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Multi-scale multi-physics modeling

Multi-scale modeling: A very ambitious program

Objective: remove the ad hoc part of the modeling process and use only truly reliable models.
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Multi-scale multi-physics modeling

Sequential vs concurrent coupling

sequential coupling: precompute the macro-scale model using the micro-scale model.

concurrent coupling: couple the macro-scale and the micro-scale models ”on-the-fly”.

Figure: schematic of the heterogeneous multi-scale method (E and Engquist 2003)

Difficulty: parametrizing the components needed in the macro-model, using data from the
micro-scale model. For problems without separation of scales, this has been an essential
obstacle.
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Multi-scale multi-physics modeling

Machine learning comes to the rescue

Two objectives:

multi-scale modeling in situations without scale separation

interpretable and truly reliable physical models with machine learning
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Concurrent learning

Sequential vs concurrent learning

Where are the data sets? (It is very expensive to get the data)

sequential learning: first collect labeled data {xj, yj}, then perform learning

concurrent learning: generate the data set on the fly as learning proceeds

compare with ”active learning”: having unlabeled data {xj}, and decide which ones to
label and use them to perform learning

concurrent learning: generate “optimal data set” (both unlabeled and labeled,
representative enough yet as small as possible)

the latter is a more interactive process
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Concurrent learning

The exploration-labeling-training procedure for concurrent learning

Zhang, Wang and E (2018), J. Chem. Phys.

Start out with no (macro-scale) model, no data; but with a micro-scale model.
Repeat the following steps:

1 exploration: explore the configuration space, and decide which configurations need to
be labeled.

2 labeling: compute the micro-scale solutions for the configurations that need to be
labeled. This is our data set.

3 training: train the macro-scale model, and use it to help the exploration

Similar to “active learning” but more interactive......
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Concurrent learning

DP-GEN: concurrent learning for uniformly accurate model

Indicator: ε = maxi
√
〈‖fi − f̄i‖2〉, f̄i = 〈fi〉 ”Active Learning of Uniformly Accurate Inter-atomic Potentials

for Materials Simulation.” arXiv:1810.11890 (2018).
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Molecular modeling

Example 1: Molecular dynamics

Traditional dilemma: accuracy vs cost.

E = E(x1,x2, ...,xi, ...,xN),

mi
d2xi
dt2

= Fi = −∇xiE.

Two ways to calculate E and F :

Computing the inter-atomic forces on the fly using QM, e.g. the Car-Parrinello MD.
Accurate but expensive:

E = 〈Ψ0|HKS
e |Ψ0〉, µφ̈i = HKS

e φi +
∑
j

Λijφj.

Empirical potentials: efficient but unreliable. The Lennard-Jones potential:

Vij = 4ε[(
σ

rij
)12 − (

σ

rij
)6], E =

1

2

∑
i 6=j

Vij.
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Molecular modeling

Integrating ML with molecular modeling

New paradigm:

quantum mechanics model – data generator

machine learning – parametrize (represent) the model

molecular dynamics – simulator
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Molecular modeling

Interaction potential between atoms in molecular dynamics

Consider a system of N atoms, r = {r1, r2, ..., rN}.

the coordinate matrix R ∈ RN×3:

R = {rT1 , · · · , rTi , · · · , rTN}T , ri = (xi, yi, zi).

rc: a pre-defined cut-off radius.

For atom i, defined its neighbors Nrc(i) = {j|rij < rc}, and rji ≡ rj − ri.

Define i’s local environment matrix

Ri = {rT1i, · · · , rTji, · · · , rTNi,i}
T , rji = (xji, yji, zji).

E(R) ≡ E: a map from the coordinate matrix to the potential energy;
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Molecular modeling

Deep Potential: construction

Structure: composite neural networks (NNs). E =
∑

iE
i.

Models of this type are extensible, which implies linear scaling. Behler, J., Parrinello, M. (2007). Phys.

Rev. Lett., 98(14), 146401.

Deep Potential (Comm. Comp. Phys. 23.3 (2018): 629-639.), DPMD (Phys. Rev. Lett. 120 (2018), 143001)
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Molecular modeling

The importance of preserving the symmetries
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Molecular modeling

Preserving symmetry: Poor man’s version

remove translational and rotational symmetry by fixing a local frame of reference

remove permutational symmetry by fixing an ordering of the atoms in the neighborhood

Creates small discontinuity when atoms switch their orders.

Figure: deep potential molecular dynamics (DPMD)
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Molecular modeling

Preserving the symmetries

Translation, rotation, and permutation.

T̂bf (r) = f (r + b), R̂Uf (r) = f (rU),

P̂σf (r) = f (rσ(1), rσ(2), ..., rσ(N))

Translation and Rotation:

Ωi
jk = rji · rki.

Lemma: Ωi
jk is an overcomplete array of basic invariants with respect to rotation, reflection, and translation.

Permutation: ∑
j∈N (i)

g(rji)rji.

Lemma: A function f(r1i, ..., rji, ..., rNii) is invariant to the permutation of instances in rji, if and only if it can be

decomposed in the form ρ(
∑

j∈N (i) g(rji)rji), for suitable transformations g and ρ.
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Molecular modeling

Deep potential: smooth version

The whole sub-network consists of an encoding net Di(Ri) and a fitting net Ei(Di).

(Rotation: R̃i(R̃i)T , permutation: (Gi1)TR̃i and (R̃i)TGi2.)
DeepPot-SE (arxiv: 1805.09003, NIPS 2018), see also Behler and Parrinello, PRL 2007.
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Molecular modeling

DP-GEN: Automatic generation of deep potentials using
concurrent learning

The exploration-labeling-training procedure

Exploration:
Sample the (T, p) space

For each value of (T, p), sample the canonical ensemble (using DPMD).

In addition, initialize the exploration with a variety of different initial configurations.

Labeling: Using DFT (with periodic boundary condition)

Training: Using “deep potential”
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Molecular modeling

∼0.005% configurations explored by DPMD are selected for labeling.
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Molecular modeling

Case 1: accuracy is comparable to the accuracy of the data
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Molecular modeling

Case 2: structural information of DFT water

Radial and angular distribution function of liquid water (PI-AIMD):

Distribution of the Steinhardt order parameter Q̄6:
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Molecular modeling

Open-source softwares: DeePMD-kit

TensorFlow: efficient network operators

LAMMPS, i-PI; MPI/GPU support.

Free download from https://github.com/deepmodeling/deepmd-kit
H. Wang,. et al, .Comp.Phys.Comm., 0010-4655 (2018).
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Molecular modeling

Open-source softwares: DP-GEN

Free download from https://github.com/deepmodeling/dpgen
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Molecular modeling

Discussion group

bbs.deepmd.org
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Molecular modeling

Water phase diagram modeled by DP+SCAN
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Molecular modeling

DP-GEN for water
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Reference model: DFT at the classical SCAN level;

Starting configurations: relaxed Ice I-XV at T = 0 K and equilibrated liquid at T = 330 K;

Range of thermodynamic conditions: red dashed box;

number of MD snapshots: DPMD exploration: 1.4 billion, DFT calculation: 32 thousand (∼0.002%

of the former).

Typical AIMD trajectory: 100 thousand snapshots (50-100 ps).

number of DP-GEN iterations: 100.
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Molecular modeling

Lithium diffusion in solid-state electrolyte

Ability to handle multi-component systems, here the LiGePS-type systems.

Jun Cheng’s group at Xiamen U
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Molecular modeling

1 physical/chemical problems

understanding water (phase diagram of water, including reactive regions; phase transition: ice to

water, ionic liquid to super-ionic ice; nuclear quantum effect: collective tunneling, isotope effect;

reactive event: dissociation and recombination; water surface and water/TiO2 interface; spectra:

infra-red; Raman; X-ray Absorption; exotic properties: dielectric constant; density anomaly, etc.

physical understanding of different systems that require long-time large-scale simulation with high

degrees of model fidelity ( high-pressure iron: fractional defect; phase boundary; high-pressure

hydrogen: exotic phases)

catalysis (Pt cluster on MoS2 surface; CO molecules on gold surface, etc.)

2 materials science problems

battery materials (diffusion of lithium in LGePS, LSGeSiPS, etc.; diffusion of Se in Cu2Se alloy)

high entropy/high temperature alloy (CoCrFeMnNi alloy; Ni-based alloy)

3 organic chemistry/bio problems

crystal structure prediction of molecular crystals;

protein-ligand interaction;

protein folding.
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Reinforced dynamics for the exploration of very high dimensional spaces

Exploration of very high dimensional configuration spaces

Problems of interest:

structural optimization (e.g. protein folding)

free energy calculation

coarse-grained molecular dynamics

Metadynamics (Laio and Parrinello, 2002)

free energy is computed by adding up little Gaussians

free energy is used to help exploration

Very effective when the number of collective variables is small.
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Reinforced dynamics for the exploration of very high dimensional spaces

Collective variables and free energies

Consider a pre-defined set of collective variables (CV) s. Free energy surface (FES) A(s):

A(s) = −1

β
ln p(s), p(s) =

1

Z

∫
e−βU(r)δ(s(r)− s) dr,

Mean forces
F (s) = −∇sA(s).
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Reinforced dynamics for the exploration of very high dimensional spaces

Reinforced dynamics

exploration:
biased molecular dynamics:

f̃i(r) = −∇riU(r) + σ(ε(s(r)))∇riA(s(r))

σ is an activation function that switches on and off the biasing term

decide which ones to label: train an ensemble of networks F j, j = 1, · · · , N and compute

variance = 〈|F j(s)− F̄ (s)‖2〉, F̄ (s) = 〈F j(s)〉

labeling: compute the mean force (using restrained MD)

training: deep potential-like coarse-grained model

Can now handle many collective variables
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Reinforced dynamics for the exploration of very high dimensional spaces

Reinforced dynamics

Left: Tripeptide: brute-force simulation (∼50 µs) v.s. RiD (10 ns biased + 190 ns
restrained):

Right: higher dimensional FES: ala-10 and 20 CVs.
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Reinforced dynamics for the exploration of very high dimensional spaces

Reinforced dynamics

More recently: Trp-cage folded (20 amino acids, 38 CVs)

Now we are folding more.
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Reinforced dynamics for the exploration of very high dimensional spaces

Coarse graining (CG)

Given CG variables s. Free energy surface (FES), or CG potential, A(s):

A(s) = −1

β
ln p(s), p(s) =

1

Z

∫
e−βU(r)δ(s(r)− s) dr.

Radial distribution functions (left) and angular distribution functions (right):

(J. Chem. Phys. 2018, 149(3): 034101.)
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Kinetic model for gas dynamics

Modeling gas dynamics

Kn =
mean free path

macroscopic length

1.1 Some History and Background 1 CONTINUUM MODELS

Kn10¡2 10¡1 1.0 10.0

½ ½

Euler�Eqn

equilibrium non-equilibrium

NSF�Eqn kinetic�regime free�flight
transition
regime

½ ½½

! !!!

Figure 1: Overview of the range of Knudsen number and various model regimes.

the moment systems lead to stable hyperbolic equations. However, in practical explicit
systems hyperbolicity is given only in a finite range due to linearization. In Junk (1998)
and Junk (2002) it is shown that the fully nonlinear maximum-entropy approach has
sever drawbacks and singularities. Furthermore, the hyperbolicity leads to discontinuous
sub-shock solutions in the shock profile. A variant of the moment method has been
proposed by Eu (1980) and is used, e.g., in Myong (2001). Recently, a maximum-entropy
10-moment system has been used by Suzuki and van Leer (2005).

Both fundamental approaches of kinetic theory, Chapman-Enskog and Grad, exhibit
severe disadvantages. Higher order Chapman-Enskog expansions are unstable and Grad’s
method introduces subshocks and show slow convergence. It seems to be desirable to
combine both methods in order to remedy their disadvantages. Such an hybrid approach
have already been discussed by Grad in a side note in Grad (1958). He derives a variant
of the regularized 13-moment equations given below, but surprisingly he neither gives any
details nor is he using or investigating the equations. In the last fifty years the paper Grad
(1958) was cited as standard source for introduction into kinetic theory, but, apparently,
this specific idea got entirely lost and seems not to be known in present day literature.

The Chapman-Enskog expansion is based on equilibrium and the corrections describe
the non-equilibrium perturbation. A hybrid version which uses a non-equilibrium as basis
is discussed in Karlin et al. (1998). They deduced linearized equations with unspecified
coefficients. Starting from Burnett equations Jin and Slemrod (2001) derived an extended
system of evolution equations which resembles the regularized 13-moment system. It is
solved numerically in Jin et al. (2002). However, the tensorial structure of their relations
is not in accordance with Boltzmann’s equation. Starting from higher moment systems
Müller et al. (2003) discussed a parabolization which includes higher order expressions
into hyperbolic equations.

The regularized 13-moment-equations presented below were rigorously derived from
Boltzmann’s equation in Struchtrup and Torrilhon (2003). The key ingredient is a Chapman-
Enskog expansion around a pseudo-equilibrium which is given by the constitutive relations
of Grad for stress tensor and heat flux. The final system consists of evolution equations
for the fluid fields: density, velocity, temperature, stress tensor and heat flux. The closure
procedure adds second order derivatives to Grad’s evolution equations of stress and heat
flux, thus regularizes the former hyperbolic equations into a mixed hyperbolic-parabolic
system with relaxation. The relaxational and parabolic part is only present in the equa-
tions of stress and heat flux and models the multi-scale dissipation of Boltzmann’s equa-
tion, see Struchtrup and Torrilhon (2003). Like the Boltzmann equation the R13 system
is derived for monatomic gases and all the results in this chapter are restricted to this
case. The extension to poly-atomic gases or mixtures is future work. The text book by
Struchtrup (2005b) provides an introduction to approximation methods in kinetic theory

RTO-EN-AVT-194 10 - 5 
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Kinetic model for gas dynamics

Boltzmann Equation

One-particle density function f (x,v, t)

∂tf + v · ∇xf =
1

ε
Q(f ), v ∈ R3, x ∈ Ω ⊂ R3,

ε = Knudsen number and Q is the collision operator.

Macroscopic state variables: ρ, u and T (density, bulk velocity and temperature)

ρ =

∫
f dv, u =

1

ρ

∫
fv dv, T =

1

3ρ

∫
f |v − u|2 dv.

When ε� 1, Boltzmann can be approximated by Euler:

∂tU +∇x · F (U ) = 0,

with p = ρT , E = 1
2ρu

2 + 3
2ρT ,

U = (ρ, ρu, E)T

F (U ) = (ρu, ρu⊗ u + pI, (E + p)u)T
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Kinetic model for gas dynamics

Conventional Moment Method

Proceed in 3 steps:

1. Start with the choice of a finite-dimensional linear subspace of functions of v (usually to
be polynomials, e.g., Hermite polynomials).

2. Expand f (x,v, t) using these functions as bases and take the coefficients as moments
(including macroscopic variables ρ, u, T , etc.).

3. Finally close the system with simplified assumptions, e.g., truncating moments of higher
orders ∂tU +∇x · F (U ,W ) = 0,

∂tW +∇x ·G(U ,W ) =
1

ε
R(U ,W ).

For instance, in Grad 13-moment system, (U ,W ) is constructed based on the moments of
the bases {1,v, (v − u)⊗ (v − u), |v − u|2(v − u)}.
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Kinetic model for gas dynamics

Machine learning-based moment method

Objective: construct an uniformly accurate (generalized) moment model using machine
learning.

1: Learn the Moments through Autoencoder
Find an encoder Ψ that maps f (·,v) to generalized moments W ∈ RM and a decoder Φ
that recovers the original f from U ,W

W = Ψ(f ) =

∫
wf dv, Φ(U ,W )(v) = h(v;U ,W ).

The goal is essentially to find optimal w and h parametrized by neural networks through
minimizing

E
f∼D
‖f − Φ(Ψ(f ))‖2 + λη(η(f )− hη(U ,W ))2.

η(f ) denotes entropy.
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Kinetic model for gas dynamics

2: Learn the Fluxes and Source Terms in the PDE

Recall the general conservative form of the moment system{
∂tU +∇x · F (U ,W ; ε) = 0,

∂tW +∇x ·G(U ,W ; ε) = R(U ,W ; ε).

Rewrite it into (variance reduction){
∂tU +∇x · [F0(U ) + F̃ (U ,W ; ε)] = 0,

∂tW +∇x · [G0(U ) + G̃(U ,W ; ε)] = R(U ,W ; ε).

F0(U ),G0(U ) are the fluxes of the moments U ,W under the Maxwellian distribution.

Our goal is to obtain ML models for F̃ , G̃,R from the original kinetic equation.

Issues: (1) physical symmetries (e.g. Galilean invariance); (2) data generation (active
learning algorithm); (3) locality vs. non-locality of the model

October 15, 2019 43 / 52



Kinetic model for gas dynamics

preparing the data finding the moments learning the closure exploring the data

𝑈
𝑊

Figure: Schematic diagram of the machine learning-based moment method

exploration: random initial conditions made up of waves and discontinuities

labeling: solving kinetic equation (Boltzmann equation for Maxwell molecules)

training: Galilean invariance
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Kinetic model for gas dynamics

Galilean Invariant Moments

Galilean invariance of the Boltzmann equation:

f ′(x,u, t) = f (x− tu′,v − u′, t).

Moments:

WGal = Ψ(f ) =

∫
f (v)w

(
v − u√

T

)
dv.

Closure:

∂t

∫
RD
f (v)w

(
v − uj√

Tj

)
dv+∇x·

∫
RD
f (v)w

(
v − uj√

Tj

)
vT dv =

∫
RD

1

ε
Q(f )w

(
v − uj√

Tj

)
dv.

∂tWGal +∇x ·GGal(U ,WGal;Uj) =
1

ε
RGal(U ,WGal).

The data efficiency is better than the previous one since it learns the dynamical system more
intrinsically.
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Kinetic model for gas dynamics

ε ∼ Log10-Uniform(−3, 1), constant across the domain; initial profiles consist of a
combination of a few sin waves and shocks.

Size of dataset array: 200× 100× 48× 48× 100. Specify W ∈ R9.
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Figure: Sample profiles of ρ, ρu, E (from left to right) at t = 0, 0.05, 0.1 (from top to bottom), ε = 8.10
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Kinetic model for gas dynamics

ε varies from 10−3 to 10 in the domain; initial profiles are the same as before
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Figure: Profiles of ρ, ρu, E (from left to right) at t = 0, 0.05, 0.1 (from top to bottom)
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Kinetic model for gas dynamics

Numerical results

Learned functions w(v) as generalized moments
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Kinetic model for gas dynamics

Other possible applications of concurrent learning

solving PDEs

model-based reinforcement learning

control

Essentially any time we have a code (or a simulator) to generate the states and the data.
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Concluding remarks

Concluding remarks

Concurrent learning is a very powerful tool for multi-scale modeling.

DPMD allows us to perform MD simulation of large systems with quantum accuracy

RiD allows us to compute free energy function with many collective variables

ML based moment closure allows to obtain hydrodynamic models for the Boltzmann equation for

Maxwell molecules that are uniformly accurate for a wide range of Knudsen numbers

These are models, not just algorithms (sequential multi-scale modeling paradigm)

The methodologies are quite general

It is important to take into account symmetries and other physical constraints

New paradigm for multi-scale models: analogy to Euler’s equations for complex gases
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MSML 2020

A new annual conference:
Mathematical and Scientific Machine Learning (MSML)

First meeting:

Program Chairman: Jianfeng Lu (Duke) and Rachel Ward (Univ Texas/Austin)

Time: July 15-17, 2020

Location: Princeton

Submission deadline: November 30, 2019

website: http://msml-conf.org
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