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{ Themes

 DFT (electronic structure) in a nutshell

* Along comes ML

* New opportunities?
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Standard atomistic simulations: Molecular dynamics

« Solve Newton'’s equations for nuclei at given
temperature and pressure.—
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» Use simple force fields be I

 But, cannot break bonds! '

Theoretical and Computational Biophysics Group
Beckman Institute
University of Illinois at Urbana-Champaign
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[Electronic Structure Problem: Diversity}

* For all everyday matter
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[ Basic Electronic Structure Problem }

e Just want E(R)

Ehind (R) A |

D,
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[ Why electronic structure problem is evil }

« Quantum mechanics really needed for electrons

* It's a many-body problem: Every electron sees
every other one, as well as nucleus.

* Chemical accuracy is about 1 in 107 for
electronic energy of 500 atoms.

* Ab initio quantum chemistry: When # electrons
doubles, computer cost increases by 128.
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Mathematical form of problem

e Differential
equation in 3N
coordinates:

(TH+ Ve + VIV=EW

Kieron Burke

Hamiltonian for N electrons in the presence of external potential v(r):
H=T+ Ve +V,

where the kinetic and elec-elec repulsion energies are

N
1
2 ; z; Z lri — rJ|
= i=1 j#i
and difference between systems is N and the one-body potential

N

V=3 v(r)

i=1

Often v(r) is electron-nucleus attraction

Zo
v(r) = _zo; Ir — Ry,

where « runs over all nuclei, plus weak applied E and B fields.

E = mujn<\|l|'7' + Ve + VW)
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[ The greatest free lunch ever: DFT }

* 1964: Hohenberg and Kohn proved a theorem
showing lowest energy can be found by search
over electronic densities (much simpler than
wavefunction)

* 1965: Created Kohn-Sham (KS) equations of
fake non-interacting electrons (not many-body
anymore) which, when solved, yield lowest E

and density alone. | .

Kieron Burke IPAM physics and ML 2019 8



KS equations (1965)

Define fictitious non-interacting electrons satisfying: E

1 N
(v rumbom =g, S I60F =)
j=1

where vs(r) is defined to yield n(r).

Define Ty as the kinetic energy of the KS electrons, U as their
Hartree energy and O

F: T+Vee:Ts+U+EXC

the remainder is the exchange-correlation energy:.
Most important result of exact DFT:

0 Exq
on(r)

Knowing Exc[n] gives closed set of self-consistemtequatons:
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The kicker

* Need a formula for a small fraction of
electronic energy, called XC energy, in terms
of density, containing all quantum many-body
effects.

* First formula (1965) good for solids, but not
accurate enough for chemistry.

* Next formulas (1990) give useful accuracy for
chemistry and materials.



{ Today’s commonly-used XC approximations }

* Local density approximation (LDA)  gioap) — 4, [ @ ni(r)
— Uses only n(r) at a point. A = (B3 = 078

* Generalized gradient approx
(GGA)
— Uses both n(r) and [Vn(r)l

— Should be more accurate, corrects
overbinding of LDA

— Examples are PBE and BLYP

BGSA = / &r S9A (n(r), [Vn(r)|)

+ Hybrid: BN = a By — ES9) + BSGA
— Mixes some fraction of HF with GGA
— Examples are B3LYP and PBEO
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[ Modern research to find XC energy }

y Precious!” -
J b/ : |
i o
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Youtube: Teaching the theory in DFT

Hohenberg-Kohn theorem and constrained search o » Local Density Approximation

OEP method and hybrids time-dependent density functional theory

- -
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Applications

Computers, codes, algorithms always improving
Making bona fide predictions

E.g., a new better catalyst for Haber-Bosch process
(fixing’ ammonia from air) was predicted after
about 25,000 failed experiments (Norskov’s group)

Now scanning chemical and materials spaces using
big data methods for materials design (materials
genome project).

World’s hottest superconductor (203K) is hydrogen
sulfide, predicted by DFT calculations, then made.

Latest generation of intel chips (needed for Mac
airbook) is half-size and Pb-free with help of DFT.



Highest temperature superconductors

PHYSICAL REVIEW LETTERS 123, 097001 (2019)

Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride

Compounds under High Pressure
Ying Sun,] Jian LV,1 Yu Xi&:,1 Hanyu Liu,l’* and Yanming Ma'?**
'Innovation Center of Computational Physics Methods and Software and State Key Laboratory for Superhard Materials,
College of Physics, Jilin University, Changchun 130012, China
International Center of Future Science, Jilin University, Changchun 130012, China

® (Received 24 December 2018; published 26 August 2019)

The recent theory-orientated discovery of record high-temperature superconductivity (7', ~ 250 K) in
sodalitelike clathrate LaH;, is an important advance toward room-temperature superconductors. Here, we
identify an alternative clathrate structure in ternary Li,MgH;¢ with a remarkably high estimated 7', of
~473 K at 250 GPa, which may allow us to obtain room-temperature or even higher-temperature
superconductivity. The ternary compound mimics a Li- or electron-doped binary hydride of MgH 4. The
parent hydride contains H, molecules and is not a good superconductor. The extra electrons introduced
break up the H, molecules, increasing the amount of atomic hydrogen compared with the parent hydride,
which is necessary for stabilizing the clathrate structure or other high-T'. structures. Our results provide a
viable strategy for tuning the superconductivity of hydrogen-rich hydrides by donating electrons to
hydrides via metal doping. Our approach may pave the way for finding high-7'. superconductors in a
variety of ternary or quaternary hydrides.

DOI: 10.1103/PhysRevLett.123.097001
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In quantum chemistry
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[ Electronic Structure Problem: Impact }

* Absurdly useful: Nvidia estimates 1/6th world’s
supercomputers run DFT calculations.
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[ Difficulties with this research

* Truly multidisciplinary in a deep way - very hard
to understand each other’s methods and goals

* Not the latest shiny toy, e.g., not quantum
computing or machine learning

 But just a little progress in this field can have
enormous impact overnight.
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Paying the price of the KS equations J

By using fake electrons, cost increases by factor
of 8 when size doubles.

* Limits current sizes to 500 atoms on a single
machine in a day.

* If we could avoid this, might be able to do 10°
atoms.

« Again, a rule exists, T¢[n], and some folks try to
find it, but never accurately and generally
enough.

Kieron Burke IPAM physics and ML 2019 20



Kieron Burke

Machine learning
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[ Machine learning in electronic structure }

* Explosion of interest in last 5 years

« Machine learning/big data/data science very broad
terms

* Some examples:

— Searching databases of materials calculations to find
optimal functionality

— Searching chemical compound space (SCHNET, ANI,..)
— Accelerated sampling
— Designing interatomic potentials (Behler,,Csanyji,..)

]Editorial: Special Topic on Data-enabled Theoretical Chemistry Matthias Rupp, O. Anatole von Lilienfeld, Kieron Burke, Journal of Chemical
Physics Guest Editorial: Special Topic on Data-Enabled Theoretical Chemistry 148, 241401 (2018)
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[ Original team for ML DFT (2010) }

 Most with Klaus Mueller of TU Berlin,
computer science.

* ML now being applied directly to, e.g.,
molecular energies from geometries for
drug design, many by Matthias Rupp

* Qur efforts are focused on finding T[]

from examples, work by John Snyder
(Humboldt fellow at TU Berlin/MPI Halle)
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[ Demo problem in DFT }

® N non-interacting same-spin fermions confined to |d box

® Define class of potential

Zazexp CC_b)/( 2))

® Represent the density on a grid with spacing Az = 1/(G — 1)

Genera te 2000 potentials. Solve for up to 4 electrons.

e ML-DFA for KE: |
" /o N

=T 2 ojk(ny.n | W C v/

kin,n']=exp ( J e (nx)-W )/ (202)) 1
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Performance for T,

N M A o |AT| |AT[' |AT|™>>
40 2.4 x107° 238 3.3 3.0 23.
60 1.0x10"° 95 1.2 1.2 10.
| 80 6.7 x107% 48 0.43 0.54 7.1
100 3.4x 10" 43 0.15 0.24 3.2
150 25%x 107 33 0.060 0.10 1.3
200 1.7x 1077 28 0.031 0.053 0.65
2 100 1.3x10"7 52 0.13 0.20 1.8
3 100 20x1077 74 0.12 0.18 1.8
4 100 1.4x1077 73 0.078 0.14 2.3
1-47 400 1.8 x 1077 47 0.12 0.20 3.6

LDA ~ 223 kcal/mol, Gradient correction ~ 159 kcal/mol

Kieron Burke
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[ We don't just need the energy }

« The KS equations are solving the following
equation for us:

5TS = —U\r') — VUyg|N|\Y) — 7V nir
ey = ~(F) = valn)(6) — el 1)

» If we had an explicit approximation for
T<[n], we could solve this directly.
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functional derivative?

Kieron Burke

IPAM physics and ML 2019

Functionals are
defined on infinite-
dimensional spaces

With finite
interpolation, can
always find bad
directions

Can we make a
cruder definition
that will work for
our purposes?
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[ Principal component analysis

rAle)
X = (nj - n..nj, -n) :
1 T njl:: N
C=—X'X N
m /Il\
Ilj2 nj4
4
Aiy X S
11 S 4
=
| Qrg _87
—— ML-DFA
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0 05
vyl ”
Pm7g<n) = V V
V=(xq,...,%) j
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Lessons

Exact noise-free data infinitely available for

T.[n], every cycle of every KS calculation in the
world provides examples.

Need very accurate derivatives to get accurate
density from Euler equation.

Can find ways to bypass this.

Functionals can be made arbitrarily accurate
with sufficient data.

Finding Density Functionals with Machine Learning John C.
Snyder, Matthias Rupp, Katja Hansen, Klaus-Robert Miiller,
Kieron Burke, Phys. Rev. Lett. 108, 253002 (2012)



Road map back to reality

Roadmap to 3d land

model selection, projected functional derivatives, OF-DFT

bond breaking, self-consistent densities

Id diatomics DL

Ay 250
A Y

». dimensionality, basis sets, representation, inversion symmetry

|
3d atoms, diatomics .

*s full symmetries, scallng

(& 3d moIecuIes

scalability, data accumulatlon .

ab-initio MD, active learning
Iarge systems, real applications
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[ By-passing KS

Orbital-Free (OF)

!

>
W Kohn-Sham (KS) Mapping

Potential
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MD simulations testing ML me

thod

Kieron Burke

o
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Figure 3. Enecrgy errors of ML-HK along MD trajectories. PBE values in blue, ML-HK walues in red. a. A 2 ps classical
trajoctory of benzene. be A 2 ps classical trajectory of ethane. ¢. A 0.25 ps abeinitio trajectory of malonaldehyde. The ML
model correctly predicts energies during a proton transfer in frames 7 to 15 without explicitly including these geometries in the

training set.

Benzene Ethane Malonaldebyde
Training trajoectories MAE max max MAE A
00K 0395742 1.92642 0.212137 L7
J00K + 350K 0.260517 L.761%) 0.236088 138227 0.206795 0.725515||
JOOK + W0K 0370876 2.1162 0.101054 0576107 |

Table V. Errors (AEp in keal/maol) on the MD datasets for different training trajectory combinations

IPAM physics and ML 2019
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[174] By-passing the Kohn-Sham equations with machine learning Felix Brockherde, Leslie Vogt, Li Li, Mark E Tuckerman, Kieron
Burke, Klaus-Robert Muller, Nature Communications 8, 872 (2017).

Kieron Burke
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Lessons }

Our 1d gradient methods become prohibitively
expensive in 3d.

Instead of using T.[n], learn n[v](r).
Much smarter than learning E[v]
Works for H, and H,O and ...

..MD of malonaldehyde using ML forces with
Leslie Vogt and Mark Tuckerman.

Created non-local orbital-free density
functional running much faster than solving KS
equations



Our papers (all on dft.uci.edu)

Nonlinear gradient denoising: Finding accurate extrema from inaccurate functional derivatives John C. Snyder,

Matthias Rupp, Klaus-Robert Miiller, Kieron Burke, International Journal of Quantum Chemistry 115, 1102--
1114 (2015).

Understanding kernel ridge regression: Common behaviors from simple functions to densit
functionals Kevin Vu, John C. Snyder, Li Li, Matthias Rupp, Brandon F. Chen, Tarek Khelif, Klaus-
Robert Muller, Kieron Burke, International Journal of Quantum Chemistry 115, 1115--1128 (2015).

Understanding machine-learned density functionals Li Li, John C. Snyder, Isabelle M. Pelaschier, Jessica Huang,

Uma-Naresh Niranjan, Paul Duncan, Matthias Rupp, Klaus-Robert Muller, Kieron Burke, International Journal of
Quantum Chemistry n/a--n/a (2015).

Kernels, Pre-lmages and Optimization John C. Snyder, Sebastian Mika, Kieron Burke, Klaus-Robert
Muller, Chapter in Empirical Inference - Festschrift in Honor of Viladimir N. Vapnik (2013).

Orbital-free Bond Breaking via Machine Learning John C. Snyder, Matthias Rupp, Katja Hansen,
Leo Blooston, Klaus-Robert Muller, Kieron Burke, J. Chem. Phys. 139, 224104 (2013).

Finding Density Functionals with Machine Learning John C. Snyder, Matthias Rupp,
Katja Hansen, Klaus-Robert Muller, Kieron Burke, Phys. Rev. Lett.108, 253002 (2012).

Bypassing the Kohn-Sham equations with

. . ; ) Pure density functional for strong Can exact conditions improve machine-
machlr!e .Iearnmg Felix Brockher_de, Leslie correlations and the thermodynamic learned density functionals? Jacob
vogt, Li Li, Mark E Tuckerman, Kieron limit from machine learning Li Lj, Hollingsworth, Li Li, Thomas E. Baker, Kieron
Bulkeasasickailer Natuze Thomas E. Baker, Steven R. White, Burke, The Journal of Chemical Physics 148,
Communications 8, 872 (2017). Kieron Burke, Phys. Rev.B (2016). 241743 (2018).
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http://dx.doi.org/10.1002/qua.24937
http://dx.doi.org/10.1002/qua.24939
http://dx.doi.org/10.1002/qua.25040
http://link.springer.com/chapter/10.1007/978-3-642-41136-6_21
http://link.aps.org/doi/10.1103/PhysRevLett.108.253002
http://scitation.aip.org/content/aip/journal/jcp/139/22/10.1063/1.4834075

Our latest trick

Kieron Burke
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[ Theory

F — EDFT[nDFT] + AE[TLDFT],

PHYSICAL BEVEw A VOLLUME 52, SUMNIER ) SIFTTENRER 199

Corrdation-encrgy density fasctional forsselas from corrclating Arst-order density matrices

Ml Lovy and Andveam Gorlag
Dicpaarsment of C Romunry and Onaniwm Fheory Growp, Tolane Usvversiy | New (nlownn, Convsana WA
(Rssnnnd 12 Joow 1)
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ML HK map




Range of PBE errors

Kieron Burke
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Learning curves

Kieron Burke
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ML HK map




Learning curves

Kieron Burke
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ML HK map




Learning curves

Kieron Burke
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Potential energy surfaces }

Kieron Burke
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Resorcinol

Kieron Burke

¥
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Resorcinol dynamics
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Figure 3: Resorcinol dynamics from an initi
positions explored during 100 fs NVE MD traj

Density Functionals with Quantum Chemical Accuracy: From Machine Learning to
Molecular Dynamics Mihail Bogojeski, Leslie Vogt-Maranto, Mark E. Tuckerman,
Klaus-Robert Mueller, Kieron Burke, ChemRXiv, (2019).

RESPA-corrected forces (llght blue), and ESCAC—DFTVLSMLJ (O1U€), U) u11E€ COIIOITIIEr CIIEIRY al0IIg €acll trajecuory

(solid lines), with the error relative to CC shown as a shaded line width, and c¢) the evolution of the C-C-O-H

Kieron Rlihedral angle for each trajectory with daShéd rgreyiclines] iddi¢ating the barrier between conformers. For this 47

figure, all DFT calculations use PBE and all CC energies are from CCSD(T).



[ Opportunities for ML in physics using DFT }

DFT is a working procedure for
coarse-graining!
But it needs good functional
approximations.

Kieron Burke IPAM physics and ML 2019 48



Classical DFT - faster than MD }

Can prove HK theorem for equilibrium classical

statistical mechanics (Bob Evans, Advances in
Physics 28 (2), 143-200, 1979.)

Thus can solve self-consistent equations directly for
equilibrium density
But every liquid has a different interaction and so a
different functional.

Can look at wetting, phase transitions, nucleation,
etc.

But often very crude for realistic systems due to
crude functional approximations.
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ARTICLE

Density-functional fluctuation theory of crowds

J. Felipe Méndez-Valderrama 1 Yunus A. Kinkhabwala® 2, Jeffrey Silver 3 Itai Cohen? & T.A. Arias® 4

Extraction of functionals for model system of walking flies. To
test whether this approach applies to actual populations, we V- ToF o) | 2] ]2 o a Vet R oo ft (o] o) o] o o]

consider a model crowd consisting of wild-type male Drosophila |
d

e L TS el Ll o o [0

1v3IH

melanogaster from an out-bred laboratory stock. It is well know

-

that flies exhibit complex spatial preferences®**! and social b_§$ z 1 §§ °
behaviors3>33. Here we seek to determine whether a large crowd §3 | g2 S0 [

of individuals with such complex behaviors indeed can be 220'5 2 g%

described within our vexation and frustration framework. The g% 0 e o o EE— 37 -5, -

flies are confined in 1.5 mm tall transparent chambers where they Ax (em) Number of fies, N Number of fies, N
can walk freely but cannot fly or climb on top of each other. We

. . . c_ e T 9
record overhead videos of the flies, bin the arena, and use custom S A z 1 | Observed probabilly £ s
. . Y £ o
Matlab-based tracking algorithms (Methods) to measure the ed ! g 8 Q
. .. . . . . = o % S
individual bin counts Ny in each video frame. To explore a variety 5= 05 5 2= i q
. . 30 ) £ ] i3 b L]

of behaviors, we use arenas of different shapes®” and apply heat £z 1 L g -

. 34 . . 8 0 0 20 0 5
gradients®* across the arenas to generate different spatial pre- At(S) Number of flies, N Number of fies, N

ferences. We find that the flies fully adjust to such changes in h
their environments after 5 min. We also find that the behavior of

the flies changes slowly over a time scale of hours (Methods). We

thus take care to make our observations over 10 minute windows

during time periods where the behavior is stable.

Vy

).
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[ DFT of nuclear forces

Density functional theory (DFT)
in nuclear physics and astrophysics (I)

T
i
: a1
UNIVERSITE D= LYON
IPNL . i
February 2015
W) Lyoni

Kieron Burke IPAM physics and ML 2019



Warm dense matter

Kieron Burke

Controlled fusion at NIF
Planetary interiors

Matter under extreme

temperature and
pressure

Take theorems of DFT
and heat up

At high enough
temperatures, electrons
behave classically

Impacts of Quantum Chemistry Calculations
on Exoplanetary Science, Planetary
Astronomy, and Astrophysics

A white paper submitted in response to Astro2020 call to Astronomy and Astrophysics

Der-you Kao'->*, Marko Gacesa>*, Renata M. Wentzcovitch?, Shawn Domagal-Goldman', Ravi
K. Kopparapu', Stephen J. Klippenstein®, Steven B. Charnley', Wade G. Henning®!, Joe Renaud’,
Paul Romani', Yuni Lee"!°, Conor A. Nixon!, Koblar A. Jackson®, Martin A. Cordiner"?®,
Nicholas A. Lombardo'®!, Scott Wieman'!!, Vladimir Airapetian'-'2, Veronica Allen'?, Daria
Pidhorodetska'!!, Erika Kohler'?, Julianne Moses'?, Timothy A. Livengood®!, Danielle N.
Simkus'?, Noah J. Planavsky'¥, Chuanfei Dong'’, David A. Yuen*, Arie van den Berg!’,
Alexander A. Pavlov', Jonathan J. Fortney'”

IPAM physics and ML 2019 53



Interior of Jupiter

PHYSICAL REVIEW LETTERS 120, 025701 (2018)

The standard approach to EOS calculations relies on ‘ ad\aba‘ " [—e- this work, H
. : —a - this work, H/He
PrélETHiA gafwapﬁgmg SEOry HoE debn Sk MESSES Iha RN Dditons 6 02 — DFT- PBE
sional electronioy denstiy ¥athecathasimthaionsV, electrons) = 5 AW 0 < . - Bﬁ BE;
many-body wagtbReHen: dfs suceess and stmplicity have 3 4 ’%» S liquid Pierleoni 2016
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[ Relations between WDM and classical DFT }

* Mermin theorem applies to equilibrium
electrons at all temperatures

* Implies entropic contributions to XC and non-
interacting functionals

* As T->0, becomes ground-state theory

* As T -> infinity, becomes classical theory of
charged liquid!
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[ Essence of HK theorem

* Prior to 1964, essentially believed one needs

the many-body wavefunction to find properties
of system.

» HK theorem says density alone, in principle,
determines all properties.

» Extreme compression of information

« KS scheme leverages this for electronic
problem.
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Abstract. We present version 4.0 of the atmospheric chem-
istry box model CAABA/MECCA that now includes a num-
ber of new features: (i) skeletal mechanism reduction, (ii)
the Mainz Organic Mechanism (MOM) chemical mechanism
for volatile organic compounds, (iii) an option to include re-
actions from the Master Chemical Mechanism (MCM) and
other chemical mechanisms, (iv) updated isotope tagging,
and (v) improved and new photolysis modules (JVAL, RAD-
JIMT, DISSOC). Further, when MECCA is connected to a
global model, the new feature of coexisting multiple chem-
istry mechanisms (PolyMECCA/CHEMGLUE) can be used.
Additional changes have been implemented to make the code
more user-friendly and to facilitate the analysis of the model
results. Like earlier versions, CAABA/MECCA-4.0 is a com-
munity model published under the GNU General Public Li-
cense.

1 Introduction

MECCA (Module Efficiently Calculating the Chemistry of
the Atmosphere) is an atmospheric chemistry module that
contains a comprehensive chemical mechanism with tropo-
spheric and stratospheric chemistry of both the gas and the
aqueous phases. For the numerical integration, MECCA uses
the KPP (Kinetic PreProcessor) software (Sandu and Sander,
2006).

To apply the MECCA chemistry to atmospheric condi-
tions, MECCA must be connected to a base model via
the MESSy (Modular Earth Submodel System) interface
(Jockel et al., 2010). This base model can be a complex 3-
dimensional model but it can also be a simple box model.
CAABA (Chemistry As A Boxmodel Application) is such a

box model, simulating the atmospheric environment in which
the MEC(C'A chamictry talkac nlaca
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Direct Kinetic and Atmospheric Mod:
Intermediate Reactions with Acetone
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ABSTRACT: Mounting evidence suggests that Criegee intermediate
tropospheric oxidants of both organic and inorganic gases, sup;
oxidation chemistry initiated by OH radicals. Here, the rate coe
reaction of the simplest Criegee intermediate CH,OO with aceton
(CH;),CO), was measured using laser flash photolysis and ca
spectroscopy methods under tropospherically relevant conditions ¢
temperature. The pressure dependence of kK(CH,00 + (CH,),CO) :
1073 [N,]/((3.7 + 1.4) X 10'® + [N,]) cm® molecule™ s™! was mea
100 Torr range, returning a high-pressure limit value of (4.7 + 0.]
molecule™ s~ at 293 K. A temperature dependence of k(CH,00 + |
cm® molecule™ s™' was observed in the 250—310 K range. The glob:
to model the speciated Criegee intermediate field using the recently 1
various reactions of Criegee intermediates. The incorporation of the
predicts decreases in acetone concentration of as much as 10—40 pg

KEYWORDS: Criegee intermediates, acetone, atmospheric chemistry, gl

CULLIUILIUILLS.

3.2. ME Modeling of the CH,00 + (CH5),CO Reaction.
The observable rate coefficients for the CH,00 + (CHj;),CO
reaction as a function of temperature and pressure were
calculated using Rice—Ramsperger—Kassel—Marcus/ME sim-
ulations, as described by Elsamra et al.'” Briefly, the reaction is
predicted to proceed by the formation of a van der Waals
complex before passing over a submerged barrier to form a
SOZ, as shown in Figure 4. Only one cycloaddition pathway is

A

CH,00 +
(CH,),CO
(0)

VdW complex
(-31.8)

Ozonide
(-199)

Energy (kJ mol™)

Figure 4. Minimum energy pathway for the reaction of CH,OO with
(CH;),CO. The stationary point energies were calculated at the
RCCSD(T)-F12a/VTZ-F12//B3LYP/MG3S level of theory and
were obtained from the previous study by Jalan et al.*'

possible because of the symmetric substitution of the carbonyl
carbon atoms in both reactants. The molecular geometries and
energies, calculated by Jalan et al.’' using RCCSD(T)-F12a/
VTZ-F12//B3LYP/MG3S methods, were input to Arkane, a
one-dimensional ME solver previously named Cantherm that is
part of the RMG-Py package.33 The k(T, P) values output by




Gilt-head Seabream

Kieron Burke

Conformers and Charge Distribution of
Different Protonation States by Quantum
Chemical Calculations

We used quantum chemical calculations to obtain the energetically
most favorable model conformers for the two protonation states
of interest and assess differences in their molecular electrostatic
potential (MEP), which describes the charge distribution around
the molecule. Starting from the structures published by Rak
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Short- and Medium-Term
Exposure to Ocean Acidification
Reduces Olfactory Sensitivity in
Gilthead Seabream

Zélia Velez', Christina C. Roggatz??, David M. Benoit*, Jérg D. Hardege® and
Peter C. Hubbard™
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The effects of ocean acidification on fish are only partially understood. Studies on olfaction
are mostly limited to behavioral alterations of coral reef fish; studies on temperate species
and/or with economic importance are scarce. The current study evaluated the effects of
short- and medium-term exposure to ocean acidification on the olfactory system of gilthead
seabream (Sparus aurata), and attempted to explain observed differences in sensitivity
by changes in the protonation state of amino acid odorants. Short-term exposure to
elevated PCO, decreased olfactory sensitivity to some odorants, such as L-serine,
L-leucine, L-arginine, L-glutamate, and conspecific intestinal fluid, but not to others, such
as L-glutamine and conspecific bile fluid. Seabream were unable to compensate for high
PCO; levels in the medium term; after 4 weeks exposure to high PCO,, the olfactory
sensitivity remained lower in elevated PCO, water. The decrease in olfactory sensitivity in
high PCO, water could be partly attributed to changes in the protonation state of the
odorants and/or their receptor(s); we illustrate how protonation due to reduced pH causes
changes in the charge distribution of odorant molecules, an essential component for
ligand-receptor interaction. However, there are other mechanisms involved. At a histological
level, the olfactory epithelium contained higher densities of mucus cells in fish kept in high
CO, water, and a shift in pH of the mucus they produced to more neutral. These differences
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Maybe we can? J

* If we make T much more accurate and reliable,
can suddenly do much larger simulations, so
much more relevant

* If we make Ey- much more accurate and
reliable, we can do many more simulations of
more challenging systems

* Huge impact if ML improves functionals for

classical DFT, nuclear DFT, or thermal DFT

» Can we do this in 10 years, not 1007
* Maybe we must!
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Summary

Direct solution of Schrodinger equation too expensive
to be practical in many situations.

Density functional theory (DFT) allows larger and more
diverse systems to be modelled, but with
uncontrollable errors.

DFT chemical and materials modeling already plays
important role in modern materials and drug design.
Two very important possibilities:

— Much bigger DFT simulations, more realistic

— Much more accurate, systematic DFT calculations

Other (smaller) areas need better functionals

Thanks to IPAM and NSF and DQOE.



