V„). The minimizing nature
of Wz implies

J T+V„lq', )=(q', IT (4)

I' r n(l, )n(r2)[ ]) ~2)

Now integrate both sides of Eq. (4) from )~. =p to )~.=1.
Since 0"„'"='P&,it follows that

T.[n]+U[n]+E [n]+Ec[n] (P /31 PT+ V„—I qr p)
E [n]=(C „'"/V„/C„'")—U[n],

where

E,[nj=(q „'"~T+V„(e„'")—(C „'"~T+V„~C„'"), (3)
or

f 1(q, ~T~%,)d) (5)

and where 4„'"yields n and minimizes just (T).
E,[n] must always be approximated, and the E,[n] in Eq.

(3) is the subject of the first part of this paper. Now, even
though E, contains a kinetic contribution that utilizes a cor-
relating one-matrix (first-order density matrix), in addition to
a potential contribution that utilizes a correlation hole, the
well-known coupling-constant formula (adiabatic connec-
tion) [2,3] dictates that only the correlation hole is required,
and consequently approximations to E,[n] have often fo-
cused on modeling only the correlation hole. It has tacitly
been assumed, evidently, that it is more difficult to accurately
model the correlating one-matrix than the correlation hole.
With a reasonable possibility that this assumption might not
be correct, in part because the former has less stringent
N-representability requirements than the latter, it is shown

U[n]+E,[n]+E,[n]—('P p~ V„~'Pp)

+ P(T,[n] (W p~ T~Wp))—

Next, it should be clear that (%" ~V„~'P )=U[n]+E [n]
because 'Pi, minimizes (T+)i. V„), and from Ref. [5] we
know that 9'p~tIi„'", as p~~, in a manner that is rapid
enough so that p(T, [n]—(%"&~T~%"&))vanishes. Hence,

(7)

or
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ML HK map

Figure 1: Illustration of density-based machine learning for water conformer energies. For all panels, DFT
energies (orange) are shown alongside CC energies (blue) for the same molecular conformers, with optimized
geometries indicated by open diamonds. a) The nuclear potential, represented by an approximate Gaussians
potential, is the input to a set of ML models that return the electron density [19]. This learned density is the
input for independent ML predictions of molecular energies based on DFT or CC electronic structure calculations,
b) Calculated energies for CC (dark blue) and DFT (dark orange) for 102 sample geometries relative to the lowest
training energy (top), along with the relative energy errors for DFT compared to CC for each conformer (bottom),
c) Average out-of-sample prediction errors for the different ML functionals compared to the reference ECC energies.
The MAE of the EDFT energies w.r.t. ECC is also shown as a dashed line, d) The potential energy surface of
symmetric water geometries for EDFT

ML (orange) and ECC
�-DFT (blue) after applying the the �-DFT correction

(bottom). For this figure, all DFT calculations use the PBE functional and all CC calculations use CCSD(T) (see
Methods for more details).

be a more practical alternative. Thus one solves the KS equations within that approximation, but
corrects the final energy by �E. Moreover, using the results from the Supp Info, one can in principle
even construct the exact density from a sequence of such calculations.

5
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even construct the exact density from a sequence of such calculations.
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Learning curves

Figure 1: Illustration of density-based machine learning for water conformer energies. For all panels, DFT
energies (orange) are shown alongside CC energies (blue) for the same molecular conformers, with optimized
geometries indicated by open diamonds. a) The nuclear potential, represented by an approximate Gaussians
potential, is the input to a set of ML models that return the electron density [19]. This learned density is the
input for independent ML predictions of molecular energies based on DFT or CC electronic structure calculations,
b) Calculated energies for CC (dark blue) and DFT (dark orange) for 102 sample geometries relative to the lowest
training energy (top), along with the relative energy errors for DFT compared to CC for each conformer (bottom),
c) Average out-of-sample prediction errors for the different ML functionals compared to the reference ECC energies.
The MAE of the EDFT energies w.r.t. ECC is also shown as a dashed line, d) The potential energy surface of
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training energy (top), along with the relative energy errors for DFT compared to CC for each conformer (bottom),
c) Average out-of-sample prediction errors for the different ML functionals compared to the reference ECC energies.
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Figure 1: Illustration of density-based machine learning for water conformer energies. For all panels, DFT
energies (orange) are shown alongside CC energies (blue) for the same molecular conformers, with optimized
geometries indicated by open diamonds. a) The nuclear potential, represented by an approximate Gaussians
potential, is the input to a set of ML models that return the electron density [19]. This learned density is the
input for independent ML predictions of molecular energies based on DFT or CC electronic structure calculations,
b) Calculated energies for CC (dark blue) and DFT (dark orange) for 102 sample geometries relative to the lowest
training energy (top), along with the relative energy errors for DFT compared to CC for each conformer (bottom),
c) Average out-of-sample prediction errors for the different ML functionals compared to the reference ECC energies.
The MAE of the EDFT energies w.r.t. ECC is also shown as a dashed line, d) The potential energy surface of
symmetric water geometries for EDFT

ML (orange) and ECC
�-DFT (blue) after applying the the �-DFT correction

(bottom). For this figure, all DFT calculations use the PBE functional and all CC calculations use CCSD(T) (see
Methods for more details).
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corrects the final energy by �E. Moreover, using the results from the Supp Info, one can in principle
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Resorcinol
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Resorcinol dynamics
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Figure 3: Resorcinol dynamics from an initial condition near a conformational change showing a) the atomic
positions explored during 100 fs NVE MD trajectories run with standard DFT (dark orange), ECC

sML[n
DFT
sML ] with

RESPA-corrected forces (light blue), and ECC
s�-DFT[n

DFT
sML ] (blue), b) the conformer energy along each trajectory

(solid lines), with the error relative to CC shown as a shaded line width, and c) the evolution of the C-C-O-H
dihedral angle for each trajectory with dashed grey lines indicating the barrier between conformers. For this
figure, all DFT calculations use PBE and all CC energies are from CCSD(T).

20

Density Functionals with Quantum Chemical Accuracy: From Machine Learning to 
Molecular Dynamics Mihail Bogojeski, Leslie Vogt-Maranto, Mark E. Tuckerman, 
Klaus-Robert Mueller, Kieron Burke, ChemRXiv, (2019).



Opportunities for ML in physics using DFT

DFT is a working  procedure for 
coarse-graining!

But it needs good functional 
approximations.
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Classical DFT – faster than MD

• Can prove HK theorem for equilibrium classical 
statistical mechanics (Bob Evans, Advances in 
Physics 28 (2), 143-200, 1979.)

• Thus can solve self-consistent equations directly for 
equilibrium density

• But every liquid has a different interaction and so a 
different functional.

• Can look at wetting, phase transitions, nucleation, 
etc.

• But often very crude for realistic systems due to 
crude functional approximations.
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DFT of flies

Kieron Burke IPAM physics and ML 2019 51

ARTICLE

Density-functional fluctuation theory of crowds
J. Felipe Méndez-Valderrama 1, Yunus A. Kinkhabwala 2, Jeffrey Silver 3, Itai Cohen4 & T.A. Arias 4

A primary goal of collective population behavior studies is to determine the rules governing

crowd distributions in order to predict future behaviors in new environments. Current top-

down modeling approaches describe, instead of predict, specific emergent behaviors,

whereas bottom-up approaches must postulate, instead of directly determine, rules for

individual behaviors. Here, we employ classical density functional theory (DFT) to quantify,

directly from observations of local crowd density, the rules that predict mass behaviors under

new circumstances. To demonstrate our theory-based, data-driven approach, we use a model

crowd consisting of walking fruit flies and extract two functions that separately describe

spatial and social preferences. The resulting theory accurately predicts experimental fly

distributions in new environments and provides quantification of the crowd “mood”. Should

this approach generalize beyond milling crowds, it may find powerful applications in fields

ranging from spatial ecology and active matter to demography and economics.

DOI: 10.1038/s41467-018-05750-z OPEN
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trivial correlations in neighboring bins, yet small enough that the
underlying vexation and local density are nearly constant across
each bin.

Extraction of functionals for model system of walking flies. To
test whether this approach applies to actual populations, we
consider a model crowd consisting of wild-type male Drosophila
melanogaster from an out-bred laboratory stock. It is well know
that flies exhibit complex spatial preferences30,31 and social
behaviors32 ,33. Here we seek to determine whether a large crowd
of individuals with such complex behaviors indeed can be
described within our vexation and frustration framework. The
flies are confined in 1.5 mm tall transparent chambers where they
can walk freely but cannot fly or climb on top of each other. We
record overhead videos of the flies, bin the arena, and use custom
Matlab-based tracking algorithms (Methods) to measure the
individual bin counts Nb in each video frame. To explore a variety
of behaviors, we use arenas of different shapes30 and apply heat
gradients34 across the arenas to generate different spatial pre-
ferences. We find that the flies fully adjust to such changes in
their environments after 5 min. We also find that the behavior of
the flies changes slowly over a time scale of hours (Methods). We
thus take care to make our observations over 10 minute windows
during time periods where the behavior is stable.

A top down image of 65 flies in a quasi 1D arena that is
uncomfortably heated on the right is shown in Fig. 2 a. We find
that a bin size of 0.15 cm2 , corresponding to the area of
approximately 7 flies, ensures that the counts are spatially

independent (Fig. 2 b) and that the density does not vary
substantially over each bin. We also find that the decorrelation
time for Nb is about 5 s (Fig. 2 c) indicating the system is
sufficiently ergodic over the time scale of our observation
windows. We show representative probability distributions
Pb(N) for a high and a low density bin in Fig. 2 d, e, respectively.
We find that the distribution peaks are centered at higher N near
the left side of the chamber suggesting lower vexation there.
Additionally, the high density probability distribution is sig-
nificantly narrower than the fitted Poisson distribution, hinting
that there are repulsive interactions among the flies.

To validate our description and quantify the vexations and
frustrations, we plot what we call as a mnemonic the “pseudo-free
energy” −ln(N!Pb(N))= (vbN+ln zb)+ fN versus N in Fig. 2 f. To
determine whether the frustration fN is indeed universal, we
subtract a linear term corresponding to a bin-dependent vexation
and normalization constant, vbN+ln zb, from each curve.
Remarkably, the resulting curves can be made to collapse,
indicating that a single, universal frustration function fN applies
equally well to all bins (Fig. 2 g). The positive curvature indicates
that higher densities are less preferable than expected from non-
interacting populations, and thus indicates repulsive interactions.
We also show the bin-dependent vexation values vb used to
collapse the curves in Fig. 2 h. Finally, as an indicator of the
strength of the collapse, we find that modifying the best least-
squared fit Poisson distributions by including just eight universal
frustration values (f0 through f7 ) decreases our reduced χ2 value
for 166 degrees of freedom from 8.1 to 0.95. Additionally, our
DFFT model is favored by the likelihood ratio test with probability
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Fig. 2 Statistical analysis and extraction of functionals for walking fruit fly experiments. a Single frame of 65 flies walking in a quasi 1D chamber of
dimensions 10 cm × 0.8 cm divided into 48 bins with approximate area 0.15 cm2. Heat is applied on the right side of the chamber so that the temperature
varies from 35 °C on the left to 50 °C on the right. b Averaged spatial correlation function. c Averaged temporal correlation function. d–e Probability
distributions of the number of flies in the two bins outlined in a in red and magenta, respectively. f The “pseudo-free energy,” −ln(N!Pb(N)), for eight
representative bins. The observed positive curvature indicates deviations from the Poisson form and repulsive interactions. g Frustration functional, fN,
obtained from collapse of the pseudo-free energies for all 48 bins upon removal of the Poisson contributions. h Vexation for each bin as measured from the
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trivial correlations in neighboring bins, yet small enough that the
underlying vexation and local density are nearly constant across
each bin.

Extraction of functionals for model system of walking flies. To
test whether this approach applies to actual populations, we
consider a model crowd consisting of wild-type male Drosophila
melanogaster from an out-bred laboratory stock. It is well know
that flies exhibit complex spatial preferences30,31 and social
behaviors32 ,33. Here we seek to determine whether a large crowd
of individuals with such complex behaviors indeed can be
described within our vexation and frustration framework. The
flies are confined in 1.5 mm tall transparent chambers where they
can walk freely but cannot fly or climb on top of each other. We
record overhead videos of the flies, bin the arena, and use custom
Matlab-based tracking algorithms (Methods) to measure the
individual bin counts Nb in each video frame. To explore a variety
of behaviors, we use arenas of different shapes30 and apply heat
gradients34 across the arenas to generate different spatial pre-
ferences. We find that the flies fully adjust to such changes in
their environments after 5 min. We also find that the behavior of
the flies changes slowly over a time scale of hours (Methods). We
thus take care to make our observations over 10 minute windows
during time periods where the behavior is stable.

A top down image of 65 flies in a quasi 1D arena that is
uncomfortably heated on the right is shown in Fig. 2 a. We find
that a bin size of 0.15 cm2 , corresponding to the area of
approximately 7 flies, ensures that the counts are spatially

independent (Fig. 2 b) and that the density does not vary
substantially over each bin. We also find that the decorrelation
time for Nb is about 5 s (Fig. 2 c) indicating the system is
sufficiently ergodic over the time scale of our observation
windows. We show representative probability distributions
Pb(N) for a high and a low density bin in Fig. 2 d, e, respectively.
We find that the distribution peaks are centered at higher N near
the left side of the chamber suggesting lower vexation there.
Additionally, the high density probability distribution is sig-
nificantly narrower than the fitted Poisson distribution, hinting
that there are repulsive interactions among the flies.

To validate our description and quantify the vexations and
frustrations, we plot what we call as a mnemonic the “pseudo-free
energy” −ln(N!Pb(N))= (vbN+ln zb)+ fN versus N in Fig. 2 f. To
determine whether the frustration fN is indeed universal, we
subtract a linear term corresponding to a bin-dependent vexation
and normalization constant, vbN+ln zb, from each curve.
Remarkably, the resulting curves can be made to collapse,
indicating that a single, universal frustration function fN applies
equally well to all bins (Fig. 2 g). The positive curvature indicates
that higher densities are less preferable than expected from non-
interacting populations, and thus indicates repulsive interactions.
We also show the bin-dependent vexation values vb used to
collapse the curves in Fig. 2 h. Finally, as an indicator of the
strength of the collapse, we find that modifying the best least-
squared fit Poisson distributions by including just eight universal
frustration values (f0 through f7 ) decreases our reduced χ2 value
for 166 degrees of freedom from 8.1 to 0.95. Additionally, our
DFFT model is favored by the likelihood ratio test with probability
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DFT of nuclear forces
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Warm dense matter

• Controlled fusion at NIF
• Planetary interiors
• Matter under extreme 

temperature and 
pressure

• Take theorems of DFT 
and heat up

• At high enough 
temperatures, electrons 
behave classically
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Impacts of Quantum Chemistry Calculations 
on Exoplanetary Science, Planetary 

Astronomy, and Astrophysics 
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Phase Diagram of Hydrogen and a Hydrogen-Helium Mixture at Planetary Conditions
by Quantum Monte Carlo Simulations

Guglielmo Mazzola,1,* Ravit Helled,2 and Sandro Sorella3
1Theoretische Physik, ETH Zurich, 8093 Zurich, Switzerland

2Institute for Computational Science, Center for Theoretical Astrophysics and Cosmology,
University of Zurich, 8057 Zurich, Switzerland

3International School for Advanced Studies (SISSA) and INFM Democritos National Simulation Center,
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(Received 2 November 2017; published 12 January 2018)

Understanding planetary interiors is directly linked to our ability of simulating exotic quantum
mechanical systems such as hydrogen (H) and hydrogen-helium (H-He) mixtures at high pressures and
temperatures. Equation of state (EOS) tables based on density functional theory are commonly used by
planetary scientists, although this method allows only for a qualitative description of the phase diagram.
Here we report quantum Monte Carlo (QMC) molecular dynamics simulations of pure H and H-He
mixture. We calculate the first QMC EOS at 6000 K for a H-He mixture of a protosolar composition, and
show the crucial influence of He on the H metallization pressure. Our results can be used to calibrate other
EOS calculations and are very timely given the accurate determination of Jupiter’s gravitational field from
the NASA Juno mission and the effort to determine its structure.

DOI: 10.1103/PhysRevLett.120.025701

For a few decades the link between the uncertainty of the
hydrogen equation of state (EOS) and the internal structure
of Jupiter (and other gaseous planets) has been investigated
and many efforts to model Jupiter’s interior have been
carried out [1–4]. The computation of an EOS from first
principles requires solving a many-body quantummechani-
cal problem, a task which is beyond the currently available
theoretical and computational capabilities. In practice,
we must resort to several approximations. The first is to
decouple the ionic and electronic problems and consider the
ions as classical or quantum particles, determining their
motion by following the Born-Oppenheimer potential
energy surface. The second approximation concerns the
description of the electronic interaction, and in particular the
exchange interaction, due to the Pauli exclusion principle.
The standard approach to EOS calculations relies on

density functional theory (DFT), which targets the tridimen-
sional electronic density rather than the (Ne electrons)
many-body wave function. Its success and simplicity have
led to a widespread application in materials science and to
the development of several software packages that allow fast
and reproducible calculations [5]. AlthoughDFT is formally
exact, the explicit functional form to describe the exchange
and correlation (XC) effects between electrons remains
approximated [6]. Indeed, a systematic and efficient route
to improve the XC functional is still lacking. Therefore, in
practical solid-state calculations, benchmarks against exper-
imental data are often required to validate the XC functional
used to describe the system in a satisfactory manner.
Hydrogen-rich compounds under pressure, both in the

low temperature solid and in the liquid phase, remain a

challenge to DFT simulations due to the interplay of
strong correlation and noncovalent interactions between
the atoms. DFT calculations with different functionals can
produce different results, with the expected metallization
pressure varying over a range of 100 to 200 GPa (Fig. 1)
[7,8] for pure H.
This uncertainty affects the EOS calculation, and there-

fore, also planetary modeling. Currently, planetary mod-
elers use hydrogen EOSs that have been derived from DFT
data [18,19], using a specific choice for the density func-
tional, the Perder-Burke-Erzenhof (PBE) functional [20].
It has been demonstrated that a change in the functional,
for example, using one which includes an empirical van der
Waals dispersion interaction (vdW-DF2 [21]), results in a
different EOS. In this case the calculated pressure at a given
density is larger by ∼10%–20% [8] compared to PBE. On
the other hand, given the accurate determination of Jupiter’s
gravitational field by the Juno mission, it was shown that
the EOSs should be known with accuracy of ∼1% in order
to constrain Jupiter’s internal structure [22].
In the case of hydrogen at high pressure, it is difficult to

assess a posteriori the quality of the DFT approximation,
benchmarking with experiments, for various reasons. The
first is that experiments typically have uncertainties larger
than 1% for both Hugoniot [22,23] and phase boundary
measurements. In this second case, experiments performed
with different compression techniques do not always
agree. For example, static compression with laser heating
[16,17,24] and dynamic compression measurements (with
deuterium) [15] differ by ∼150 GPa at 1500 K for what
concerns the locationof the first-order liquid-liquid transition
(LLT) between the molecular and the atomic fluids.
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On the simulation side, the PBE functional [25–28] seems
to agree qualitatively with the experimental Refs. [17,24],
whereas vdW-DF2 [8] ismore compatiblewithRefs. [15,29].
Therefore, the possibility of validating existing EOSs, and
reconcile simulations with experiments, is highly desirable.
This is also true in the case of the H-He mixture, where
experiments are still missing.
Recently, quantum Monte Carlo (QMC) approaches

emerged as competitive tools to accurately solve electronic
problems [30] thanks to the new generations of super-
computers. Since QMC simulation is a wave-function-based
method (unlike DFT), the scheme to obtain consistently
better results is simple and relies on the variational principle.
Indeed, the accuracy of the calculations improves as the
richness of the many-body electronic wave function
increases. In our variational approach, a systematic way
to improve the wave function is by enlarging the localized
atomic basis set that defines our quantum state. The
unprecedented availability of computational resources led
to the development of QMC algorithms that combine

efficiently the simulations of electrons with ion dynamics
[31–33]. Unlike the DFT method, which is well established
and widely used, the QMC technique is still relatively new
and is used by a smaller community of developers with
various implementations and algorithms that are difficult to
benchmark. However, the few QMC results for the H phase
diagram, until now, have not agreed well. In particular,
while all QMC simulations agreed qualitatively on a larger
dissociation and metallization pressure for pure dense
liquid H, compared to PBE, the precise location was not
well determined due to different QMC implementations,
variational wave function, and finite-size effects errors
[14,28,33–35].
We perform simulations with 64 and 128 H atoms for

the H compound and with 118 H and 10 He atoms for the
H-He mixture (see Supplemental Material for details [9]).
For the mixture we use x ¼ nHe=nH ≈ 0.08475, which is
smaller than the protosolar value of 0.0969 [36] and
slightly larger than Jupiter’s value of 0.0785(18) [37].
We first trace the liquid-liquid transition for pure H at
intermediate temperatures, between 1200 and 1800 K,
using a 64 hydrogen atom system. The first-order tran-
sition is characterized by a discontinuity in the EOS (see
Fig. 2) and in the proton-proton radial pair distribution
function gðrÞ [Fig. 2(c)]. It is found to occur at densities
of ∼0.8–1 g cm−3 and pressures of ∼200 GPa at 1200 K,
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the classical nuclei approximation unless otherwise indicated.
Solid symbols refer to our QMC LLT for pure H (blue circles) and
for the H-He mixture (red triangle). Solid blue and red lines
indicate a first-order LLT. At high temperatures, the empty (solid)
left (right) triangles correspond to simulations displaying a clear
atomic (molecular) behavior, while red diamonds represent an
intermediate behavior (see Supplemental Material [9]). These
points are used to constrain the phase boundaries where the
transition is continuous (dashed blue and red lines). Also shown
is Jupiter’s adiabat (gray line) as calculated by Miguel et al. [3].
Pure H first-order LLT predictions by QMC simulations [from
Pierleoni et al. [14] (cyan)] and by DFT using different XC
functionals, PBE, vdW-DF1, and DF2 (taken from Knudson et al.
[15]), are also shown. Other symbols refer to metallization
experimental data. Shown are experiments with static compres-
sion [16,17] (light green and dark green triangles) and deuterium
shockwave [15] (brown stars).
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FIG. 2. Equations of state across first-order transitions. Pressure
versus density for pure H and four temperatures (1200, 1500,
1800, and 3000 K, 64 particles) and for a H-He mixture (at
1500 K, 128 particles). For H at 1200 K, we present results also
for a 128 particles system (black diamonds). The transition
pressure obtained with the 128 particle setup is smaller by 8
(2) GPa compared to the 64 particle case. The first-order
transition is identified by a plateau in the EOS. The discontinuity
is more evident at lower temperatures but is still visible at 3000 K
(a). Panel (b) shows the EOS computed by Pierleoni et al. [14].
Panel (c) shows two proton radial pair distributions for pure H at
1200 K, for the two densities close to the LLT. The sudden
disappearance of the molecular peak is consistent with a first-
order transition.
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Understanding planetary interiors is directly linked to our ability of simulating exotic quantum
mechanical systems such as hydrogen (H) and hydrogen-helium (H-He) mixtures at high pressures and
temperatures. Equation of state (EOS) tables based on density functional theory are commonly used by
planetary scientists, although this method allows only for a qualitative description of the phase diagram.
Here we report quantum Monte Carlo (QMC) molecular dynamics simulations of pure H and H-He
mixture. We calculate the first QMC EOS at 6000 K for a H-He mixture of a protosolar composition, and
show the crucial influence of He on the H metallization pressure. Our results can be used to calibrate other
EOS calculations and are very timely given the accurate determination of Jupiter’s gravitational field from
the NASA Juno mission and the effort to determine its structure.
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For a few decades the link between the uncertainty of the
hydrogen equation of state (EOS) and the internal structure
of Jupiter (and other gaseous planets) has been investigated
and many efforts to model Jupiter’s interior have been
carried out [1–4]. The computation of an EOS from first
principles requires solving a many-body quantummechani-
cal problem, a task which is beyond the currently available
theoretical and computational capabilities. In practice,
we must resort to several approximations. The first is to
decouple the ionic and electronic problems and consider the
ions as classical or quantum particles, determining their
motion by following the Born-Oppenheimer potential
energy surface. The second approximation concerns the
description of the electronic interaction, and in particular the
exchange interaction, due to the Pauli exclusion principle.
The standard approach to EOS calculations relies on

density functional theory (DFT), which targets the tridimen-
sional electronic density rather than the (Ne electrons)
many-body wave function. Its success and simplicity have
led to a widespread application in materials science and to
the development of several software packages that allow fast
and reproducible calculations [5]. AlthoughDFT is formally
exact, the explicit functional form to describe the exchange
and correlation (XC) effects between electrons remains
approximated [6]. Indeed, a systematic and efficient route
to improve the XC functional is still lacking. Therefore, in
practical solid-state calculations, benchmarks against exper-
imental data are often required to validate the XC functional
used to describe the system in a satisfactory manner.
Hydrogen-rich compounds under pressure, both in the

low temperature solid and in the liquid phase, remain a

challenge to DFT simulations due to the interplay of
strong correlation and noncovalent interactions between
the atoms. DFT calculations with different functionals can
produce different results, with the expected metallization
pressure varying over a range of 100 to 200 GPa (Fig. 1)
[7,8] for pure H.
This uncertainty affects the EOS calculation, and there-

fore, also planetary modeling. Currently, planetary mod-
elers use hydrogen EOSs that have been derived from DFT
data [18,19], using a specific choice for the density func-
tional, the Perder-Burke-Erzenhof (PBE) functional [20].
It has been demonstrated that a change in the functional,
for example, using one which includes an empirical van der
Waals dispersion interaction (vdW-DF2 [21]), results in a
different EOS. In this case the calculated pressure at a given
density is larger by ∼10%–20% [8] compared to PBE. On
the other hand, given the accurate determination of Jupiter’s
gravitational field by the Juno mission, it was shown that
the EOSs should be known with accuracy of ∼1% in order
to constrain Jupiter’s internal structure [22].
In the case of hydrogen at high pressure, it is difficult to

assess a posteriori the quality of the DFT approximation,
benchmarking with experiments, for various reasons. The
first is that experiments typically have uncertainties larger
than 1% for both Hugoniot [22,23] and phase boundary
measurements. In this second case, experiments performed
with different compression techniques do not always
agree. For example, static compression with laser heating
[16,17,24] and dynamic compression measurements (with
deuterium) [15] differ by ∼150 GPa at 1500 K for what
concerns the locationof the first-order liquid-liquid transition
(LLT) between the molecular and the atomic fluids.
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Relations between WDM and classical DFT

• Mermin theorem applies to equilibrium 
electrons at all temperatures

• Implies entropic contributions to XC and non-
interacting functionals

• As T->0, becomes ground-state theory
• As T -> infinity, becomes classical theory of 

charged liquid!
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Essence of HK theorem

• Prior to 1964, essentially believed one needs 
the many-body wavefunction to find properties 
of system.

• HK theorem says density alone, in principle, 
determines all properties.

• Extreme compression of information
• KS scheme leverages this for electronic 

problem.
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Abstract. We present version 4.0 of the atmospheric chem-
istry box model CAABA/MECCA that now includes a num-
ber of new features: (i) skeletal mechanism reduction, (ii)
the Mainz Organic Mechanism (MOM) chemical mechanism
for volatile organic compounds, (iii) an option to include re-
actions from the Master Chemical Mechanism (MCM) and
other chemical mechanisms, (iv) updated isotope tagging,
and (v) improved and new photolysis modules (JVAL, RAD-
JIMT, DISSOC). Further, when MECCA is connected to a
global model, the new feature of coexisting multiple chem-
istry mechanisms (PolyMECCA/CHEMGLUE) can be used.
Additional changes have been implemented to make the code
more user-friendly and to facilitate the analysis of the model
results. Like earlier versions, CAABA/MECCA-4.0 is a com-
munity model published under the GNU General Public Li-
cense.

1 Introduction

MECCA (Module Efficiently Calculating the Chemistry of
the Atmosphere) is an atmospheric chemistry module that
contains a comprehensive chemical mechanism with tropo-
spheric and stratospheric chemistry of both the gas and the
aqueous phases. For the numerical integration, MECCA uses
the KPP (Kinetic PreProcessor) software (Sandu and Sander,
2006).

To apply the MECCA chemistry to atmospheric condi-
tions, MECCA must be connected to a base model via
the MESSy (Modular Earth Submodel System) interface
(Jöckel et al., 2010). This base model can be a complex 3-
dimensional model but it can also be a simple box model.
CAABA (Chemistry As A Boxmodel Application) is such a
box model, simulating the atmospheric environment in which
the MECCA chemistry takes place.

A full description of CAABA/MECCA has already been
published elsewhere (Sander et al., 2005; R. Sander et al.,
2011). Here, we only present new features that have been im-
plemented after version 3.0. Section 2 describes all changes

Published by Copernicus Publications on behalf of the European Geosciences Union.
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ABSTRACT: Mounting evidence suggests that Criegee intermediates are important
tropospheric oxidants of both organic and inorganic gases, supplementing the
oxidation chemistry initiated by OH radicals. Here, the rate coefficient for the
reaction of the simplest Criegee intermediate CH2OO with acetone, k(CH2OO +
(CH3)2CO), was measured using laser flash photolysis and cavity ring-down
spectroscopy methods under tropospherically relevant conditions of pressure and
temperature. The pressure dependence of k(CH2OO + (CH3)2CO) = (4.7 ± 0.1) ×
10−13 [N2]/((3.7 ± 1.4) × 1016 + [N2]) cm3 molecule−1 s−1 was measured in the 5−
100 Torr range, returning a high-pressure limit value of (4.7 ± 0.1) × 10−13 cm3

molecule−1 s−1 at 293 K. A temperature dependence of k(CH2OO + (CH3)2CO) = (1.4 ± 0.2) × 10−21 T2 exp(2421 ± 40/T)
cm3 molecule−1 s−1 was observed in the 250−310 K range. The global chemical transport model (STOCHEM-CRI) was used
to model the speciated Criegee intermediate field using the recently reported temperature-dependent rate coefficient values for
various reactions of Criegee intermediates. The incorporation of the Criegee intermediate reaction with acetone in the model
predicts decreases in acetone concentration of as much as 10−40 ppt in various regions of the world.
KEYWORDS: Criegee intermediates, acetone, atmospheric chemistry, global modelling, reaction rates

1. INTRODUCTION
Acetone ((CH3)2CO) is emitted directly into the atmosphere
by plants or produced by the photochemical oxidation of
volatile organic compounds of anthropogenic (e.g., isopentane
and isobutane) and biogenic (monoterpenes) origins.1 Back-
ground mixing ratios of acetone in the troposphere up to 0.2
and 0.5 ppb have been reported in the southern and northern
hemispheres, respectively.2 Acetone is a source of acetyl
radicals, which can react with oxygen and nitrogen dioxide to
form peroxyacetylnitrate (PAN). Thus, PAN acts as a reservoir
of NOx, an important precursor to ozone in the lower
atmosphere.3 The main atmospheric sinks of acetone are the
reaction with OH radical, photolysis, and dry deposition
(reactions R1−R3), with an expected lifetime of 15−35
days.1,3−5 Here, we consider the significance of reactions with
Criegee intermediates, reaction R4, as an additional loss
process, most likely producing a secondary ozonide (SOZ).

+ →(CH ) CO OH products3 2 (R1)

→(CH ) CO photolysis3 2 (R2)

→(CH ) CO dry deposition3 2 (R3)

+ →(CH ) CO Criegee intermediates SOZ3 2 (R4)

Criegee intermediates are produced in the troposphere
during the ozonolysis of alkenes.6 Many are removed by the
reaction with H2O, (H2O)2, or unimolecular decomposition.7,8

However, certain Criegee intermediates such as syn-methyl
vinyl ketone oxide (syn-MVKOO), produced during the
ozonolysis of isoprene, and others produced from pinenes,
react only slowly with H2O or (H2O)2 and have slow
unimolecular rates of decomposition.9,10 They are therefore
expected to undergo bimolecular reactions with other trace
gases in the troposphere. For example, Criegee intermediates
can react with SO2 to produce SO3 and hence tropospheric
H2SO4, an important precursor for aerosol formation in the
troposphere.11,12 The rates of reaction of Criegee intermedi-
ates with various inorganic and organic acids are near or above
the collision limit and are likely the dominant reactive sinks of
these acids in forested regions around the world.13−15 These
reactions are expected to produce multifunctionalized organic
hydroperoxides, which may also be important precursors for
secondary organic aerosols in the troposphere.15 Recently, the
rate coefficients for the reaction of the simplest Criegee

Received: July 31, 2019
Revised: August 21, 2019
Accepted: August 26, 2019
Published: August 26, 2019

Article

http://pubs.acs.org/journal/aesccqCite This: ACS Earth Space Chem. XXXX, XXX, XXX−XXX

© XXXX American Chemical Society A DOI: 10.1021/acsearthspacechem.9b00213
ACS Earth Space Chem. XXXX, XXX, XXX−XXX

D
ow

nl
oa

de
d 

vi
a 

U
N

IV
 O

F 
CA

LI
FO

RN
IA

 IR
V

IN
E 

on
 S

ep
te

m
be

r 1
6,

 2
01

9 
at

 0
4:

59
:0

4 
(U

TC
).

Se
e 

ht
tp

s:/
/p

ub
s.a

cs
.o

rg
/sh

ar
in

gg
ui

de
lin

es
 fo

r o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

ish
ed

 a
rti

cl
es

.

Δ = Δ + ΔH H H9 10 (E7)

In eqs E5−E7, R′ and R denote the molar gas constant in
different units (R′ = 82.1 cm3 atm mol−1 K−1 and R = 8.31 J
mol−1 K−1); NA is the Avogadro constant; kB is the Boltzmann
constant; and T is the absolute temperature. ΔS10 and ΔH10
are, respectively, the entropy and enthalpy changes for the
activation of the prereactive complex to TS for product
formation via reaction R10. Similarly, ΔS9 and ΔH9 are the
changes in entropy and enthalpy for the complexation step, R9.
A derivation of eq E5 is provided in our previous study.14 The
quality of the fit is good, as shown by the green line in Figure 3,
and returns fitted values of A = (1.4 ± 0.2) × 10−21 cm3

molecule−1 s−1 K−2 and ΔH = −20.1 ± 0.3 kJ mol−1. Figure 3
also shows that an extrapolation of the fitted curve to 500 K is
in good agreement with the measured rate coefficient values
reported by Elsamra et al.17 The ΔH = −20.1 ± 0.3 kJ mol−1

value is in good agreement with the previously reported
computational barrier height of −20.5 kJ mol−1.31 However,
this agreement between the enthalpy change and barrier height
may be fortuitous as the recent ME calculations of Criegee
intermediate reactions with NH3 and CH3NH2, which have
energetics similar to that of the reaction with acetone, showed
that these reactions were not in thermal equilibrium at ambient
conditions.32

3.2. ME Modeling of the CH2OO + (CH3)2CO Reaction.
The observable rate coefficients for the CH2OO + (CH3)2CO
reaction as a function of temperature and pressure were
calculated using Rice−Ramsperger−Kassel−Marcus/ME sim-
ulations, as described by Elsamra et al.17 Briefly, the reaction is
predicted to proceed by the formation of a van der Waals
complex before passing over a submerged barrier to form a
SOZ, as shown in Figure 4. Only one cycloaddition pathway is

possible because of the symmetric substitution of the carbonyl
carbon atoms in both reactants. The molecular geometries and
energies, calculated by Jalan et al.31 using RCCSD(T)-F12a/
VTZ-F12//B3LYP/MG3S methods, were input to Arkane, a
one-dimensional ME solver previously named Cantherm that is
part of the RMG-Py package.33 The k(T, P) values output by

Arkane that connect each minimum on the reaction pathway to
every other minimum were used to calculate kobs(T, p) by
applying the pseudo-steady-state approximation to the short-
lived van der Waals (vdW) complex at the entrance of the
reaction pathway. Arkane also requires as an input the high-
pressure limit rate coefficient for the barrierless entrance
channel forming the vdW complex. All the calculations were
performed using the collisional energy transfer parameters for
nitrogen bath gas used by Jalan et al.,31 which gave negligibly
different results from a He bath gas at the experimental
conditions of Elsamra et al.17 and Taatjes et al.16

Figure 5 compares the experimentally observed rate
coefficients with the calculated values using two different

barrierless entrance rate coefficients: 6.6 × 10−10 cm3

molecule−1 s−1 (ME I) and 1.3 × 10−12 cm3 molecule−1 s−1

(ME II). The latter value determined by Jalan et al. matches
the experiments of Taatjes et al. at 4 Torr and 298 K31 but
does not reproduce well the temperature dependence
measured here. The former value was estimated by Elsamra
et al. using the method of Georgievskii and Klippenstein.17,34

Additionally, the barrier height for the submerged inner TS
connecting the vdW complex to the stabilized products on the
reaction pathway was varied by ±2.9 kJ mol−1 from an initial
computed value of −20.5 kJ mol−1 with respect to the energy
of the separated reactants (as shown in Figure 4). The initial

Figure 4. Minimum energy pathway for the reaction of CH2OO with
(CH3)2CO. The stationary point energies were calculated at the
RCCSD(T)-F12a/VTZ-F12//B3LYP/MG3S level of theory and
were obtained from the previous study by Jalan et al.31

Figure 5. (a) ME simulations using entrance rate coefficient values of
6.6 × 10−10 (ME I) and 1.3 × 10−12 cm3 molecule−1 s−1 (ME II). Both
calculations were performed using various barrier heights for the inner
TS, as explained in the text. (b) Comparison of the experimental and
best ME-simulated rate coefficients. The green solid line is the fit
obtained using the kinetic model described in the text.

ACS Earth and Space Chemistry Article

DOI:10.1021/acsearthspacechem.9b00213
ACS Earth Space Chem. XXXX, XXX, XXX−XXX

E



Gilt-head Seabream

Kieron Burke IPAM physics and ML 2019 60

Frontiers in Physiology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 731

ORIGINAL RESEARCH
published: 03 July 2019

doi: 10.3389/fphys.2019.00731

Edited by: 
Eduardo Luís Cupertino Ballester, 

Federal University of Paraná, Brazil

Reviewed by: 
Gianluca Polese,  

University of Naples Federico II, Italy
Lorenzo Gallus,  

University of Genoa, Italy

*Correspondence: 
Peter C. Hubbard  

phubbard@ualg.pt

Specialty section: 
This article was submitted to  

Aquatic Physiology,  
a section of the journal  
Frontiers in Physiology

Received: 13 March 2019
Accepted: 27 May 2019
Published: 03 July 2019

Citation:
Velez Z, Roggatz CC, Benoit DM, 

Hardege JD and Hubbard PC (2019) 
Short- and Medium-Term  

Exposure to Ocean Acidification 
Reduces Olfactory Sensitivity in 

Gilthead Seabream.
Front. Physiol. 10:731.

doi: 10.3389/fphys.2019.00731

Short- and Medium-Term  
Exposure to Ocean Acidification 
Reduces Olfactory Sensitivity in 
Gilthead Seabream
Zélia Velez1, Christina C. Roggatz2,3, David M. Benoit 4, Jörg D. Hardege3 and 
Peter C. Hubbard1*
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The effects of ocean acidification on fish are only partially understood. Studies on olfaction 
are mostly limited to behavioral alterations of coral reef fish; studies on temperate species 
and/or with economic importance are scarce. The current study evaluated the effects of 
short- and medium-term exposure to ocean acidification on the olfactory system of gilthead 
seabream (Sparus aurata), and attempted to explain observed differences in sensitivity 
by changes in the protonation state of amino acid odorants. Short-term exposure to 
elevated PCO2 decreased olfactory sensitivity to some odorants, such as L-serine, 
L-leucine, L-arginine, L-glutamate, and conspecific intestinal fluid, but not to others, such 
as L-glutamine and conspecific bile fluid. Seabream were unable to compensate for high 
PCO2 levels in the medium term; after 4 weeks exposure to high PCO2, the olfactory 
sensitivity remained lower in elevated PCO2 water. The decrease in olfactory sensitivity in 
high PCO2 water could be partly attributed to changes in the protonation state of the 
odorants and/or their receptor(s); we illustrate how protonation due to reduced pH causes 
changes in the charge distribution of odorant molecules, an essential component for 
ligand-receptor interaction. However, there are other mechanisms involved. At a histological 
level, the olfactory epithelium contained higher densities of mucus cells in fish kept in high 
CO2 water, and a shift in pH of the mucus they produced to more neutral. These differences 
suggest a physiological response of the olfactory epithelium to lower pH and/or high CO2 
levels, but an inability to fully counteract the effects of acidification on olfactory sensitivity. 
Therefore, the current study provides evidence for a direct, medium term, global effect of 
ocean acidification on olfactory sensitivity in fish, and possibly other marine organisms, 
and suggests a partial explanatory mechanism.

Keywords: olfaction, ocean acidification, fish, amino acid, receptor, olfactory epithelium, carbon dioxide, 
protonation
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All integrated response amplitudes were normalized to  
the amplitude of the integrated response to 10−3  M  L-serine 
(the “standard”). Responses to the standard were recorded 
regularly at the beginning and end of each group of samples 
(every three to five samples) throughout the recording session. 
Each stimulus was applied for 4 s, with at least 1 min between 
odorants to allow complete recovery of the receptors.

Calculation of Amino Acid  
Protonation State
Odorant molecules, such as amino acids, can be  subjected to 
ionization processes depending on the pH of their surroundings. 
Amino acids possess two or more ionizable functional groups 
that are de-protonated at different pH levels. The pKa value 
of each ionizable group of a molecule represents the pH at 
which 50% of the molecules in solution are protonated at this 
group and 50% remain unchanged. The Henderson-Hasselbalch 
equation relates pH and the group-specific pKa values for each 
amino acid, and therefore calculates the abundance of different 
protonation states across the entire pH range of interest (for 
details, see Po and Senozan, 2001, and references therein). At 
any given pH, a mixture of different protonation states can 
be  present. For the current study, we  assumed that the amino 
acid forms with deprotonated head group to be  the form 
binding to the olfactory receptors. We, therefore, calculated 
the concentration of this form (= effective concentrations) of 
different amino acids used in the experiments for the control 
(pH 8.2) and treatment (pH 7.7) conditions based on the 
concentration used during the bioassay and the group-specific 
pKa values for each amino acid obtained from the CRC Handbook 
of Chemistry and Physics (Lide, 2004).

Comparison of pH-Induced Changes  
in Amino Acid Protonation State to 
Olfactory Potency
For direct comparison of the change in protonation state and 
the olfactory response for different concentrations and pH 
conditions, the respective effective stimulus concentrations were 
inserted into the linear regression equation/Hill plot obtained 
from the integrated nerve response at a given pH (see “Data 
Analysis” for details). The resulting points were plotted in the 
same figure to visualize the extent of change caused by stimulus 
protonation vs. the extent of change observed for the 
nerve response.

Conformers and Charge Distribution of 
Different Protonation States by Quantum 
Chemical Calculations
We used quantum chemical calculations to obtain the energetically 
most favorable model conformers for the two protonation states 
of interest and assess differences in their molecular electrostatic 
potential (MEP), which describes the charge distribution around 
the molecule. Starting from the structures published by Rak 
et  al. (2001), the protonation state models of L-arginine were 
optimized using the PBE0 exchange correlation functional 

(Adamo and Barone, 1999) with a pc-2 basis set (Jensen, 2001, 
2002a,b) and water as implicit solvent using COSMO (Klamt 
and Schüürmann, 1993) implemented in the ORCA suite of 
programs (Neese, 2012) (Version 3.0.0). We used the RIJ-COSX 
approximation (Neese et al., 2009) with a def2-TZVPP/J auxiliary 
basis set (Weigend and Ahlrichs, 2005) and included D3 
dispersion corrections following Grimme et  al. (2010, 2011). 
The VeryTightSCF and TightOpt criteria implemented in ORCA 
were used to stop the SCF gradient and the optimization at 
a total energy change of <10−8 Eh, respectively. Full optimization 
was confirmed by ensuring that there were no negative numerical 
frequencies for each conformer. The calculation of the molecular 
electrostatic potential (MEP) was performed with the GAMESS 
program (vJan122009R1) using the PBE exchange correlation 
functional (Perdew et al., 1996) in conjunction with a STO-3G 
basis set (Hehre et  al., 1969; Collins et  al., 1976). Three-
dimensional electron density iso-surface was visualized with 
100 grid points, a medium grid size, and a contour value of 
0.03 e·a0

−3 using the MacMolPlt program (Bode and Gordon, 
1998) (v7.5141). The density iso-surface was colored according 
to the MEP with a maximum value of 0.25 Eh·e−1 and the 
RGB color scheme with red representing positive, green neutral, 
and blue negative charge.

Histology
Seabream were killed rapidly using an anesthetic overdose 
(500  mg/l MS222). Olfactory rosettes were carefully dissected 
from 12 fish (six controls, and six in high CO2 water for at 
least 4 weeks) under a stereo-microscope. Olfactory epithelia 
were fixed in Bouin’s solution (Sigma, Portugal) for 20  h and 
washed with 70% ethanol. Tissues were then embedded in paraffin 
and sectioned longitudinally (5  μm sections). Serial sections of 
the tissues were collected until the complete olfactory organ 
was visible (including the central raphe). The dewaxed and 
rehydrated sections were stained with Mayer’s hematoxylin/eosin 
and neutral and acidic mucus was identified using a combined 
periodic acid-Schiff (PAS)-Alcian blue stain. Slides were examined 
under a microscope (Leica DM 2000, Famalicão, Portugal) and 
photographic images were obtained using a digital camera (Leica 
DFC 480, IM50-software). For analysis, we  focused on the three 
central lamellae (lamellae 7, 8, and 9) of the olfactory rosette. 
The ratio between nonsensory vs. sensory epithelium within an 
olfactory lamella was assessed by dividing the length of the 
apical nonsensory epithelium by the length of the olfactory 
lamella (from the top to the central raphe). Images were analyzed 
using the software Fiji Image J. Statistically significant differences 
between the ratio of nonsensory vs. sensory epithelium in control 
animals and experimental animals was assessed using Student’s 
t test (Prism 6). The goblet (mucus producing) cells in the 
apical surface of the lamellae were quantified using Fiji Image J.

Data and Statistical Analysis
All statistical analyses of electrophysiological results were  
carried out on normalized data. To determine whether there 
were effects of tank pH (i.e., control vs. high CO2), odorant 
pH and concentration, an ANOVA analysis was preformed 
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mucus will protect the underlying epithelial cells, including the 
olfactory receptor neurones, but the charge, viscosity and the 
thickness of the layer may also reduce the odorant/receptor 
interaction and thus lower sensitivity (Rygg et al., 2013 ; Corfield, 
2015 ). However, the olfactory sensitivity of seabream exposed 
for 4 weeks to high PCO2 was similar to that of controls, when 
tested at the same pH. The enlarged area of non-sensory 

epithelium might also represent an adaptation to high CO2; an 
augmented area of non-sensory epithelium positioned in the 
upper and outer margin of the olfactory lamellae results in a 
localization of the sensory area deeper in the olfactory lamellae, 
and as a consequence it is less exposed. On the other hand, 
it could represent impairment of olfactory epithelium formation, 
growth and/or renewal, and ultimately it might contribute to 

FIGURE 7  | Active (ArginineD, left) and protonated (ArginineZ, right) conformers of L-arginine with their molecular electrostatic potential mapped onto an iso-electron 
density surface. Negative charge is colored in blue, neutral in green, and positive charge in red. The orange circles highlight differences in the charge distribution 
between the two conformer models.
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FIGURE 8  | Representative histological sections of the olfactory lamellae of the gilthead seabream stained with periodic acid-Schiff/Alcian blue to show the effects 
of exposure to high PCO2/low pH on tissue morphology. (A,B) control fish; (C,D) high CO2 fish. CC, Central core; MC, Mucus cell; NSE, non-sensory epithelium; SE, 
sensory epithelium.



Maybe we can?

• If we make TS much more accurate and reliable, 
can suddenly do much larger simulations, so 
much more relevant

• If we make EXC much more accurate and 
reliable, we can do many more simulations of 
more challenging systems

• Huge impact if ML improves functionals for 
classical DFT, nuclear DFT, or thermal DFT

• Can we do this in 10 years, not 100?  
• Maybe we must!
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Summary

• Direct solution of Schrodinger equation too expensive 
to be practical in many situations.

• Density functional theory (DFT) allows larger and more 
diverse systems to be modelled, but with 
uncontrollable errors.

• DFT chemical and materials modeling already plays 
important role in modern materials and drug design.

• Two very important possibilities:
– Much bigger DFT simulations, more realistic
– Much more accurate, systematic DFT calculations

• Other (smaller) areas need better functionals
• Thanks to IPAM and NSF and DOE.
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