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1) Accuracy of the reference data used to build the model
2) Ability to represent the reference data accurately
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Molecular Hamiltonian: Molecular Interactions
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Ĥ = E 

E[⇢] = T [⇢] + Vee[⇢] + Vxc[⇢]

Electronic structure (ab initio) methods

1930: Hartree-Fock equations 
1951: Hartree-Fock-Roothan equations 
1965: Kohn & Sham equations 
1966: Coupled-Cluster equations
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correlation effects into those associated with nearly degener-
ate electron configurations (see “Strongly correlated sys-
tems,” which follows) and the remaining so-called dynamic
correlations. 

Dynamic correlations are mostly spatially localized.
While locality is explicit in the correlation functionals of DFT,
it is not directly evident in wavefunction methods. A challenge
and an opportunity is to exploit localization to break the un-
physical increase in computational cost with system size. In
addition to truncating by excitation level, the goal is to trun-
cate according to some distance-based criterion. Proof of con-
cept was first demonstrated by Peter Pulay in the early 1980s;
nowadays local models can reduce the cost of many-body
methods to a linear function of the system size. However, con-
structing a local model that retains a good model chemistry is
still an open challenge.

A related problem is the difficulty of approaching com-
pleteness of the atomic-orbital basis sets used for correlated
electrons. From theory, one expects and observes slow L−3

convergence of the correlation energy with respect to the
highest angular momentum L of the basis functions. De-
scribing two-particle and higher correlations in terms of the
products of one-particle basis functions is both inefficient and
nonlocal. One way forward is to augment the basis with two-
particle functions that correctly describe the wavefunction in
the vicinity of electron–electron coalescence. That research is
yielding significant improvements in convergence, although
many technical and practical issues remain open.

Although localizability of electron correlation yields
many useful results, there is still a need for nonlocality. Cor-
relations have a nonlocal component associated with disper-
sion interactions between systems, overlapping or not. Such
interactions are crucial for correctly modeling large-scale self-
assembly in nanoscale and mesoscale systems and for bio-
chemical systems. Nonlocal correlation effects are neglected in
standard DFT functionals, so research is under way to modify
the functionals, whether by simple empirical corrections or by
first-principles constructions, to include more nonlocal char-
acter. In that sense, the future modeling needs of the two
branches of quantum chemistry are diametrically opposed.

Strongly correlated systems. A system that exhibits
genuinely strong electron correlations cannot be well de-
scribed by a single electronic configuration. Rather, the in-
teraction among multiple configurations produces interest-
ing effects such as molecular analogues of the Kondo effect
and magnetic couplings of transition metal atoms with
partly filled d shells. Proper modeling of such systems lies
at the very limit of—or even beyond—the standard methods
because both Kohn–Sham DFT and wavefunction methods
begin with a single configuration and correct imperfectly for
correlation effects.

At present, the usual approach to strongly correlated
systems is to solve the Schrödinger equation exactly in a
small strongly correlated space of so-called active orbitals,
with the rest of the system treated in a mean-field approxi-
mation. Because of the exponential cost of the exact treat-
ment, there is a hard upper limit of approximately 16 active
orbitals—insufficient to treat more than one or two atoms
with active s, p, and d shells. (The separation of a correlated
space resembles what is done in dynamical mean-field the-
ory and related techniques in condensed matter, as described
in the article by Gabriel Kotliar and Dieter Vollhardt, PHYSICS
TODAY, March 2004, page 53.) Picking just a few configura-
tions or a few active orbitals to treat the strong correlations
means that the model is not truly from first principles. By-
passing the need for such system-specific choices is a chal-
lenge for the future.

One possible new approach to highly correlated systems
is the physicists’ density-matrix renormalization group, which
builds up descriptions of the many-body Hamiltonian atom by
atom (or region by region) in an iterative way, while keeping
the lowest-energy state at every iteration. At present, it is a
method best suited to systems with 1D connectivity. 

Another alternative may be to use reduced density ma-
trices. The ground-state energy of any system can be exactly

Given a finite basis set, the memory and processor needs for an
exact treatment of electron interactions (the so-called full config-
uration interaction or full CI) grow exponentially with the number
N of atoms in the system. Model chemistries introduce approxi-
mations that reduce the scaling: N 3 for density-functional theory
(DFT), Hartree–Fock, and quantum Monte Carlo (QMC, a basis-
independent, stochastic wavefunction approach); N 5 for second-
order Møller–Plesset perturbation theory (MP2); and N 7 for the
coupled-cluster method CCSD(T). The figure illustrates an esti-
mated evolution of the size of the systems solvable by each
method if computer power continues to double every two years
or so. In the early 1990s, Weitao Yang, Giulia Galli, and Michele
Parrinello realized that a reduction to linear-scaling complexity
could be achieved for DFT if the solution to the electronic prob-
lem could be re-expressed in a localized language. After a
decade of developments by chemists and physicists, several
linear-scaling electronic-structure methods are now in use that
can address systems with as many as a few thousand atoms.
Other theories, such as linear-scaling QMC, have also achieved
improved scaling through locality. Reduced-scaling wavefunction
theories are in development. The shaded area at the top shows
the nuclear complexity wall described in the text. 
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Ĥ = E 

E[⇢] = T [⇢] + Vee[⇢] + Vxc[⇢]

Electronic structure (ab initio) methods

1930: Hartree-Fock equations 
1951: Hartree-Fock-Roothan equations 
1965: Kohn & Sham equations 
1966: Coupled-Cluster equations

Molecular Interactions: Quantum Mechanics

62 April 2008    Physics Today www.physicstoday.org

correlation effects into those associated with nearly degener-
ate electron configurations (see “Strongly correlated sys-
tems,” which follows) and the remaining so-called dynamic
correlations. 

Dynamic correlations are mostly spatially localized.
While locality is explicit in the correlation functionals of DFT,
it is not directly evident in wavefunction methods. A challenge
and an opportunity is to exploit localization to break the un-
physical increase in computational cost with system size. In
addition to truncating by excitation level, the goal is to trun-
cate according to some distance-based criterion. Proof of con-
cept was first demonstrated by Peter Pulay in the early 1980s;
nowadays local models can reduce the cost of many-body
methods to a linear function of the system size. However, con-
structing a local model that retains a good model chemistry is
still an open challenge.

A related problem is the difficulty of approaching com-
pleteness of the atomic-orbital basis sets used for correlated
electrons. From theory, one expects and observes slow L−3

convergence of the correlation energy with respect to the
highest angular momentum L of the basis functions. De-
scribing two-particle and higher correlations in terms of the
products of one-particle basis functions is both inefficient and
nonlocal. One way forward is to augment the basis with two-
particle functions that correctly describe the wavefunction in
the vicinity of electron–electron coalescence. That research is
yielding significant improvements in convergence, although
many technical and practical issues remain open.

Although localizability of electron correlation yields
many useful results, there is still a need for nonlocality. Cor-
relations have a nonlocal component associated with disper-
sion interactions between systems, overlapping or not. Such
interactions are crucial for correctly modeling large-scale self-
assembly in nanoscale and mesoscale systems and for bio-
chemical systems. Nonlocal correlation effects are neglected in
standard DFT functionals, so research is under way to modify
the functionals, whether by simple empirical corrections or by
first-principles constructions, to include more nonlocal char-
acter. In that sense, the future modeling needs of the two
branches of quantum chemistry are diametrically opposed.

Strongly correlated systems. A system that exhibits
genuinely strong electron correlations cannot be well de-
scribed by a single electronic configuration. Rather, the in-
teraction among multiple configurations produces interest-
ing effects such as molecular analogues of the Kondo effect
and magnetic couplings of transition metal atoms with
partly filled d shells. Proper modeling of such systems lies
at the very limit of—or even beyond—the standard methods
because both Kohn–Sham DFT and wavefunction methods
begin with a single configuration and correct imperfectly for
correlation effects.

At present, the usual approach to strongly correlated
systems is to solve the Schrödinger equation exactly in a
small strongly correlated space of so-called active orbitals,
with the rest of the system treated in a mean-field approxi-
mation. Because of the exponential cost of the exact treat-
ment, there is a hard upper limit of approximately 16 active
orbitals—insufficient to treat more than one or two atoms
with active s, p, and d shells. (The separation of a correlated
space resembles what is done in dynamical mean-field the-
ory and related techniques in condensed matter, as described
in the article by Gabriel Kotliar and Dieter Vollhardt, PHYSICS
TODAY, March 2004, page 53.) Picking just a few configura-
tions or a few active orbitals to treat the strong correlations
means that the model is not truly from first principles. By-
passing the need for such system-specific choices is a chal-
lenge for the future.

One possible new approach to highly correlated systems
is the physicists’ density-matrix renormalization group, which
builds up descriptions of the many-body Hamiltonian atom by
atom (or region by region) in an iterative way, while keeping
the lowest-energy state at every iteration. At present, it is a
method best suited to systems with 1D connectivity. 

Another alternative may be to use reduced density ma-
trices. The ground-state energy of any system can be exactly

Given a finite basis set, the memory and processor needs for an
exact treatment of electron interactions (the so-called full config-
uration interaction or full CI) grow exponentially with the number
N of atoms in the system. Model chemistries introduce approxi-
mations that reduce the scaling: N 3 for density-functional theory
(DFT), Hartree–Fock, and quantum Monte Carlo (QMC, a basis-
independent, stochastic wavefunction approach); N 5 for second-
order Møller–Plesset perturbation theory (MP2); and N 7 for the
coupled-cluster method CCSD(T). The figure illustrates an esti-
mated evolution of the size of the systems solvable by each
method if computer power continues to double every two years
or so. In the early 1990s, Weitao Yang, Giulia Galli, and Michele
Parrinello realized that a reduction to linear-scaling complexity
could be achieved for DFT if the solution to the electronic prob-
lem could be re-expressed in a localized language. After a
decade of developments by chemists and physicists, several
linear-scaling electronic-structure methods are now in use that
can address systems with as many as a few thousand atoms.
Other theories, such as linear-scaling QMC, have also achieved
improved scaling through locality. Reduced-scaling wavefunction
theories are in development. The shaded area at the top shows
the nuclear complexity wall described in the text. 

100 000

10 000

1000

100

10

1

N
U

M
B

E
R

O
F

A
T

O
M

S

YEAR

2003 2007 2011 2015

Linear-
scaling
DFT

DFT

QMC MP2

CCSD(T)

Exact treatment

Box 4. Scaling of computational needs with system size

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
128.54.23.55 On: Sat, 11 Jan 2014 19:59:16

Head-Gordon & Artacho, Phys. Today 61, 58 (2008)

FP, Acc. Chem. Res. 49, 1844 (2016)



+
⌥

i<j

⇧
4�ij

⇤�
⇤ij

rij

⇥12

�
�

⇤ij

rij

⇥6
⌅

+
qiqj

4⇥�0Rij

⌃

V (~RN ) =
X

bonds

kb
2
(rb � rb,o)

2 +
X

angles

ka
2
(✓a � ✓a,o)

2 +
X

torsion

"
X

n

Vn

2
(1 + cos (n! � �))

#Molecular mechanics = Force fields
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correlation effects into those associated with nearly degener-
ate electron configurations (see “Strongly correlated sys-
tems,” which follows) and the remaining so-called dynamic
correlations. 

Dynamic correlations are mostly spatially localized.
While locality is explicit in the correlation functionals of DFT,
it is not directly evident in wavefunction methods. A challenge
and an opportunity is to exploit localization to break the un-
physical increase in computational cost with system size. In
addition to truncating by excitation level, the goal is to trun-
cate according to some distance-based criterion. Proof of con-
cept was first demonstrated by Peter Pulay in the early 1980s;
nowadays local models can reduce the cost of many-body
methods to a linear function of the system size. However, con-
structing a local model that retains a good model chemistry is
still an open challenge.

A related problem is the difficulty of approaching com-
pleteness of the atomic-orbital basis sets used for correlated
electrons. From theory, one expects and observes slow L−3

convergence of the correlation energy with respect to the
highest angular momentum L of the basis functions. De-
scribing two-particle and higher correlations in terms of the
products of one-particle basis functions is both inefficient and
nonlocal. One way forward is to augment the basis with two-
particle functions that correctly describe the wavefunction in
the vicinity of electron–electron coalescence. That research is
yielding significant improvements in convergence, although
many technical and practical issues remain open.

Although localizability of electron correlation yields
many useful results, there is still a need for nonlocality. Cor-
relations have a nonlocal component associated with disper-
sion interactions between systems, overlapping or not. Such
interactions are crucial for correctly modeling large-scale self-
assembly in nanoscale and mesoscale systems and for bio-
chemical systems. Nonlocal correlation effects are neglected in
standard DFT functionals, so research is under way to modify
the functionals, whether by simple empirical corrections or by
first-principles constructions, to include more nonlocal char-
acter. In that sense, the future modeling needs of the two
branches of quantum chemistry are diametrically opposed.

Strongly correlated systems. A system that exhibits
genuinely strong electron correlations cannot be well de-
scribed by a single electronic configuration. Rather, the in-
teraction among multiple configurations produces interest-
ing effects such as molecular analogues of the Kondo effect
and magnetic couplings of transition metal atoms with
partly filled d shells. Proper modeling of such systems lies
at the very limit of—or even beyond—the standard methods
because both Kohn–Sham DFT and wavefunction methods
begin with a single configuration and correct imperfectly for
correlation effects.

At present, the usual approach to strongly correlated
systems is to solve the Schrödinger equation exactly in a
small strongly correlated space of so-called active orbitals,
with the rest of the system treated in a mean-field approxi-
mation. Because of the exponential cost of the exact treat-
ment, there is a hard upper limit of approximately 16 active
orbitals—insufficient to treat more than one or two atoms
with active s, p, and d shells. (The separation of a correlated
space resembles what is done in dynamical mean-field the-
ory and related techniques in condensed matter, as described
in the article by Gabriel Kotliar and Dieter Vollhardt, PHYSICS
TODAY, March 2004, page 53.) Picking just a few configura-
tions or a few active orbitals to treat the strong correlations
means that the model is not truly from first principles. By-
passing the need for such system-specific choices is a chal-
lenge for the future.

One possible new approach to highly correlated systems
is the physicists’ density-matrix renormalization group, which
builds up descriptions of the many-body Hamiltonian atom by
atom (or region by region) in an iterative way, while keeping
the lowest-energy state at every iteration. At present, it is a
method best suited to systems with 1D connectivity. 

Another alternative may be to use reduced density ma-
trices. The ground-state energy of any system can be exactly

Given a finite basis set, the memory and processor needs for an
exact treatment of electron interactions (the so-called full config-
uration interaction or full CI) grow exponentially with the number
N of atoms in the system. Model chemistries introduce approxi-
mations that reduce the scaling: N 3 for density-functional theory
(DFT), Hartree–Fock, and quantum Monte Carlo (QMC, a basis-
independent, stochastic wavefunction approach); N 5 for second-
order Møller–Plesset perturbation theory (MP2); and N 7 for the
coupled-cluster method CCSD(T). The figure illustrates an esti-
mated evolution of the size of the systems solvable by each
method if computer power continues to double every two years
or so. In the early 1990s, Weitao Yang, Giulia Galli, and Michele
Parrinello realized that a reduction to linear-scaling complexity
could be achieved for DFT if the solution to the electronic prob-
lem could be re-expressed in a localized language. After a
decade of developments by chemists and physicists, several
linear-scaling electronic-structure methods are now in use that
can address systems with as many as a few thousand atoms.
Other theories, such as linear-scaling QMC, have also achieved
improved scaling through locality. Reduced-scaling wavefunction
theories are in development. The shaded area at the top shows
the nuclear complexity wall described in the text. 
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correlation effects into those associated with nearly degener-
ate electron configurations (see “Strongly correlated sys-
tems,” which follows) and the remaining so-called dynamic
correlations. 

Dynamic correlations are mostly spatially localized.
While locality is explicit in the correlation functionals of DFT,
it is not directly evident in wavefunction methods. A challenge
and an opportunity is to exploit localization to break the un-
physical increase in computational cost with system size. In
addition to truncating by excitation level, the goal is to trun-
cate according to some distance-based criterion. Proof of con-
cept was first demonstrated by Peter Pulay in the early 1980s;
nowadays local models can reduce the cost of many-body
methods to a linear function of the system size. However, con-
structing a local model that retains a good model chemistry is
still an open challenge.

A related problem is the difficulty of approaching com-
pleteness of the atomic-orbital basis sets used for correlated
electrons. From theory, one expects and observes slow L−3

convergence of the correlation energy with respect to the
highest angular momentum L of the basis functions. De-
scribing two-particle and higher correlations in terms of the
products of one-particle basis functions is both inefficient and
nonlocal. One way forward is to augment the basis with two-
particle functions that correctly describe the wavefunction in
the vicinity of electron–electron coalescence. That research is
yielding significant improvements in convergence, although
many technical and practical issues remain open.

Although localizability of electron correlation yields
many useful results, there is still a need for nonlocality. Cor-
relations have a nonlocal component associated with disper-
sion interactions between systems, overlapping or not. Such
interactions are crucial for correctly modeling large-scale self-
assembly in nanoscale and mesoscale systems and for bio-
chemical systems. Nonlocal correlation effects are neglected in
standard DFT functionals, so research is under way to modify
the functionals, whether by simple empirical corrections or by
first-principles constructions, to include more nonlocal char-
acter. In that sense, the future modeling needs of the two
branches of quantum chemistry are diametrically opposed.

Strongly correlated systems. A system that exhibits
genuinely strong electron correlations cannot be well de-
scribed by a single electronic configuration. Rather, the in-
teraction among multiple configurations produces interest-
ing effects such as molecular analogues of the Kondo effect
and magnetic couplings of transition metal atoms with
partly filled d shells. Proper modeling of such systems lies
at the very limit of—or even beyond—the standard methods
because both Kohn–Sham DFT and wavefunction methods
begin with a single configuration and correct imperfectly for
correlation effects.

At present, the usual approach to strongly correlated
systems is to solve the Schrödinger equation exactly in a
small strongly correlated space of so-called active orbitals,
with the rest of the system treated in a mean-field approxi-
mation. Because of the exponential cost of the exact treat-
ment, there is a hard upper limit of approximately 16 active
orbitals—insufficient to treat more than one or two atoms
with active s, p, and d shells. (The separation of a correlated
space resembles what is done in dynamical mean-field the-
ory and related techniques in condensed matter, as described
in the article by Gabriel Kotliar and Dieter Vollhardt, PHYSICS
TODAY, March 2004, page 53.) Picking just a few configura-
tions or a few active orbitals to treat the strong correlations
means that the model is not truly from first principles. By-
passing the need for such system-specific choices is a chal-
lenge for the future.

One possible new approach to highly correlated systems
is the physicists’ density-matrix renormalization group, which
builds up descriptions of the many-body Hamiltonian atom by
atom (or region by region) in an iterative way, while keeping
the lowest-energy state at every iteration. At present, it is a
method best suited to systems with 1D connectivity. 

Another alternative may be to use reduced density ma-
trices. The ground-state energy of any system can be exactly

Given a finite basis set, the memory and processor needs for an
exact treatment of electron interactions (the so-called full config-
uration interaction or full CI) grow exponentially with the number
N of atoms in the system. Model chemistries introduce approxi-
mations that reduce the scaling: N 3 for density-functional theory
(DFT), Hartree–Fock, and quantum Monte Carlo (QMC, a basis-
independent, stochastic wavefunction approach); N 5 for second-
order Møller–Plesset perturbation theory (MP2); and N 7 for the
coupled-cluster method CCSD(T). The figure illustrates an esti-
mated evolution of the size of the systems solvable by each
method if computer power continues to double every two years
or so. In the early 1990s, Weitao Yang, Giulia Galli, and Michele
Parrinello realized that a reduction to linear-scaling complexity
could be achieved for DFT if the solution to the electronic prob-
lem could be re-expressed in a localized language. After a
decade of developments by chemists and physicists, several
linear-scaling electronic-structure methods are now in use that
can address systems with as many as a few thousand atoms.
Other theories, such as linear-scaling QMC, have also achieved
improved scaling through locality. Reduced-scaling wavefunction
theories are in development. The shaded area at the top shows
the nuclear complexity wall described in the text. 
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correlation effects into those associated with nearly degener-
ate electron configurations (see “Strongly correlated sys-
tems,” which follows) and the remaining so-called dynamic
correlations. 

Dynamic correlations are mostly spatially localized.
While locality is explicit in the correlation functionals of DFT,
it is not directly evident in wavefunction methods. A challenge
and an opportunity is to exploit localization to break the un-
physical increase in computational cost with system size. In
addition to truncating by excitation level, the goal is to trun-
cate according to some distance-based criterion. Proof of con-
cept was first demonstrated by Peter Pulay in the early 1980s;
nowadays local models can reduce the cost of many-body
methods to a linear function of the system size. However, con-
structing a local model that retains a good model chemistry is
still an open challenge.

A related problem is the difficulty of approaching com-
pleteness of the atomic-orbital basis sets used for correlated
electrons. From theory, one expects and observes slow L−3

convergence of the correlation energy with respect to the
highest angular momentum L of the basis functions. De-
scribing two-particle and higher correlations in terms of the
products of one-particle basis functions is both inefficient and
nonlocal. One way forward is to augment the basis with two-
particle functions that correctly describe the wavefunction in
the vicinity of electron–electron coalescence. That research is
yielding significant improvements in convergence, although
many technical and practical issues remain open.

Although localizability of electron correlation yields
many useful results, there is still a need for nonlocality. Cor-
relations have a nonlocal component associated with disper-
sion interactions between systems, overlapping or not. Such
interactions are crucial for correctly modeling large-scale self-
assembly in nanoscale and mesoscale systems and for bio-
chemical systems. Nonlocal correlation effects are neglected in
standard DFT functionals, so research is under way to modify
the functionals, whether by simple empirical corrections or by
first-principles constructions, to include more nonlocal char-
acter. In that sense, the future modeling needs of the two
branches of quantum chemistry are diametrically opposed.

Strongly correlated systems. A system that exhibits
genuinely strong electron correlations cannot be well de-
scribed by a single electronic configuration. Rather, the in-
teraction among multiple configurations produces interest-
ing effects such as molecular analogues of the Kondo effect
and magnetic couplings of transition metal atoms with
partly filled d shells. Proper modeling of such systems lies
at the very limit of—or even beyond—the standard methods
because both Kohn–Sham DFT and wavefunction methods
begin with a single configuration and correct imperfectly for
correlation effects.

At present, the usual approach to strongly correlated
systems is to solve the Schrödinger equation exactly in a
small strongly correlated space of so-called active orbitals,
with the rest of the system treated in a mean-field approxi-
mation. Because of the exponential cost of the exact treat-
ment, there is a hard upper limit of approximately 16 active
orbitals—insufficient to treat more than one or two atoms
with active s, p, and d shells. (The separation of a correlated
space resembles what is done in dynamical mean-field the-
ory and related techniques in condensed matter, as described
in the article by Gabriel Kotliar and Dieter Vollhardt, PHYSICS
TODAY, March 2004, page 53.) Picking just a few configura-
tions or a few active orbitals to treat the strong correlations
means that the model is not truly from first principles. By-
passing the need for such system-specific choices is a chal-
lenge for the future.

One possible new approach to highly correlated systems
is the physicists’ density-matrix renormalization group, which
builds up descriptions of the many-body Hamiltonian atom by
atom (or region by region) in an iterative way, while keeping
the lowest-energy state at every iteration. At present, it is a
method best suited to systems with 1D connectivity. 

Another alternative may be to use reduced density ma-
trices. The ground-state energy of any system can be exactly

Given a finite basis set, the memory and processor needs for an
exact treatment of electron interactions (the so-called full config-
uration interaction or full CI) grow exponentially with the number
N of atoms in the system. Model chemistries introduce approxi-
mations that reduce the scaling: N 3 for density-functional theory
(DFT), Hartree–Fock, and quantum Monte Carlo (QMC, a basis-
independent, stochastic wavefunction approach); N 5 for second-
order Møller–Plesset perturbation theory (MP2); and N 7 for the
coupled-cluster method CCSD(T). The figure illustrates an esti-
mated evolution of the size of the systems solvable by each
method if computer power continues to double every two years
or so. In the early 1990s, Weitao Yang, Giulia Galli, and Michele
Parrinello realized that a reduction to linear-scaling complexity
could be achieved for DFT if the solution to the electronic prob-
lem could be re-expressed in a localized language. After a
decade of developments by chemists and physicists, several
linear-scaling electronic-structure methods are now in use that
can address systems with as many as a few thousand atoms.
Other theories, such as linear-scaling QMC, have also achieved
improved scaling through locality. Reduced-scaling wavefunction
theories are in development. The shaded area at the top shows
the nuclear complexity wall described in the text. 
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The network weights are determined with respect to the val-
ues of the reference short-range interaction energies. From the
analytical expression of the energy, the forces can be derived
accordingly.

The following modified radial and angular symmetry
functions, which lack the cutoff functions of the original BPNN
approach, have been chosen for each atom i:

Grad
i =

X

j,i

e�⌘(Rij�Rs)2
, (13)

Gang
i = 21�⇣

X

j,i

X

k,i,j

(1 + � cos ✓ijk)⇣e�⌘
0(Rij+Rik+Rjk )2

, (14)

resulting in an input vector Gi = {Grad/ang
i } for the atomic

network. ✓ijk denotes the angle enclosed by two interatomic
distances Rij and Rik . Each summation above takes into account
only same combination of atomic species and the set of param-
eters, {(⌘, Rs)} and {(⇣ , �, ⌘ 0)}, is the same for each type
of species grouping. We have removed the cutoff function
from the original forms of the symmetry functions used in
Refs. 66 and 67 since we apply the MB-pol 2B and 3B switch-
ing functions, thus never feeding any structures to the 2B and
3B BPNNs that are beyond the cutoff region.

The dimension of the input vector should reflect a balance
between giving an effective resolution of the local environment
and the computational cost of training and inference with a
large input vector neural network. After carefully examining
different parameter sets, we have come up with the final set
as follows. For the 2B term, there are 24 radial Gaussian-
shape filters, Eq. (13), whose centers Rs are placed evenly
between 0.8 Å and 8 Å, which are relatively close to the
smallest and the largest interatomic distances in the training
set. For O–O distances, the two smallest centers are excluded
because the O–O separation is well beyond the space covered
by these two filters. The width of those filters is proportional
to their centers’ position, 1/

p
2⌘ = 0.2Rs. The angular probe

in Eq. (14) takes ⇣ = [1, 4, 16] for different filter widths,
� = ±1 for switching the filter’s center between 0 and ⇡, and
⌘ 0 = [0.001, 0.01, 0.05] (Å 2) for various levels of the sep-
aration dependence. As for 3B BPNNs, a similar scheme is
applied with few adjustments, which include 16 radial filters
with centers arranged in the same range, between 0.8 Å and
8 Å, and two levels of separation dependence attached to the
angular filter, ⌘ 0 = [0.001, 0.03] (Å 2). Moreover, to reduce
the redundancy and computational cost, for the angular probe
for hydrogen atoms, we consider only two types of triplet of
atoms, a hydrogen atom with other two hydrogen atoms or
with an oxygen atom and another hydrogen atom. In total, a
set of 82 and 84 symmetry functions for O and H is formed for
the 2B BPNN while another set of 66 and 56 functions for O
and H is used for the 3B BPNN. The complete set of the sym-
metry function parameters can be found in the supplementary
material.

The neural network training encounters various hyperpa-
rameters and different techniques for initialization of these
parameters, which are mostly found by trial and error. Follow-
ing is our final network architecture and setup for the network
training. The atomic network consists of one input layer, three
hidden layers, and one single output layer. The input layer

takes as its input the preprocessed symmetry functions, each of
which is obtained by rescaling the symmetry function with its
corresponding maximum value in the training and validation
sets. Furthermore, the numbers of units in each hidden layer
are chosen to be the same for both atomic networks for O and
H. Overall, with 34 and 22 units per hidden layer, the final 2B
and 3B BPNN models contain 10542 and 4798 weight and
bias parameters, respectively. For the continuity of the energy
functional, the activation function for each unit is chosen to be
a hyperbolic tangent for the hidden layers and a linear function
for the output layer. Besides, the reference energies for the 2B
training are converted to energy per atom in eV unit so that
the network targets a similar range of values as given by the
activation functions.

We build the network models using Keras79 with Theano80

backend and choose the Adam optimizer with a batch
size of 64 for training. The Nguyen-Widrow method81

is employed to initialize the network weights and biases.
For a stable and effective training, the optimization pro-
cess is continuously carried out five times with descending
starting learning rates

f
10�3, 2 · 10�4, 6 · 10�5, 9 · 10�6, 10�6

g
and corresponding numbers of iterations, or epochs,
[1500, 1500, 1000, 1000, 1000]. Furthermore, we apply an
additional decay rate ↵ = 10 5 to each learning rate such that
at a given epoch k the leaning rate is lrk 1/(1 + ↵·k) based on
the value at the previous epoch lrk 1. The training is to opti-
mize the mean squared error of the modeled energies compared
to the reference data in the training set. To avoid overfitting,
on each epoch, the quality of the model is monitored on the
validation set such that only the model that gives the highest
accuracy over this set is ultimately kept. Finally, the trained
model is then evaluated on the test set to quantify its capability
of generalization to unseen data. For the systems considered
here, the training processes generally take 3 hours and 1 hour
on a Tesla K40 GPU with the GPU-accelerated cuDNN library
for 2B and 3B sets, respectively.

C. Gaussian approximation potentials

The Gaussian Approximation Potential (GAP)82,83 frame-
work, available in the QUIP program package,84 is an imple-
mentation of Gaussian process regression (GPR) interpolation
for the atomic energy as a function of the geometry of the
neighbouring atoms. The functional form representing a func-
tion f that is to be interpolated is identical to that of kernel
ridge regression,

f (R) =
X

k

bkK(R, Rk), (15)

where the high dimensional vector R represents the complete
geometry of neighbouring atoms, k indexes a set of represen-
tative data points {Rk}, K is the kernel function, and {bk} are
fitting coefficients. In the GPR formalism, K corresponds to an
estimate of the covariance of the unknown function, and the lin-
ear system is solved in the least-squares sense using Tikhonov
regularisation, but the regularisation parameters are now inter-
preted as estimates of data and model error. In the present case,
the regularisation was chosen to be 0.00115 kcal/mol for the
2B term and 0.0231 kcal/mol for the 3B term after manual
exploration of the data.

ε
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The success of the GAP fit depends on choosing an appro-
priate kernel, one that captures the structure of the input data
and as much as possible about the function to be fitted. Here
we use the “Smooth Overlap of Atomic Positions” (SOAP), a
kernel that is the rotationally integrated overlap of the neigh-
bour densities, which was shown to be equivalent to the scalar
product of the spherical Fourier spectrum.83 The atomic envi-
ronment of atom i is described by a set of neighbour densities,
one for each atomic species, which are represented as the
sum of Gaussians each centred on one of the neighbouring
atoms j,85

⇢↵i (r) =
X

j

exp
✓
� |r � rij |2

2�2
at

◆
fcut(rij), (16)

where j ranges over neighbours with atomic species ↵, rij are
the positions relative to i, and�2

at is a smoothing parameter. We
included the switching function fcut which smoothly goes to
zero beyond a specified radial value. This local atomic neigh-
bour density can be expanded in terms of spherical harmonics,
Ylm(r̂), and orthogonal radial functions, gn(|r|),

⇢↵i (r) =
X

nlm

c↵nlmgn(|r|)Ylm(r̂). (17)

The expansion coefficients are then combined to form the
rotationally invariant power spectrum,

p↵�n1n2l(Ri) = ⇡

r
8

2l + 1

X

m

(c↵n1lm)†(c�n2lm), (18)

where we have emphasized the functional dependence on the
complete neighbour geometry. The complete SOAP kernel can
be written as

K(R, R0) =
✓ X

↵�n1n2l

p↵�n1n2l(R)p↵�n1n2l(R
0)
◆⇣

, (19)

where we have allowed for a small integer exponent ⇣ (here
set to 2). The kernel is also normalised so that the kernel of
each environment with itself is unity. Separate fits are made
to the atomic energy function corresponding to each atomic
species taken as the center of an atomic environment. The key
free parameters are the radial cutoff in f cut and the smooth-
ing parameter �at. In the present cases here, atomic energy
functions are represented by the sum of two kernels,86 one
with a smaller radial cutoff (4.5 Å) and smaller smoothing
(0.4 Å) and one with a larger cutoff (6.5 Å for the 2B and
7.0 Å for the 3B fit) and larger smoothing (1.0 Å). The root
mean squared error (RMSE) is only weakly sensitive to these,
and some manual optimisation was carried out. Each fit uses
10 radial basis functions and a spherical harmonics basis band
limit of 10. The representative environments for the fit are cho-
sen using CUR matrix decomposition.87 The number of repre-
sentative points are 9000 in the 2B fit and 10000 in the 3B fit.
The full command lines of the fits are given in the supplemen-
tary material. Training of the GAP models required 150 CPU
core hours for the 2B model and 64 CPU core hours for the
3B model on 16-core Intel Xeon E7-4820 (Westmere) and

Intel Xeon E5-2670 (Sandy Bridge) CPUs, respectively. Note
that although formally the GAP construction corresponds to a
decomposition of the total energy into atomic energies, similar
to BPNN above, the cutoffs are sufficiently large to encom-
pass all atoms in the water dimer and trimers in the dataset,
and therefore the decomposition does not represent an approx-
imation. Similar to PIP and BPNN, GAP provides analytical
forces.

IV. RESULTS

A. 2B and 3B interactions and the structure

of the training data

The root mean squared errors (RMSEs) obtained with
PIPs, BPNNs, and GAPs for the 2B and 3B datasets are
reported in Table I. For the 2B term, all three methods achieve
similar accuracy: the error on the training set is less than
0.050 kcal/mol per dimer, while the errors on validation
and test sets are less than 0.080 kcal/mol per dimer. These
errors demonstrate a high level of accuracy since the aver-
age value of the target energies in the dataset is 3 kcal/mol.
Among the three, the 2B PIP model appears to perform better
on the validation and test sets and suffers less from over-
fitting. The difference in RMSEs for the training set and
the test set is below 0.02 kcal/mol with PIP, but around
0.03 kcal/mol with BPNN and 0.04 kcal/mol with GAP. The
GAP model gets a slightly lower error for the training set, but
overfitting prevents to achieve a similar accuracy for the test
set.

In order to investigate in more detail the performance of
the different regression schemes for predicting the 2B and 3B
energies over the MB-pol dimer and trimer data sets, we used
a dimensionality reduction scheme to obtain a 2D representa-
tion of the structure of the train set. We followed a procedure
similar to that used in Ref. 88 to map a database of oligopep-
tide conformers. A metric based on SOAP descriptors85 was
used to assess the similarity between reference conformations
of dimers or trimers. A 2D map that best preserved the similar-
ity between 1000 reference configurations selected by farthest
point sampling89 was obtained using the sketch-map algo-
rithm.90,91 All other configurations (training and testing) were
then assigned 2D coordinates (xi, yi) by projecting them on
the same reference sketch-map. We could then compute the
histogram of configurations h(x, y) and the averages of the
properties of the different configurations and of the test RMSE
for the various methods, conditional on the position on the 2D
map, e.g.,

TABLE I. RMSE (in kcal/mol) per isomer on the provided training, valida-
tion, and test sets in the PIP, BPNN, and GAP short range interaction two-body
(2B) and three-body (3B) energy fitting.

2B 3B

Training Validation Test Training Validation Test

PIP 0.0349 0.0449 0.0494 0.0262 0.0463 0.0465
BPNN 0.0493 0.0784 0.0792 0.0318 0.0658 0.0634
GAP 0.0176 0.0441 0.0539 0.0052 0.0514 0.0517

kernel
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The success of the GAP fit depends on choosing an appro-
priate kernel, one that captures the structure of the input data
and as much as possible about the function to be fitted. Here
we use the “Smooth Overlap of Atomic Positions” (SOAP), a
kernel that is the rotationally integrated overlap of the neigh-
bour densities, which was shown to be equivalent to the scalar
product of the spherical Fourier spectrum.83 The atomic envi-
ronment of atom i is described by a set of neighbour densities,
one for each atomic species, which are represented as the
sum of Gaussians each centred on one of the neighbouring
atoms j,85

⇢↵i (r) =
X

j

exp
✓
� |r � rij |2

2�2
at

◆
fcut(rij), (16)

where j ranges over neighbours with atomic species ↵, rij are
the positions relative to i, and�2

at is a smoothing parameter. We
included the switching function fcut which smoothly goes to
zero beyond a specified radial value. This local atomic neigh-
bour density can be expanded in terms of spherical harmonics,
Ylm(r̂), and orthogonal radial functions, gn(|r|),

⇢↵i (r) =
X

nlm

c↵nlmgn(|r|)Ylm(r̂). (17)

The expansion coefficients are then combined to form the
rotationally invariant power spectrum,

p↵�n1n2l(Ri) = ⇡

r
8

2l + 1

X

m

(c↵n1lm)†(c�n2lm), (18)

where we have emphasized the functional dependence on the
complete neighbour geometry. The complete SOAP kernel can
be written as

K(R, R0) =
✓ X

↵�n1n2l

p↵�n1n2l(R)p↵�n1n2l(R
0)
◆⇣

, (19)

where we have allowed for a small integer exponent ⇣ (here
set to 2). The kernel is also normalised so that the kernel of
each environment with itself is unity. Separate fits are made
to the atomic energy function corresponding to each atomic
species taken as the center of an atomic environment. The key
free parameters are the radial cutoff in f cut and the smooth-
ing parameter �at. In the present cases here, atomic energy
functions are represented by the sum of two kernels,86 one
with a smaller radial cutoff (4.5 Å) and smaller smoothing
(0.4 Å) and one with a larger cutoff (6.5 Å for the 2B and
7.0 Å for the 3B fit) and larger smoothing (1.0 Å). The root
mean squared error (RMSE) is only weakly sensitive to these,
and some manual optimisation was carried out. Each fit uses
10 radial basis functions and a spherical harmonics basis band
limit of 10. The representative environments for the fit are cho-
sen using CUR matrix decomposition.87 The number of repre-
sentative points are 9000 in the 2B fit and 10000 in the 3B fit.
The full command lines of the fits are given in the supplemen-
tary material. Training of the GAP models required 150 CPU
core hours for the 2B model and 64 CPU core hours for the
3B model on 16-core Intel Xeon E7-4820 (Westmere) and

Intel Xeon E5-2670 (Sandy Bridge) CPUs, respectively. Note
that although formally the GAP construction corresponds to a
decomposition of the total energy into atomic energies, similar
to BPNN above, the cutoffs are sufficiently large to encom-
pass all atoms in the water dimer and trimers in the dataset,
and therefore the decomposition does not represent an approx-
imation. Similar to PIP and BPNN, GAP provides analytical
forces.

IV. RESULTS

A. 2B and 3B interactions and the structure

of the training data

The root mean squared errors (RMSEs) obtained with
PIPs, BPNNs, and GAPs for the 2B and 3B datasets are
reported in Table I. For the 2B term, all three methods achieve
similar accuracy: the error on the training set is less than
0.050 kcal/mol per dimer, while the errors on validation
and test sets are less than 0.080 kcal/mol per dimer. These
errors demonstrate a high level of accuracy since the aver-
age value of the target energies in the dataset is 3 kcal/mol.
Among the three, the 2B PIP model appears to perform better
on the validation and test sets and suffers less from over-
fitting. The difference in RMSEs for the training set and
the test set is below 0.02 kcal/mol with PIP, but around
0.03 kcal/mol with BPNN and 0.04 kcal/mol with GAP. The
GAP model gets a slightly lower error for the training set, but
overfitting prevents to achieve a similar accuracy for the test
set.

In order to investigate in more detail the performance of
the different regression schemes for predicting the 2B and 3B
energies over the MB-pol dimer and trimer data sets, we used
a dimensionality reduction scheme to obtain a 2D representa-
tion of the structure of the train set. We followed a procedure
similar to that used in Ref. 88 to map a database of oligopep-
tide conformers. A metric based on SOAP descriptors85 was
used to assess the similarity between reference conformations
of dimers or trimers. A 2D map that best preserved the similar-
ity between 1000 reference configurations selected by farthest
point sampling89 was obtained using the sketch-map algo-
rithm.90,91 All other configurations (training and testing) were
then assigned 2D coordinates (xi, yi) by projecting them on
the same reference sketch-map. We could then compute the
histogram of configurations h(x, y) and the averages of the
properties of the different configurations and of the test RMSE
for the various methods, conditional on the position on the 2D
map, e.g.,

TABLE I. RMSE (in kcal/mol) per isomer on the provided training, valida-
tion, and test sets in the PIP, BPNN, and GAP short range interaction two-body
(2B) and three-body (3B) energy fitting.

2B 3B

Training Validation Test Training Validation Test

PIP 0.0349 0.0449 0.0494 0.0262 0.0463 0.0465
BPNN 0.0493 0.0784 0.0792 0.0318 0.0658 0.0634
GAP 0.0176 0.0441 0.0539 0.0052 0.0514 0.0517
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The success of the GAP fit depends on choosing an appro-
priate kernel, one that captures the structure of the input data
and as much as possible about the function to be fitted. Here
we use the “Smooth Overlap of Atomic Positions” (SOAP), a
kernel that is the rotationally integrated overlap of the neigh-
bour densities, which was shown to be equivalent to the scalar
product of the spherical Fourier spectrum.83 The atomic envi-
ronment of atom i is described by a set of neighbour densities,
one for each atomic species, which are represented as the
sum of Gaussians each centred on one of the neighbouring
atoms j,85

⇢↵i (r) =
X

j

exp
✓
� |r � rij |2

2�2
at

◆
fcut(rij), (16)

where j ranges over neighbours with atomic species ↵, rij are
the positions relative to i, and�2

at is a smoothing parameter. We
included the switching function fcut which smoothly goes to
zero beyond a specified radial value. This local atomic neigh-
bour density can be expanded in terms of spherical harmonics,
Ylm(r̂), and orthogonal radial functions, gn(|r|),

⇢↵i (r) =
X

nlm

c↵nlmgn(|r|)Ylm(r̂). (17)

The expansion coefficients are then combined to form the
rotationally invariant power spectrum,
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(c↵n1lm)†(c�n2lm), (18)

where we have emphasized the functional dependence on the
complete neighbour geometry. The complete SOAP kernel can
be written as

K(R, R0) =
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↵�n1n2l

p↵�n1n2l(R)p↵�n1n2l(R
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where we have allowed for a small integer exponent ⇣ (here
set to 2). The kernel is also normalised so that the kernel of
each environment with itself is unity. Separate fits are made
to the atomic energy function corresponding to each atomic
species taken as the center of an atomic environment. The key
free parameters are the radial cutoff in f cut and the smooth-
ing parameter �at. In the present cases here, atomic energy
functions are represented by the sum of two kernels,86 one
with a smaller radial cutoff (4.5 Å) and smaller smoothing
(0.4 Å) and one with a larger cutoff (6.5 Å for the 2B and
7.0 Å for the 3B fit) and larger smoothing (1.0 Å). The root
mean squared error (RMSE) is only weakly sensitive to these,
and some manual optimisation was carried out. Each fit uses
10 radial basis functions and a spherical harmonics basis band
limit of 10. The representative environments for the fit are cho-
sen using CUR matrix decomposition.87 The number of repre-
sentative points are 9000 in the 2B fit and 10000 in the 3B fit.
The full command lines of the fits are given in the supplemen-
tary material. Training of the GAP models required 150 CPU
core hours for the 2B model and 64 CPU core hours for the
3B model on 16-core Intel Xeon E7-4820 (Westmere) and

Intel Xeon E5-2670 (Sandy Bridge) CPUs, respectively. Note
that although formally the GAP construction corresponds to a
decomposition of the total energy into atomic energies, similar
to BPNN above, the cutoffs are sufficiently large to encom-
pass all atoms in the water dimer and trimers in the dataset,
and therefore the decomposition does not represent an approx-
imation. Similar to PIP and BPNN, GAP provides analytical
forces.

IV. RESULTS

A. 2B and 3B interactions and the structure

of the training data

The root mean squared errors (RMSEs) obtained with
PIPs, BPNNs, and GAPs for the 2B and 3B datasets are
reported in Table I. For the 2B term, all three methods achieve
similar accuracy: the error on the training set is less than
0.050 kcal/mol per dimer, while the errors on validation
and test sets are less than 0.080 kcal/mol per dimer. These
errors demonstrate a high level of accuracy since the aver-
age value of the target energies in the dataset is 3 kcal/mol.
Among the three, the 2B PIP model appears to perform better
on the validation and test sets and suffers less from over-
fitting. The difference in RMSEs for the training set and
the test set is below 0.02 kcal/mol with PIP, but around
0.03 kcal/mol with BPNN and 0.04 kcal/mol with GAP. The
GAP model gets a slightly lower error for the training set, but
overfitting prevents to achieve a similar accuracy for the test
set.

In order to investigate in more detail the performance of
the different regression schemes for predicting the 2B and 3B
energies over the MB-pol dimer and trimer data sets, we used
a dimensionality reduction scheme to obtain a 2D representa-
tion of the structure of the train set. We followed a procedure
similar to that used in Ref. 88 to map a database of oligopep-
tide conformers. A metric based on SOAP descriptors85 was
used to assess the similarity between reference conformations
of dimers or trimers. A 2D map that best preserved the similar-
ity between 1000 reference configurations selected by farthest
point sampling89 was obtained using the sketch-map algo-
rithm.90,91 All other configurations (training and testing) were
then assigned 2D coordinates (xi, yi) by projecting them on
the same reference sketch-map. We could then compute the
histogram of configurations h(x, y) and the averages of the
properties of the different configurations and of the test RMSE
for the various methods, conditional on the position on the 2D
map, e.g.,

TABLE I. RMSE (in kcal/mol) per isomer on the provided training, valida-
tion, and test sets in the PIP, BPNN, and GAP short range interaction two-body
(2B) and three-body (3B) energy fitting.
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PIP 0.0349 0.0449 0.0494 0.0262 0.0463 0.0465
BPNN 0.0493 0.0784 0.0792 0.0318 0.0658 0.0634
GAP 0.0176 0.0441 0.0539 0.0052 0.0514 0.0517

EN =
NX

i

V 1B(i) +
NX

i<j

V 2B(i, j) +
NX

i<j<k

V 3B(i, j, k) + · · ·+ V NB(1, . . . , N)

2B (kcal/mol) 3B (kcal/mol)

Nguyen, Székely, Imbalzano, Behler, Csányi, Ceriotti & FP, J. Chem. Phys. 148, 241725 (2018)

Representability of Low-Order Many-Body Interactions
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MB-pol ⟺ Born-Oppenheimer potential energy surface

Nuclear quantum effects must be included explicitly in molecular simulations

Methods based on: 
• Basis set expansions 

with Claude Leforestier (Montpellier), Ryan Steele (Utah) 
(clusters: anharmonic vibrational spectra) 


• Path-integral molecular dynamics 
(condensed phase: structure and thermodynamics)


• Centroid molecular dynamics 
(condensed phase: dynamics)


• Ring polymer instanton 
with Jeremy Richardson (ETH) 
(tunneling splittings)

Molecular Dynamics

http://paesanigroup.ucsd.edu
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Figure 1. (a) XAS calculated using configurations from MD (dashed blue) and PIMD (solid red) simulations, and experimental data
36

(shade) at 298 K. Joint probability distribution of the covalent bond length as a function of the excitation energy from (b) MD and (c)

PIMD simulations. Probability distributions of the excitation energies from (d) MD and (e) PIMD simulations. States with 4a1 and 2b2
characteristic are plotted in green and orange, respectively.

combining both classical molecular dynamics (MD) and path
integral molecular dynamics (PIMD) simulations32 with the
MB-pol many-body potential energy function39–41 and self-
consistent enhanced static COHSEX calculations.42 It has
been shown that MB-pol enables the accurate modeling of
the properties of water across different phases,43,44 from
the water dimer39 to small clusters,45 liquid water (both in
the bulk41 and at the interface46) and ice.47,48 In addition,
the self-consistent enhanced static COHSEX method42 with
maximally localized Wannier functions greatly enhances the
computational efficiency of XAS calculations without com-
promising the accuracy of the results.49 The theoretical
spectrum obtained from PIMD simulation is found to be
in excellent agreement with the corresponding experimental
data and demonstrate the importance of NQEs for an ac-
curate modeling of XAS. In particular, NQEs significantly
broaden the XAS due to proton delocalization. At the same
time, the main-edge and post-edge features are shifted to
lower and higher energies, respectively, which is attributed
to the overall softening of the H-bond network induced by
NQEs and the presence of a larger number of molecules with
relatively stronger H-bonds.

All calculations were performed in a supercell contain-
ing 128 water molecules under periodic boundary conditions.
Molecular configurations of liquid water were extracted from
MD and PIMD simulations carried out with MB-pol at 270,
298, and 360 K, and were then used in calculations of the as-
sociated XAS cross sections using the enhanced static COH-
SEX method.42 The XAS were calculated by enforcing the
same area from 533 to 546 eV as in the experimental line-
shape and aligning the pre-edge features to the experimen-
tal value of 535 eV.24,34,35 Additional details about the XAS
simulations are given in the Supporting Information (SI).

The XAS of liquid water calculated using configurations
from MD and PIMD simulations at 298 K are shown in
Fig. 1a, along with the corresponding experimental spec-
trum.36 In the MD spectrum, the energy of the post-edge
is underestimated and both intensities of the main-edge
and post-edge are overestimated compared to experiment.
In addition, two sub-peaks appear within the main-edge,
which are separated from the pre-edge feature by a rather
deep minimum that is absent in the experimental spectrum.
These drawbacks are corrected in the spectrum calculated
using configurations extracted from PIMD simulation, which
is in nearly quantitative agreement with the corresponding

experimental spectrum.
It is known that the pre-edge feature in the XAS of liq-

uid water is associated with short-range ordering of the H-
bond network. To provide further molecular-level insights
into the relationship between the pre-edge feature and the
structure of liquid water predicted by both MD and PIMD
simulations, the correlation between the fluctuations of the
covalent OH bonds and the pre-edge excitation energies is
shown in Fig. 1b, with the corresponding distributions of ex-
citation energies shown in Fig. 1c. While both covalent OH
bond distributions centered around 0.97 Å and 535 eV, the
fluctuations are significantly larger in the PIMD simulation
due to the zero point energy effects. From this comparison, it
is possible to attribute the differences in the pre-edge feature
of the MD and PIMD spectra to intra-molecular structural
changes associated with NQEs which, resulting in proton
delocalization, affect the covalent character of the OH bond
within each water molecule.

As shown in Fig. 1d, the pre-edge feature in the spectrum
from MD simulation is entirely contributed by a bound ex-
citon with 4a1 character, which is well separated from the
main-edge resonant exciton states with 2b2 character. In the
spectrum from PIMD simulation, the pre-edge excitation en-
ergies are statistically linearly correlated with the broaden-
ing of the covalent OH bond distribution (Fig. 1c), which
reflects the existence of competing quantum effects in liq-
uid water. NQEs allow protons to move more easily along
the direction of H-bonds, which thus facilitates the form-
ing (breaking) of H-bonds and the consequent decrease (in-
crease) of the covalent character of the associated OH bonds.
Within this scenario, the excitation energies are reduced (in-
creased) due to the increase (decrease) of Coulomb inter-
actions between the protons and the electron lone pairs of
the oxygens on the neighboring water molecules, as demon-
strated by the negative correlation obtained in Fig. 1c.
NQEs are thus responsible for the broadening between 533
and 535.7 eV, which leads to nearly quantitative agreement
with the experimentally observed pre-edge feature. Due
to proton delocalization, the energies of the low-lying res-
onant exciton states with 2b2 character are also lowered by
NQEs. As shown in Fig. 1e, the pre-edge feature in the
spectrum from PIMD simulation cannot be exclusively as-
sociated with electron excitations with 4a1 character, but
also contains contributions from 2b2 excitations, which re-
sults in a smoother separation at ⇠535.7 eV between the
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Figure 1. (a) XAS spectra calculated using configurations from MD (dashed blue) and PIMD (solid red) simulations at 298 K compared

with the corresponding experimental data
37

(shade). Joint probability distribution of the covalent bond length as a function of the

excitation energy from (b) MD and (c) PIMD. Probability distributions of the excitation energies from (d) MD and (e) PIMD. States

with 4a1 and 2b2 characteristic are plotted in green and orange, respectively.

converge.36
In this study, we address the above-mentioned issues by

combining both classical molecular dynamics (MD) and
path-integral molecular dynamics (PIMD) simulations33

with the MB-pol many-body potential energy function40–42

and self-consistent enhanced static GW calculations. It has
been shown that MB-pol enables the accurate modeling of
the properties of water across different phases,43,44 from the
water dimer40 to small clusters,45 liquid water (both in the
bulk42 and at the interface46) and ice.47,48 In addition, the
self-consistent enhanced static GW method with maximally
localized Wannier functions greatly enhances the computa-
tional efficiency of XAS calculations without compromising
the accuracy of the results.49 The theoretical spectra are
found to be in excellent agreement with the correspond-
ing experimental data and demonstrate the importance of
NQEs for an accurate modeling of XAS spectra. In partic-
ular, NQEs significantly broaden the XAS spectra due to
proton delocalization. At the same time, the main-edge and
post-edge features are shifted to lower and higher energies,
respectively, which is attributed to the overall softening of
the H-bond network induced by NQEs and the presence of a
larger number of molecules with relatively stronger H-bonds.

All calculations were performed in a supercell contain-
ing 128 water molecules under periodic boundary conditions.
Molecular configurations of liquid water were extracted from
MD and PIMD simulations carried out with MB-pol at 270,
298, and 360 K, and were then used in calculations of the
associated XAS cross sections using the enhanced static GW
method. The XAS spectra were calculated by enforcing the
same area from 533 to 546 eV as in the experimental line-
shape and aligning the pre-edge features to the experimen-
tal value of 535 eV.24,35,36 Additional details about the XAS
simulations are given in the Supporting Information (SI).

The XAS spectra of liquid water calculated using configu-
rations from MD and PIMD simulations at 298 K are shown
in Fig. 1a, along with the corresponding experimental spec-
trum.37 In the MD spectrum, the energy of the post-edge
is underestimated and both intensities of the main-edge and
post-edge are overestimated compared to experiment. In ad-
dition, two sub-peaks appear within the main-edge, which
are separated from the pre-edge peak by a rather deep min-
imum that is absent in the experimental spectrum. These
drawbacks are corrected in the XAS spectrum calculated us-
ing configurations extracted from PIMD, which is in nearly
quantitative agreement with the corresponding experimental

spectrum.
It is known that the pre-edge peak in the XAS spectra

of liquid water is associated with short-range ordering of
the H-bond network. To provide further molecular-level in-
sights into the relationship between the pre-edge peak and
the structure of liquid water predicted by both MD and
PIMD simulations, the correlation between the fluctuations
of the intramolecular OH bonds and the pre-edge excitation
energies is shown in Figs. 1b, with the corresponding distri-
butions shown in 1c. While both OH bond distributions ob-
tained from MD and PIMD simulations are centered around
0.97 Å and 535 eV, the fluctuations are significantly larger
in the PIMD simulations due to zero point energy effects.
From this comparison, it is possible to attribute the differ-
ences in the pre-edge peak of the MD and PIMD spectra
to intra-molecular structural changes associated with NQEs
which, resulting in proton delocalization, affect the covalent
character of the OH bond within each water molecule.

As shown in Fig. 1d, the pre-edge feature in the spectrum
from MD simulations is entirely contributed by a bound ex-
citon with 4a1 character, which is well separated from the
main-edge exciton resonance states with 2b2 character. In
the XAS spectrum from PIMD simulations, the pre-edge ex-
citation energies are statistically linearly correlated with the
broadening of the OH-bond distribution (Fig. 1c), which
reflects the existence of competing quantum effects in liq-
uid water. NQEs allow protons to move more easily along
the direction of H-bonds, which thus facilitates the form-
ing (breaking) of H-bonds and the consequent decrease (in-
crease) of the covalent character of the associated OH bonds.
Within this scenario, the excitation energies are reduced (in-
creased) due to the increase (decrease) of Coulomb interac-
tions between protons and electron lone pairs of the oxygens
on the neighboring water molecules, as demonstrated by the
negative correlation obtained in Fig. 1c. NQEs are thus
responsible for the broadening between 533 and 535.7 eV,
which leads to nearly quantitative agreement with the exper-
imentally observed pre-edge peak. Due to proton delocaliza-
tion, the energies of the low-lying resonance exciton states
with 2b2 character are also lowered by NQEs. As shown in
Fig. 1e, the pre-edge peak in the spectrum from PIMD sim-
ulations cannot be exclusively associated with electron exci-
tations with 4a1 character, but also contains contributions
from 2b2 excitations, which results in a smoother separation
at ⇠535.7 eV between the pre-edge and main-edge features
(Fig. 1).
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“At present, MB-pol achieves unprecedented accuracy in describing water properties from the

dimer to the condensed phase and is perhaps one of the all-around best MM water models…”

“Advanced models for water simulations”

Demerdash, Wang & Head-Gordon, WIREs Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1355 (2018)
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How good are simulations of hydration?

introducing permutationally invariant polynomials (PIPs) that
effectively represent nonclassical contributions to molecular
interactions (e.g., charge transfer and penetration, and Pauli
repulsion),48,49 leads to further reduction of the 2B RMSEs to
0.05 kcal/mol. Finally, the correlation plots shown in panels d,
f, and h demonstrate that purely classical representations of 3B
interactions adopted by the TTM-nrg and (2B+NB)-MB-nrg
models are not sufficient to quantitatively reproduce the
CCSD(T) data, resulting in RMSEs of 0.17 kcal/mol.
Significantly higher accuracy in the description of 3B energies,
with an associated RMSE of 0.02 kcal/mol, is exhibited by the
(2B+3B+NB)-MB-nrg model, which supplements the classical
description of 3B Cs+−water interactions adopted by the
TTM-nrg and (2B+NB)-MB-nrg models with explicit PIPs
representing nonclassical 3B contributions.
Having established the accuracy of the four models in

reproducing the lower-order, and more relevant, many-body
effects in Cs+−water interactions, Figure 2 analyzes how the
differences found in the correlation plots of Figure 1 impact
the hydration structure of Cs+ in solution. The comparison
between the Cs+−O radial distribution functions (RDFs),
gCs+−O, calculated from MD and PIMD simulations with the
four models (Figure 2a) clearly shows that TIP4P-Ew predicts
a more structured distribution of water molecules around Cs+,
with a sequence of well-defined peaks located at ∼3.0, ∼5.0,
∼7.0, and ∼9.0 Å. Inclusion of an implicit description of many-
body effects through a classical polarization term as
implemented in the TTM-nrg model effectively leads to the
collapse of the hydration shell located at ∼5.0 Å in the TIP4P-
Ew RDF. This is accompanied by the broadening of the first
peak, corresponding to an expansion of the first hydration
shell, whose position consequently shifts to relatively larger
Cs+−O distances. As a result of this structural reorganization of
the water molecules around Cs+, the second and third peaks

(i.e., second and third hydration shells) in the TTM-nrg RDF
effectively correspond to the third and fourth peaks (i.e., third
and fourth hydration shells) in the TIP4P-Ew RDF.
Qualitatively different hydration structures are predicted by

the (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg models,
which progressively include explicit representations of 2B
and 3B contributions to Cs+−water interactions. Compared to
the TIP4P-Ew RDF, the RDFs calculated with both MB-nrg
models display a lower but broader first peak that extends up
to ∼4.5 Å, as well as a second, broader peak extending from
∼4.5 to ∼8.0 Å. Contrary to TTM-nrg predictions, the MB-nrg
RDFs display a well-defined sequence of hydration shells, with
a sharper first peak at ∼3.15 Å and a second, broader peak at
∼6.2 Å. Although comparisons between RDFs calculated from
simulations with (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg
suggest that the inclusion of an explicit 3B term in the (2B+3B
+NB)-MB-nrg model only leads to minor changes to the
overall hydration structure of Cs+, it nevertheless contributes
to sharpening the interstitial region between the first and
second peak, providing further evidence for the importance of
nonclassical 3B effects in Cs+−water interactions. Finally, the
comparison between the RDFs obtained from MD and PIMD
simulations with the (2B+3B+NB)-MB-nrg model indicates
that nuclear quantum effects play a minimal role in
determining the hydration structure of Cs+ in solution.
Figure 2b shows that the differences in the RDFs obtained

from simulations with the four models directly translate into
different distributions of water molecules around the Cs+ ion.
In particular, while MD simulations with the TIP4P-Ew model
predict that ∼8 molecules are within the first hydration shell of
Cs+, the lack of a well-defined second hydration shell makes it
difficult to unambiguously determine a coordination number
from the corresponding TTM-nrg simulations. The wider first
hydration shells predicted by simulations with both MB-nrg

Figure 2. (a) Radial distribution functions (RDFs) describing the spatial correlation between the Cs+ ion and the oxygen (O) atoms of the water
molecules calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models as well as from
PIMD simulations with the (2B+3B+NB)-MB-nrg model. (b) Corresponding coordination numbers calculated as a function of the Cs+−O
distance. (c) Two-dimensional plots comparing the density profiles calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-
nrg, and (2B+3B+NB)-MB-nrg models on the left of each panel with the corresponding results obtained from PIMD simulations with the (2B+3B
+NB)-MB-nrg model.
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in Solution
Debbie Zhuang,† Marc Riera,† Gregory K. Schenter,‡ John L. Fulton,*,‡ and Francesco Paesani*,†,§,∥

†Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
‡Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United
States
§Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
∥San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States

*S Supporting Information

ABSTRACT: A systematic analysis of the hydration structure of Cs+ ions in solution is
derived from simulations carried out using a series of molecular models built upon a
hierarchy of approximate representations of many-body effects in ion−water interactions.
It is found that a pairwise-additive model, commonly used in biomolecular simulations,
provides poor agreement with experimental X-ray spectra, indicating an incorrect
description of the underlying hydration structure. Although the agreement with
experiment improves in simulations with a polarizable model, the predicted hydration
structure is found to lack the correct sequence of water shells. Progressive inclusion of
explicit many-body effects in the representation of Cs+−water interactions as well as
accounting for nuclear quantum effects is shown to be necessary for quantitatively
reproducing the experimental X-ray spectra. Besides emphasizing the importance of many-
body effects, these results suggest that molecular models rigorously derived from many-
body expansions hold promise for realistic simulations of aqueous solutions.

Determining the driving forces and molecular mechanisms
that regulate the hydration properties of alkali-metal ions

is fundamental for a microscopic understanding of several
processes taking place in aqueous clusters, solutions, and
interfaces, which, in turn, have major implications for various
fields of science and engineering. For example, lithium salts are
widely used in rechargeable batteries1,2 and are effective agents
in the treatment of manic-depressive illness.3 Sodium and
potassium ions play important roles in the stabilization of
biomolecules,4−6 intracellular signal transduction,7,8 and
enzyme and nucleic acid catalysis.9−12 The heavier alkali-
metal ions (i.e., rubidium and cesium) are not as ubiquitous in
the environment or in living systems. However, the accident at
the Fukushima Daiichi reactor in 2011 has drawn attention to
the importance of a molecular-level understanding of
adsorption and desorption processes of soluble radionuclides,
such as 137Cs, for the development of efficient technologies for
the treatment of nuclear waste.13

In this context, deriving a molecular picture of the hydration
properties of Cs+ ions presents significant challenges to both
experiment and theoretical modeling due to the intricate
interplay between Cs+−water and water−water interactions,
which, being of similar magnitude, are difficult to disentangle.
As a result, large variability is found in the values reported in
the literature for both Cs+ coordination number and spatial
extent of the hydration shells around Cs+ ions in solution.
From large-angle X-ray (LAXS) and double difference infrared
(DDIR) spectroscopic experiments performed on a 2.0 M

cesium iodide solution, the mean distance between Cs+ and the
oxygen atoms of the water molecules (Cs+−O) within the first
hydration shell was estimated to be 3.07 Å, corresponding to a
coordination number of 8.14 Anomalous X-ray diffraction
patterns measured for a 3 m cesium iodide solution were used
to determine a coordination number of 7.9, assuming a Cs+−O
distance of 3.0 Å.15 Values in the range of 7.7−8 for the
coordination number and 3.1 Å − 3.2 Å for the Cs+−O
distance were reported from subsequent neutron and X-ray
diffraction measurements.16,17 Various theoretical and compu-
tational approaches, including ab initio molecular dynamics
(AIMD), quantum mechanics/molecular mechanics (QM/
MM), and classical molecular dynamics (MD), have also been
used to investigate the hydration structure of Cs+, resulting in
predictions for the coordination number and Cs+−O distance
in the range of 7−10 and 3.0−3.3 Å, respectively.18−23

As already implicit in the “flickering clusters of hydrogen-
bonded molecules” picture of liquid water proposed by Frank
and Wen,24 different hydrogen-bonding arrangements in
solution result from the delicate balance of many-body
interactions,25−27 which is further modulated by nuclear
quantum effects.28,29 By combination of measurements of
vibration−rotation tunneling spectra with analogous theoreti-
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What makes water water?

Data-driven many-body models: Quo vadis?

241725-7 Nguyen et al. J. Chem. Phys. 148, 241725 (2018)

FIG. 1. (a) Sketch-map representation
for the training data set for dimer config-
urations. Points are colored according
to O–O distance, and a few reference
configurations are also shown. (b) His-
togram of the training point positions
on the sketch-map. The train set den-
sity is also reported on other plots as
a reference for comparison. (c) Condi-
tional average of the 2B energies for
different parts of the train set. [(d)–(f)]
Conditional average RMSE for the PIP,
BPNN, and GAP fits of the 2B energy
in different parts of the test set.

h(x, y) = h�(x � xi)�(y � yi)i ,

V2B
short(x, y) =

D
V2B

short(i)�(x � xi)�(y � yi)
E

h(x, y)
.

(20)

Figure 1 demonstrates the application of this analysis to
the dimer dataset. One of the sketch-map coordinates corre-
lates primarily with the O–O distance, while different relative
orientations and internal monomer deformations are mixed
in the other direction. Conformational space is very non-
uniformly sampled [Fig. 1(b)], with a large number of con-
figurations at a large O–O distance—which correspond to
V2B

short of less than 0.01 kcal/mol—and at intermediate dis-
tances, with sparser sampling in the high-energy, repulsive
region [Fig. 1(c)]. It is interesting to see that the three regres-
sion schemes we considered exhibit very similar performance
in the various regions, with tiny errors <0.01 kcal/mol for far-
away molecules, and much larger errors, as large as 1 kcal/mol,
for configurations in the repulsive region. These large errors are
not only due to the high energy scale of V2B

short in this region:
the largest errors appear in the portion of the map which is
characterized by both large V2B

short and low density of sample
points.

The non-uniform sampling of the dimer space configura-
tion means that there is room to improve it. Figure 2 compares
the test RMSE obtained by BPNN fits constructed on subsets
of the overall training set. The error can be reduced by up
to a factor of five by choosing the subset with a FPS strat-
egy, rather than at random. This observation is consistent with
recent observations made using SOAP-GAP in a variety of
systems.86,92 Selecting training configurations from a larger
database of potential candidates using FPS gives a viable

strategy to reduce the number of high-end calculations that
have to be performed to describe accurately interactions in the
construction of a MB potential.

Figure 3 shows a similar analysis for the case of the trimer
data and V3B

short. 3B energies span a smaller range than the 2B
component, which includes most of the core repulsion. The
higher dimensionality of the problem, however, makes this
a harder regression problem, as is apparent from the irreg-
ular correlations between energy and position on the map,
which reveals an alternation of regions of positive and negative
contributions.

As a result, the absolute RMSE accuracy of the regression
models is comparable to that for the 2B terms, with PIP and
GAP yielding comparable accuracy (RMSE ⇡ 0.05 kcal/mol),
followed closely by BPNN (RMSE ⇡ 0.06 kcal/mol). As in

FIG. 2. TEST RMSE as a function of the size of the train set for the 2B energy
contribution, using a BPNN for the regression. Training configurations were
selected at random (5 independent selections, average and standard deviation
shown) or by farthest point sampling.
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MB-pol vs. CCSD(T): Many-body energy decomposition for water clusters
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Density functional theory is
straying from the path toward
the exact functional
Michael G. Medvedev,1,2,3*† Ivan S. Bushmarinov,1*† Jianwei Sun,4‡
John P. Perdew,4,5† Konstantin A. Lyssenko1†

The theorems at the core of density functional theory (DFT) state that the energy of
a many-electron system in its ground state is fully defined by its electron density
distribution. This connection is made via the exact functional for the energy, which
minimizes at the exact density. For years, DFTdevelopment focused on energies, implicitly
assuming that functionals producing better energies become better approximations of
the exact functional. We examined the other side of the coin: the energy-minimizing
electron densities for atomic species, as produced by 128 historical and modern DFT
functionals. We found that these densities became closer to the exact ones, reflecting
theoretical advances, until the early 2000s, when this trend was reversed by unconstrained
functionals sacrificing physical rigor for the flexibility of empirical fitting.

D
ensity functional theory (DFT) is indis-
pensable for modern quantum-chemical
modeling of materials and molecules (1).
At its theoretical core are the Hohenberg-
Kohn theorems (2), which show that all

ground-state properties of a many-electron sys-
tem are uniquely determined by that system’s
electron density distribution function over space.
There exists an exact functional that yields the
exact energy of a system from its exact density.
Minimization of this functional at a fixed elec-
tron number and a fixed external potential yields
the exact electron density and energy, but at an
unbearable computational cost (3). Modern DFT

relies on approximations of the exact functional
(specifically its exchange-correlation term),which
tend to provide an excellent cost/accuracy ratio
and are believed to be improving in overall accu-
racy (4, 5). Most of them were constructed em-
pirically; the coefficients in the corresponding
formulas were chosen so that energy differences
for some chosen systemswere as close to known
targets as possible. This approach, however, over-
looks the fact that the reproduction of exact
energy is not a feature of the exact functional,
unless the input electron density is exact as well.
Hence, pure energy fitting does not necessarily
lead toward the exact functional, nor does good

performance of a functional in energetic tests re-
flect its closeness to the exact functional. Rather,
such fidelity requires the approximate functional
to produce both energies and electron densities
close to the exact ones. Although it was implicitly
assumed that functionals improve along with
their energies, this assumptionwas never tested
directly.
An alternative, frequently nonempirical, ap-

proach to functional design is based on con-
straint satisfaction—that is, obeying the known
features of the exact functional. However, this
method also cannot guarantee closeness to the
exact functional, because the number of known
exact constraints is severely limited. Peverati and
Truhlar (4) in particular argued that known exact
constraints can beneglected for the sake of greater
flexibility in the energy fitting.
Here, we compared the electron density dis-

tributions produced by 128 available functionals
with the correct ones [as produced by all-electron
coupled cluster singles and doubles (CCSD-full)
calculations, which provide nearly exact electron
densities for the systems studied]. The historical
andmethodological trends revealed by this study
may provide a helpful viewpoint on density func-
tional development.
To our knowledge, correct reproduction of exact

electron density has rarely been a parameteriza-
tion target during the development of currently
available functionals. There was an unsuccessful
attempt to use molecular electron densities for
reparameterization of a three-parameter hybrid

Medvedev et al., Science 355, 49–52 (2017) 6 January 2017 1 of 4
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Fig. 1. The historical trends in
maximal deviation of the density
produced by various DFTmethods
from the exact one. (A) The line
shows the average deviation, with
the light gray area denoting its
95% confidence interval; hGGA*
denotes 100% exact exchange-based
methods. (B) The bars denote
averages of DFT functionals’median-
normalized absolute error for
energy [open bars,Truhlar’s data (4)]
and electron density with its
derivatives (solid bars, this work)
per publication decade.
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Climbing Jacob’s ladder of DFT approximations
GGA: revPBE-D3

water hexamer(H2O)6: interaction energies (H2O)6: many-body energies
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Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

interaction energies many-body contributions

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

isomer 1

isomer 2

isomer 3

isomer 4

isomer 5

isomer 6

isomer 7

isomer 8

Many-Body Effects in Water

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



Climbing Jacob’s ladder of DFT approximations
Meta-GGA: B97M-rV

water hexamer

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

interaction energies many-body contributions

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

isomer 1

isomer 2

isomer 3

isomer 4

isomer 5

isomer 6

isomer 7

isomer 8

Many-Body Effects in Water

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



Climbing Jacob’s ladder of DFT approximations
Meta-GGA: SCAN

water hexamer

isomer 1

isomer 2

isomer 3

isomer 4

isomer 5

isomer 6

isomer 7

isomer 8

interaction energies many-body contributions

Many-Body Effects in Water

Lambros, Hu & FP, in progress

✸  CCSD(T)/CBS
+  SCAN



Climbing Jacob’s ladder of DFT approximations
Hybrid: revPBE0-D3

water hexamer

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

interaction energies many-body contributions

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

isomer 1

isomer 2

isomer 3

isomer 4

isomer 5

isomer 6

isomer 7

isomer 8

Many-Body Effects in Water

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



Climbing Jacob’s ladder of DFT approximations
Range-separated, hybrid: ωB97M-V

water hexamer

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

interaction energies many-body contributions

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

isomer 1

isomer 2

isomer 3

isomer 4

isomer 5

isomer 6

isomer 7

isomer 8

Many-Body Effects in Water

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



Climbing Jacob’s ladder of molecular models
MB-pol

water hexamer

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

interaction energies many-body contributions

isomer 1

isomer 2

isomer 3

isomer 4

isomer 5

isomer 6

isomer 7

isomer 8

Many-Body Effects in Water

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



FP, Acc. Chem. Res. 49, 1844 (2016)

1-body

2-body

3-body

EN =
NX

i

V 1B(i)

+
NX

i<j

V 2B(i, j)

+
NX

i<j<k

V 3B(i, j, k)

+ . . .

+ V NB(1, . . . , N)

Hankins, Moskowitz & Stillinger, J. Chem. Phys. 53, 4544 (1970) 
Popkie, Kistenmacher & Clementi, J. Chem. Phys. 59, 1325 (1973)

N-body

4-body

…

flexible monomers

Explicit 2B and 3B corrections from CCSD(T)/CBS

N-body polarization

• J. Phys. Chem. Lett. 3, 3765 (2012) 
• J. Chem.  Theory Comput. 9, 1103 (2013) 
• J. Chem.  Theory Comput. 9, 5395 (2013) 
• J. Chem.  Theory Comput. 10, 1599 (2014) 
• J. Chem. Theory Comput. 10, 2906 (2014)

density 

isovalue: 0.01 A-3

2-body

density 

isovalue: 0.001 A-3

3-body

density 

isovalue: 0.0005 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

density 

isovalue: 0.01 A-3

1-body

= + + + …
E = E[ρ]

MB-pol: CCSD(T) Accuracy at the Cost of a Force Field



MB-DFT: Probing Many-Body Effects in Water

1-body

2-body

3-body

EN =
NX

i

V 1B(i)

+
NX

i<j

V 2B(i, j)

+
NX

i<j<k

V 3B(i, j, k)

+ . . .

+ V NB(1, . . . , N)

Hankins, Moskowitz & Stillinger, J. Chem. Phys. 53, 4544 (1970) 
Popkie, Kistenmacher & Clementi, J. Chem. Phys. 59, 1325 (1973)

N-body

4-body

…

flexible monomers

Explicit 2B and 3B corrections from DFT

N-body polarization

3 MB PEFs for each XC functional

• (2B+3B)-XC

• (2B)-XC

• (3B)-XC 

density 

isovalue: 0.01 A-3

2-body

density 

isovalue: 0.001 A-3

3-body

density 

isovalue: 0.0005 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

density 

isovalue: 0.01 A-3

1-body

= + + + …
E = E[ρ]

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



revPBE-D3 B97M-rV

MB-DFT vs. DFT

✸  PIMD DFT: Marsalek & Markland, J. Phys. Chem. Lett. 8, 1545 (2017)

MB-DFT a.k.a. “DFT à la Carte”: MB Models with DFT Accuracy

revPBE0-D3

  PIMD DFT: Pestana, Marsalek, Markland & Head-Gordon, J. Phys. Chem. Lett. 9, 5009 (2018)

256 molecules   vs. 64 molecules 

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

Climbing Jacob’s ladder of DFT approximations
many-body contributions

water hexamer
MB-pol

Many-Body Effects in Water

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

revPBE-D3

isomer 1

isomer 2

isomer 3

isomer 4

isomer 5

isomer 6

isomer 7

isomer 8

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

Climbing Jacob’s ladder of DFT approximations
many-body contributions

water hexamer
MB-pol

Many-Body Effects in Water

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

(H2O)6: interaction energies (H2O)6: many-body energies

revPBE-D3

B97M-rV

revPBE0-D3

ωB97M-V

MB-pol

Figure S6: Interaction energies (left) and deviations relative to CCSD(T)/CBS reference
data, �E = Emodel � ECCSD(T ) (right), for individual many-body energies, EnB in Eq. 2,
calculated with revPBE-D3, B97M-rV, revPBE0-D3, !B97M-V and MB-pol for the low-lying
isomers of the (H2O)6 cluster shown in Fig. S1.

S11

revPBE-D3

isomer 1

isomer 2

isomer 3

isomer 4

isomer 5

isomer 6

isomer 7

isomer 8

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



MB-DFT: Probing Many-Body Effects in Water

1-body

2-body

3-body

EN =
NX

i

V 1B(i)

+
NX

i<j

V 2B(i, j)

+
NX

i<j<k

V 3B(i, j, k)

+ . . .

+ V NB(1, . . . , N)

Hankins, Moskowitz & Stillinger, J. Chem. Phys. 53, 4544 (1970) 
Popkie, Kistenmacher & Clementi, J. Chem. Phys. 59, 1325 (1973)

N-body

4-body

…

flexible monomers

Explicit 2B and 3B corrections from DFT

N-body polarization

3 MB PEFs for each XC functional

• (2B+3B)-XC

• (2B)-XC

• (3B)-XC 

density 

isovalue: 0.01 A-3

2-body

density 

isovalue: 0.001 A-3

3-body

density 

isovalue: 0.0005 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

density 

isovalue: 0.01 A-3

1-body

= + + + …
E = E[ρ]

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



1-body

2-body

3-body

EN =
NX

i

V 1B(i)

+
NX

i<j

V 2B(i, j)

+
NX

i<j<k

V 3B(i, j, k)

+ . . .

+ V NB(1, . . . , N)

Hankins, Moskowitz & Stillinger, J. Chem. Phys. 53, 4544 (1970) 
Popkie, Kistenmacher & Clementi, J. Chem. Phys. 59, 1325 (1973)

N-body

4-body

…

flexible monomers

Explicit 2B corrections from DFT

N-body polarization

3 MB PEFs for each XC functional

• (2B+3B)-XC

• (2B)-XC

• (3B)-XC 

Explicit 3B corrections from CCSD(T)/CBS

MB-DFT: Probing Many-Body Effects in Water

density 

isovalue: 0.01 A-3

2-body

density 

isovalue: 0.001 A-3

3-body

density 

isovalue: 0.0005 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

density 

isovalue: 0.01 A-3

1-body

= + + + …
E = E[ρ]

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



1-body

2-body

3-body

EN =
NX

i

V 1B(i)

+
NX

i<j

V 2B(i, j)

+
NX

i<j<k

V 3B(i, j, k)

+ . . .

+ V NB(1, . . . , N)

Hankins, Moskowitz & Stillinger, J. Chem. Phys. 53, 4544 (1970) 
Popkie, Kistenmacher & Clementi, J. Chem. Phys. 59, 1325 (1973)

N-body

4-body

…

flexible monomers

Explicit 2B corrections from CCSD(T)/CBS

N-body polarization

3 MB PEFs for each XC functional

• (2B+3B)-XC

• (2B)-XC

• (3B)-XC 

Explicit 3B corrections from DFT

MB-DFT: Probing Many-Body Effects in Water

density 

isovalue: 0.01 A-3

2-body

density 

isovalue: 0.001 A-3

3-body

density 

isovalue: 0.0005 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

1-body

density 

isovalue: 0.01 A-3

density 

isovalue: 0.01 A-3

1-body

= + + + …
E = E[ρ]

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



Climbing Jacob’s ladder of DFT approximations

water structure: O-O RDF
2B DFT + 3B DFT + NB MB-pol

Experimental density Model’s density

MB-DFT: Probing Many-Body Effects in Water

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



Climbing Jacob’s ladder of DFT approximations

water structure: O-O RDF
2B DFT + 3B DFT + NB MB-pol

Experimental density Model’s density

MB-DFT: Probing Many-Body Effects in Water

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



Climbing Jacob’s ladder of DFT approximations

water structure: O-O RDF
2B DFT + 3B CCSD(T) + NB MB-pol

Experimental density Model’s density

MB-DFT: Probing Many-Body Effects in Water

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



Climbing Jacob’s ladder of DFT approximations

water structure: O-O RDF
2B CCSD(T) + 3B DFT + NB MB-pol

Experimental density Model’s density

MB-DFT: Probing Many-Body Effects in Water

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



Climbing Jacob’s ladder of DFT approximations
water structure: O-O RDF

MB-DFT: Probing Many-Body Effects in Water

Riera, Lambros, Nguyen, Götz & FP, Chem. Sci. 10, 8211 (2019)



Climbing Jacob’s ladder of DFT approximations: SCAN

MB-DFT: Probing Many-Body Effects in Water

water structure: O-O RDF

Lambros, Hu & FP, in progress

2B DFT + 3B CCSD(T) + NB MB-pol 2B CCSD(T) + 3B DFT + NB MB-pol2B DFT + 3B DFT + NB MB-pol



http://paesanigroup.ucsd.edu

How good are simulations of hydration?

introducing permutationally invariant polynomials (PIPs) that
effectively represent nonclassical contributions to molecular
interactions (e.g., charge transfer and penetration, and Pauli
repulsion),48,49 leads to further reduction of the 2B RMSEs to
0.05 kcal/mol. Finally, the correlation plots shown in panels d,
f, and h demonstrate that purely classical representations of 3B
interactions adopted by the TTM-nrg and (2B+NB)-MB-nrg
models are not sufficient to quantitatively reproduce the
CCSD(T) data, resulting in RMSEs of 0.17 kcal/mol.
Significantly higher accuracy in the description of 3B energies,
with an associated RMSE of 0.02 kcal/mol, is exhibited by the
(2B+3B+NB)-MB-nrg model, which supplements the classical
description of 3B Cs+−water interactions adopted by the
TTM-nrg and (2B+NB)-MB-nrg models with explicit PIPs
representing nonclassical 3B contributions.
Having established the accuracy of the four models in

reproducing the lower-order, and more relevant, many-body
effects in Cs+−water interactions, Figure 2 analyzes how the
differences found in the correlation plots of Figure 1 impact
the hydration structure of Cs+ in solution. The comparison
between the Cs+−O radial distribution functions (RDFs),
gCs+−O, calculated from MD and PIMD simulations with the
four models (Figure 2a) clearly shows that TIP4P-Ew predicts
a more structured distribution of water molecules around Cs+,
with a sequence of well-defined peaks located at ∼3.0, ∼5.0,
∼7.0, and ∼9.0 Å. Inclusion of an implicit description of many-
body effects through a classical polarization term as
implemented in the TTM-nrg model effectively leads to the
collapse of the hydration shell located at ∼5.0 Å in the TIP4P-
Ew RDF. This is accompanied by the broadening of the first
peak, corresponding to an expansion of the first hydration
shell, whose position consequently shifts to relatively larger
Cs+−O distances. As a result of this structural reorganization of
the water molecules around Cs+, the second and third peaks

(i.e., second and third hydration shells) in the TTM-nrg RDF
effectively correspond to the third and fourth peaks (i.e., third
and fourth hydration shells) in the TIP4P-Ew RDF.
Qualitatively different hydration structures are predicted by

the (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg models,
which progressively include explicit representations of 2B
and 3B contributions to Cs+−water interactions. Compared to
the TIP4P-Ew RDF, the RDFs calculated with both MB-nrg
models display a lower but broader first peak that extends up
to ∼4.5 Å, as well as a second, broader peak extending from
∼4.5 to ∼8.0 Å. Contrary to TTM-nrg predictions, the MB-nrg
RDFs display a well-defined sequence of hydration shells, with
a sharper first peak at ∼3.15 Å and a second, broader peak at
∼6.2 Å. Although comparisons between RDFs calculated from
simulations with (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg
suggest that the inclusion of an explicit 3B term in the (2B+3B
+NB)-MB-nrg model only leads to minor changes to the
overall hydration structure of Cs+, it nevertheless contributes
to sharpening the interstitial region between the first and
second peak, providing further evidence for the importance of
nonclassical 3B effects in Cs+−water interactions. Finally, the
comparison between the RDFs obtained from MD and PIMD
simulations with the (2B+3B+NB)-MB-nrg model indicates
that nuclear quantum effects play a minimal role in
determining the hydration structure of Cs+ in solution.
Figure 2b shows that the differences in the RDFs obtained

from simulations with the four models directly translate into
different distributions of water molecules around the Cs+ ion.
In particular, while MD simulations with the TIP4P-Ew model
predict that ∼8 molecules are within the first hydration shell of
Cs+, the lack of a well-defined second hydration shell makes it
difficult to unambiguously determine a coordination number
from the corresponding TTM-nrg simulations. The wider first
hydration shells predicted by simulations with both MB-nrg

Figure 2. (a) Radial distribution functions (RDFs) describing the spatial correlation between the Cs+ ion and the oxygen (O) atoms of the water
molecules calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models as well as from
PIMD simulations with the (2B+3B+NB)-MB-nrg model. (b) Corresponding coordination numbers calculated as a function of the Cs+−O
distance. (c) Two-dimensional plots comparing the density profiles calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-
nrg, and (2B+3B+NB)-MB-nrg models on the left of each panel with the corresponding results obtained from PIMD simulations with the (2B+3B
+NB)-MB-nrg model.
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suggest that the inclusion of an explicit 3B term in the (2B+3B
+NB)-MB-nrg model only leads to minor changes to the
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to sharpening the interstitial region between the first and
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nonclassical 3B effects in Cs+−water interactions. Finally, the
comparison between the RDFs obtained from MD and PIMD
simulations with the (2B+3B+NB)-MB-nrg model indicates
that nuclear quantum effects play a minimal role in
determining the hydration structure of Cs+ in solution.
Figure 2b shows that the differences in the RDFs obtained
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different distributions of water molecules around the Cs+ ion.
In particular, while MD simulations with the TIP4P-Ew model
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ABSTRACT: A systematic analysis of the hydration structure of Cs+ ions in solution is
derived from simulations carried out using a series of molecular models built upon a
hierarchy of approximate representations of many-body effects in ion−water interactions.
It is found that a pairwise-additive model, commonly used in biomolecular simulations,
provides poor agreement with experimental X-ray spectra, indicating an incorrect
description of the underlying hydration structure. Although the agreement with
experiment improves in simulations with a polarizable model, the predicted hydration
structure is found to lack the correct sequence of water shells. Progressive inclusion of
explicit many-body effects in the representation of Cs+−water interactions as well as
accounting for nuclear quantum effects is shown to be necessary for quantitatively
reproducing the experimental X-ray spectra. Besides emphasizing the importance of many-
body effects, these results suggest that molecular models rigorously derived from many-
body expansions hold promise for realistic simulations of aqueous solutions.

Determining the driving forces and molecular mechanisms
that regulate the hydration properties of alkali-metal ions

is fundamental for a microscopic understanding of several
processes taking place in aqueous clusters, solutions, and
interfaces, which, in turn, have major implications for various
fields of science and engineering. For example, lithium salts are
widely used in rechargeable batteries1,2 and are effective agents
in the treatment of manic-depressive illness.3 Sodium and
potassium ions play important roles in the stabilization of
biomolecules,4−6 intracellular signal transduction,7,8 and
enzyme and nucleic acid catalysis.9−12 The heavier alkali-
metal ions (i.e., rubidium and cesium) are not as ubiquitous in
the environment or in living systems. However, the accident at
the Fukushima Daiichi reactor in 2011 has drawn attention to
the importance of a molecular-level understanding of
adsorption and desorption processes of soluble radionuclides,
such as 137Cs, for the development of efficient technologies for
the treatment of nuclear waste.13

In this context, deriving a molecular picture of the hydration
properties of Cs+ ions presents significant challenges to both
experiment and theoretical modeling due to the intricate
interplay between Cs+−water and water−water interactions,
which, being of similar magnitude, are difficult to disentangle.
As a result, large variability is found in the values reported in
the literature for both Cs+ coordination number and spatial
extent of the hydration shells around Cs+ ions in solution.
From large-angle X-ray (LAXS) and double difference infrared
(DDIR) spectroscopic experiments performed on a 2.0 M

cesium iodide solution, the mean distance between Cs+ and the
oxygen atoms of the water molecules (Cs+−O) within the first
hydration shell was estimated to be 3.07 Å, corresponding to a
coordination number of 8.14 Anomalous X-ray diffraction
patterns measured for a 3 m cesium iodide solution were used
to determine a coordination number of 7.9, assuming a Cs+−O
distance of 3.0 Å.15 Values in the range of 7.7−8 for the
coordination number and 3.1 Å − 3.2 Å for the Cs+−O
distance were reported from subsequent neutron and X-ray
diffraction measurements.16,17 Various theoretical and compu-
tational approaches, including ab initio molecular dynamics
(AIMD), quantum mechanics/molecular mechanics (QM/
MM), and classical molecular dynamics (MD), have also been
used to investigate the hydration structure of Cs+, resulting in
predictions for the coordination number and Cs+−O distance
in the range of 7−10 and 3.0−3.3 Å, respectively.18−23

As already implicit in the “flickering clusters of hydrogen-
bonded molecules” picture of liquid water proposed by Frank
and Wen,24 different hydrogen-bonding arrangements in
solution result from the delicate balance of many-body
interactions,25−27 which is further modulated by nuclear
quantum effects.28,29 By combination of measurements of
vibration−rotation tunneling spectra with analogous theoreti-
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What makes water water?
• Low-order many-body interactions determine 

the local structure of water 
• Delocalization errors make current DFT models 

unreliable for water

Learning Physics from Many-Body Models

Data-driven many-body models: Quo vadis?

241725-7 Nguyen et al. J. Chem. Phys. 148, 241725 (2018)

FIG. 1. (a) Sketch-map representation
for the training data set for dimer config-
urations. Points are colored according
to O–O distance, and a few reference
configurations are also shown. (b) His-
togram of the training point positions
on the sketch-map. The train set den-
sity is also reported on other plots as
a reference for comparison. (c) Condi-
tional average of the 2B energies for
different parts of the train set. [(d)–(f)]
Conditional average RMSE for the PIP,
BPNN, and GAP fits of the 2B energy
in different parts of the test set.

h(x, y) = h�(x � xi)�(y � yi)i ,

V2B
short(x, y) =

D
V2B

short(i)�(x � xi)�(y � yi)
E

h(x, y)
.

(20)

Figure 1 demonstrates the application of this analysis to
the dimer dataset. One of the sketch-map coordinates corre-
lates primarily with the O–O distance, while different relative
orientations and internal monomer deformations are mixed
in the other direction. Conformational space is very non-
uniformly sampled [Fig. 1(b)], with a large number of con-
figurations at a large O–O distance—which correspond to
V2B

short of less than 0.01 kcal/mol—and at intermediate dis-
tances, with sparser sampling in the high-energy, repulsive
region [Fig. 1(c)]. It is interesting to see that the three regres-
sion schemes we considered exhibit very similar performance
in the various regions, with tiny errors <0.01 kcal/mol for far-
away molecules, and much larger errors, as large as 1 kcal/mol,
for configurations in the repulsive region. These large errors are
not only due to the high energy scale of V2B

short in this region:
the largest errors appear in the portion of the map which is
characterized by both large V2B

short and low density of sample
points.

The non-uniform sampling of the dimer space configura-
tion means that there is room to improve it. Figure 2 compares
the test RMSE obtained by BPNN fits constructed on subsets
of the overall training set. The error can be reduced by up
to a factor of five by choosing the subset with a FPS strat-
egy, rather than at random. This observation is consistent with
recent observations made using SOAP-GAP in a variety of
systems.86,92 Selecting training configurations from a larger
database of potential candidates using FPS gives a viable

strategy to reduce the number of high-end calculations that
have to be performed to describe accurately interactions in the
construction of a MB potential.

Figure 3 shows a similar analysis for the case of the trimer
data and V3B

short. 3B energies span a smaller range than the 2B
component, which includes most of the core repulsion. The
higher dimensionality of the problem, however, makes this
a harder regression problem, as is apparent from the irreg-
ular correlations between energy and position on the map,
which reveals an alternation of regions of positive and negative
contributions.

As a result, the absolute RMSE accuracy of the regression
models is comparable to that for the 2B terms, with PIP and
GAP yielding comparable accuracy (RMSE ⇡ 0.05 kcal/mol),
followed closely by BPNN (RMSE ⇡ 0.06 kcal/mol). As in

FIG. 2. TEST RMSE as a function of the size of the train set for the 2B energy
contribution, using a BPNN for the regression. Training configurations were
selected at random (5 independent selections, average and standard deviation
shown) or by farthest point sampling.



From Water to Complex Solutions

http://paesanigroup.ucsd.edu



From Water to Complex Solutions

http://paesanigroup.ucsd.edu



F-(H2O): Errors in interaction energies relative to CCSD(T)/CBS

398 resulting in the contamination of both potentials with additional
399 close-range interactions that cannot be described by classical
400 expressions (e.g., charge transfer and penetration). This
401 contamination likely imposes a greater burden on the AMOEBA
402 model because of the additional need to simultaneously
403 represent VDISP with a function of equivalent flexibility.
404 To assess the ability of the AMOEBA model and both TTM-
405 nrg and MB-nrg PEFs to describe halide−water interactions,

f2 406 Figure 2 shows comparisons with CCSD(T)-F12b interaction
407 energies calculated for radial scans obtained by moving each

408halide ion along the direction of the hydrogen bonded O−H
409bond of the water molecule, as described in section 2.1. In all
410cases, theMB-nrg PEFs quantitatively reproduce the CCSD(T)-
411F12b data. The TTM-nrg curves are quite accurate in the
412attractive regions of the scans involving Cl−, Br−, and I−, but
413display deviations of ∼1.3 kcal/mol in the minimum-energy
414region of the F−(H2O) scan. Importantly, the TTM-nrg PEFs
415also show relatively large deviations in the repulsive regions of
416each scan, consistently being more repulsive than the
417corresponding CCSD(T)-F12b curves. Since the only difference

Figure 2. Comparisons between CCSD(T)-F12b (open circles) and AMOEBA (red), TTM-nrg (green), and MB-nrg (blue) interaction energies
calculated for radial scans of X−(H2O) dimers, with X = F (a), Cl (b), Br (c), and I (d), in which each halide ion is displaced along the direction of the
hydrogen bonded O−H bond of the water molecule.

Figure 3. Deviations from the CCSD(T)-F12b interaction energies of the X−(H2O) dimers, with X = F (a), Cl (b), Br (c), and I (d), in the
corresponding RI-MP2/aug-cc-pVTZ(-PP) minimum-energy configurations calculated with various XC functionals as well as AMOEBA, TTM-nrg,
and MB-nrg models.
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cal calculations and MD simulations, it is argued that short-
range many-body effects were likely the most important flaws
in commonly used empirical water models.30−33 The develop-
ment of explicit many-body potential energy functions (PEFs),
rigorously derived from the corresponding many-body
expansions of the underlying interaction energies, represents
a significant step toward predictive computer simulations of
aqueous systems at the molecular level.34−49 By combination
of the MB-pol PEF,42−44 which correctly predicts the
properties of water across different phases,50 with the TTM-
nrg and MB-nrg PEFs,48,49 which accurately describe
molecular interactions between halide and alkali-metal ions
with water, theoretical studies have been carried out to
characterize the tunneling dynamics in X−(H2O) and
X−(D2O) dimers, with X = F, Cl, Br, and I,51 as well as
quantum isomeric equilibria in small M+(H2O)n clusters, with
M = Li, Na, K, Rb, and Cs.52

In this study, a series of molecular models built upon a
hierarchy of approximate representations of Cs+−water
interactions is used in MD and path-integral molecular
dynamics (PIMD) simulations53 to investigate many-body
effects in the hydration structure of Cs+ ions. Specifically, the
analyses presented here include comparisons between the
empirical point-charge force field obtained by combining the
TIP4P-Ew model for water54 with the corresponding Cs+−
water parametrization introduced in ref 55, hereafter referred
to as TIP4P-Ew, the polarizable TTM-nrg PEF, with an
implicit representation of N-body (NB) effects based on
classical induction,47 and the many-body MB-nrg PEF, with
either explicit inclusion of two-body (2B) interactions in
addition to the same classical NB term adopted by TTM-nrg,
hereafter referred to as (2B+NB)-MB-nrg, or explicit inclusion
of both two-body (2B) and three-body (3B) interactions in
addition to the TTM-nrg classical NB term, hereafter referred
to as (2B+3B+NB)-MB-nrg.49 The accuracy of the four
different models in reproducing the hydration structure of Cs+

in diluted solutions as well as the role played by nuclear

quantum effects are then assessed through systematic
comparisons between measured and simulated L1-edge and
L3-edge extended X-ray absorption fine structure (EXAFS)
spectra. Specific details about both simulations and exper-
imental measurements are reported in the Supporting
Information.
To first assess the ability of the TIP4P-Ew, TTM-nrg, (2B

+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models to describe
Cs+−water interactions, Figure 1 shows the correlation plots
between 2B and 3B energies calculated with each model and
the corresponding reference values obtained at the coupled
cluster level of theory with single, double, and iterative triple
excitations, CCSD(T). In this analysis, 2B and 3B energies are
calculated for 380 distinct Cs+(H2O) and Cs+(H2O)2
configurations with distorted water geometries, respectively.
In the case of the (rigid) TIP4P-Ew model, the CCSD(T)
reference energies are calculated for the same dimer and trimer
configurations used for the other models after rescaling both
OH bonds and HOH angles of the water molecules to match
the TIP4P-Ew parametrization. Specific details about the
CCSD(T) calculations are reported in the Supporting
Information.
Among the four models, TIP4P-Ew predicts 2B energies that

deviate significantly from the CCSD(T) data (panel a),
resulting in a root-mean-square error (RMSE) of 10.55 kcal/
mol. This large RMSE can be explained by considering that, as
in all empirical pairwise-additive force fields, the 2B term of
TIP4P-Ew does not strictly represent 2B interactions but
effectively also accounts for higher-order interactions that, by
construction, are not explicitly included in the model (e.g., 3B
interactions in panel b). As shown by the correlation plots for
the TTM-nrg model (panels c and d), implicit inclusion of
many-body effects through classical polarization significantly
improves the agreement with the CCSD(T) data for both 2B
and 3B energies, resulting in RMSEs of 1.23 and 0.14 kcal/
mol, respectively. Explicit representations of 2B interactions,
which is accomplished in the MB-nrg PEFs (panels e and g) by

Figure 1. Correlation plots for 2B (top panels) and 3B (bottom panels) Cs+−water interaction energies for the TIP4P-Ew, TTM-nrg, (2B+NB)-
MB-nrg, and (2B+3B+NB)-MB-nrg models. On the x-axes are the CCSD(T) reference data while on the y-axes are the corresponding values
calculated with each model.
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cal calculations and MD simulations, it is argued that short-
range many-body effects were likely the most important flaws
in commonly used empirical water models.30−33 The develop-
ment of explicit many-body potential energy functions (PEFs),
rigorously derived from the corresponding many-body
expansions of the underlying interaction energies, represents
a significant step toward predictive computer simulations of
aqueous systems at the molecular level.34−49 By combination
of the MB-pol PEF,42−44 which correctly predicts the
properties of water across different phases,50 with the TTM-
nrg and MB-nrg PEFs,48,49 which accurately describe
molecular interactions between halide and alkali-metal ions
with water, theoretical studies have been carried out to
characterize the tunneling dynamics in X−(H2O) and
X−(D2O) dimers, with X = F, Cl, Br, and I,51 as well as
quantum isomeric equilibria in small M+(H2O)n clusters, with
M = Li, Na, K, Rb, and Cs.52

In this study, a series of molecular models built upon a
hierarchy of approximate representations of Cs+−water
interactions is used in MD and path-integral molecular
dynamics (PIMD) simulations53 to investigate many-body
effects in the hydration structure of Cs+ ions. Specifically, the
analyses presented here include comparisons between the
empirical point-charge force field obtained by combining the
TIP4P-Ew model for water54 with the corresponding Cs+−
water parametrization introduced in ref 55, hereafter referred
to as TIP4P-Ew, the polarizable TTM-nrg PEF, with an
implicit representation of N-body (NB) effects based on
classical induction,47 and the many-body MB-nrg PEF, with
either explicit inclusion of two-body (2B) interactions in
addition to the same classical NB term adopted by TTM-nrg,
hereafter referred to as (2B+NB)-MB-nrg, or explicit inclusion
of both two-body (2B) and three-body (3B) interactions in
addition to the TTM-nrg classical NB term, hereafter referred
to as (2B+3B+NB)-MB-nrg.49 The accuracy of the four
different models in reproducing the hydration structure of Cs+

in diluted solutions as well as the role played by nuclear

quantum effects are then assessed through systematic
comparisons between measured and simulated L1-edge and
L3-edge extended X-ray absorption fine structure (EXAFS)
spectra. Specific details about both simulations and exper-
imental measurements are reported in the Supporting
Information.
To first assess the ability of the TIP4P-Ew, TTM-nrg, (2B

+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models to describe
Cs+−water interactions, Figure 1 shows the correlation plots
between 2B and 3B energies calculated with each model and
the corresponding reference values obtained at the coupled
cluster level of theory with single, double, and iterative triple
excitations, CCSD(T). In this analysis, 2B and 3B energies are
calculated for 380 distinct Cs+(H2O) and Cs+(H2O)2
configurations with distorted water geometries, respectively.
In the case of the (rigid) TIP4P-Ew model, the CCSD(T)
reference energies are calculated for the same dimer and trimer
configurations used for the other models after rescaling both
OH bonds and HOH angles of the water molecules to match
the TIP4P-Ew parametrization. Specific details about the
CCSD(T) calculations are reported in the Supporting
Information.
Among the four models, TIP4P-Ew predicts 2B energies that

deviate significantly from the CCSD(T) data (panel a),
resulting in a root-mean-square error (RMSE) of 10.55 kcal/
mol. This large RMSE can be explained by considering that, as
in all empirical pairwise-additive force fields, the 2B term of
TIP4P-Ew does not strictly represent 2B interactions but
effectively also accounts for higher-order interactions that, by
construction, are not explicitly included in the model (e.g., 3B
interactions in panel b). As shown by the correlation plots for
the TTM-nrg model (panels c and d), implicit inclusion of
many-body effects through classical polarization significantly
improves the agreement with the CCSD(T) data for both 2B
and 3B energies, resulting in RMSEs of 1.23 and 0.14 kcal/
mol, respectively. Explicit representations of 2B interactions,
which is accomplished in the MB-nrg PEFs (panels e and g) by

Figure 1. Correlation plots for 2B (top panels) and 3B (bottom panels) Cs+−water interaction energies for the TIP4P-Ew, TTM-nrg, (2B+NB)-
MB-nrg, and (2B+3B+NB)-MB-nrg models. On the x-axes are the CCSD(T) reference data while on the y-axes are the corresponding values
calculated with each model.
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cal calculations and MD simulations, it is argued that short-
range many-body effects were likely the most important flaws
in commonly used empirical water models.30−33 The develop-
ment of explicit many-body potential energy functions (PEFs),
rigorously derived from the corresponding many-body
expansions of the underlying interaction energies, represents
a significant step toward predictive computer simulations of
aqueous systems at the molecular level.34−49 By combination
of the MB-pol PEF,42−44 which correctly predicts the
properties of water across different phases,50 with the TTM-
nrg and MB-nrg PEFs,48,49 which accurately describe
molecular interactions between halide and alkali-metal ions
with water, theoretical studies have been carried out to
characterize the tunneling dynamics in X−(H2O) and
X−(D2O) dimers, with X = F, Cl, Br, and I,51 as well as
quantum isomeric equilibria in small M+(H2O)n clusters, with
M = Li, Na, K, Rb, and Cs.52

In this study, a series of molecular models built upon a
hierarchy of approximate representations of Cs+−water
interactions is used in MD and path-integral molecular
dynamics (PIMD) simulations53 to investigate many-body
effects in the hydration structure of Cs+ ions. Specifically, the
analyses presented here include comparisons between the
empirical point-charge force field obtained by combining the
TIP4P-Ew model for water54 with the corresponding Cs+−
water parametrization introduced in ref 55, hereafter referred
to as TIP4P-Ew, the polarizable TTM-nrg PEF, with an
implicit representation of N-body (NB) effects based on
classical induction,47 and the many-body MB-nrg PEF, with
either explicit inclusion of two-body (2B) interactions in
addition to the same classical NB term adopted by TTM-nrg,
hereafter referred to as (2B+NB)-MB-nrg, or explicit inclusion
of both two-body (2B) and three-body (3B) interactions in
addition to the TTM-nrg classical NB term, hereafter referred
to as (2B+3B+NB)-MB-nrg.49 The accuracy of the four
different models in reproducing the hydration structure of Cs+

in diluted solutions as well as the role played by nuclear

quantum effects are then assessed through systematic
comparisons between measured and simulated L1-edge and
L3-edge extended X-ray absorption fine structure (EXAFS)
spectra. Specific details about both simulations and exper-
imental measurements are reported in the Supporting
Information.
To first assess the ability of the TIP4P-Ew, TTM-nrg, (2B

+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models to describe
Cs+−water interactions, Figure 1 shows the correlation plots
between 2B and 3B energies calculated with each model and
the corresponding reference values obtained at the coupled
cluster level of theory with single, double, and iterative triple
excitations, CCSD(T). In this analysis, 2B and 3B energies are
calculated for 380 distinct Cs+(H2O) and Cs+(H2O)2
configurations with distorted water geometries, respectively.
In the case of the (rigid) TIP4P-Ew model, the CCSD(T)
reference energies are calculated for the same dimer and trimer
configurations used for the other models after rescaling both
OH bonds and HOH angles of the water molecules to match
the TIP4P-Ew parametrization. Specific details about the
CCSD(T) calculations are reported in the Supporting
Information.
Among the four models, TIP4P-Ew predicts 2B energies that

deviate significantly from the CCSD(T) data (panel a),
resulting in a root-mean-square error (RMSE) of 10.55 kcal/
mol. This large RMSE can be explained by considering that, as
in all empirical pairwise-additive force fields, the 2B term of
TIP4P-Ew does not strictly represent 2B interactions but
effectively also accounts for higher-order interactions that, by
construction, are not explicitly included in the model (e.g., 3B
interactions in panel b). As shown by the correlation plots for
the TTM-nrg model (panels c and d), implicit inclusion of
many-body effects through classical polarization significantly
improves the agreement with the CCSD(T) data for both 2B
and 3B energies, resulting in RMSEs of 1.23 and 0.14 kcal/
mol, respectively. Explicit representations of 2B interactions,
which is accomplished in the MB-nrg PEFs (panels e and g) by

Figure 1. Correlation plots for 2B (top panels) and 3B (bottom panels) Cs+−water interaction energies for the TIP4P-Ew, TTM-nrg, (2B+NB)-
MB-nrg, and (2B+3B+NB)-MB-nrg models. On the x-axes are the CCSD(T) reference data while on the y-axes are the corresponding values
calculated with each model.
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cal calculations and MD simulations, it is argued that short-
range many-body effects were likely the most important flaws
in commonly used empirical water models.30−33 The develop-
ment of explicit many-body potential energy functions (PEFs),
rigorously derived from the corresponding many-body
expansions of the underlying interaction energies, represents
a significant step toward predictive computer simulations of
aqueous systems at the molecular level.34−49 By combination
of the MB-pol PEF,42−44 which correctly predicts the
properties of water across different phases,50 with the TTM-
nrg and MB-nrg PEFs,48,49 which accurately describe
molecular interactions between halide and alkali-metal ions
with water, theoretical studies have been carried out to
characterize the tunneling dynamics in X−(H2O) and
X−(D2O) dimers, with X = F, Cl, Br, and I,51 as well as
quantum isomeric equilibria in small M+(H2O)n clusters, with
M = Li, Na, K, Rb, and Cs.52

In this study, a series of molecular models built upon a
hierarchy of approximate representations of Cs+−water
interactions is used in MD and path-integral molecular
dynamics (PIMD) simulations53 to investigate many-body
effects in the hydration structure of Cs+ ions. Specifically, the
analyses presented here include comparisons between the
empirical point-charge force field obtained by combining the
TIP4P-Ew model for water54 with the corresponding Cs+−
water parametrization introduced in ref 55, hereafter referred
to as TIP4P-Ew, the polarizable TTM-nrg PEF, with an
implicit representation of N-body (NB) effects based on
classical induction,47 and the many-body MB-nrg PEF, with
either explicit inclusion of two-body (2B) interactions in
addition to the same classical NB term adopted by TTM-nrg,
hereafter referred to as (2B+NB)-MB-nrg, or explicit inclusion
of both two-body (2B) and three-body (3B) interactions in
addition to the TTM-nrg classical NB term, hereafter referred
to as (2B+3B+NB)-MB-nrg.49 The accuracy of the four
different models in reproducing the hydration structure of Cs+

in diluted solutions as well as the role played by nuclear

quantum effects are then assessed through systematic
comparisons between measured and simulated L1-edge and
L3-edge extended X-ray absorption fine structure (EXAFS)
spectra. Specific details about both simulations and exper-
imental measurements are reported in the Supporting
Information.
To first assess the ability of the TIP4P-Ew, TTM-nrg, (2B

+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models to describe
Cs+−water interactions, Figure 1 shows the correlation plots
between 2B and 3B energies calculated with each model and
the corresponding reference values obtained at the coupled
cluster level of theory with single, double, and iterative triple
excitations, CCSD(T). In this analysis, 2B and 3B energies are
calculated for 380 distinct Cs+(H2O) and Cs+(H2O)2
configurations with distorted water geometries, respectively.
In the case of the (rigid) TIP4P-Ew model, the CCSD(T)
reference energies are calculated for the same dimer and trimer
configurations used for the other models after rescaling both
OH bonds and HOH angles of the water molecules to match
the TIP4P-Ew parametrization. Specific details about the
CCSD(T) calculations are reported in the Supporting
Information.
Among the four models, TIP4P-Ew predicts 2B energies that

deviate significantly from the CCSD(T) data (panel a),
resulting in a root-mean-square error (RMSE) of 10.55 kcal/
mol. This large RMSE can be explained by considering that, as
in all empirical pairwise-additive force fields, the 2B term of
TIP4P-Ew does not strictly represent 2B interactions but
effectively also accounts for higher-order interactions that, by
construction, are not explicitly included in the model (e.g., 3B
interactions in panel b). As shown by the correlation plots for
the TTM-nrg model (panels c and d), implicit inclusion of
many-body effects through classical polarization significantly
improves the agreement with the CCSD(T) data for both 2B
and 3B energies, resulting in RMSEs of 1.23 and 0.14 kcal/
mol, respectively. Explicit representations of 2B interactions,
which is accomplished in the MB-nrg PEFs (panels e and g) by

Figure 1. Correlation plots for 2B (top panels) and 3B (bottom panels) Cs+−water interaction energies for the TIP4P-Ew, TTM-nrg, (2B+NB)-
MB-nrg, and (2B+3B+NB)-MB-nrg models. On the x-axes are the CCSD(T) reference data while on the y-axes are the corresponding values
calculated with each model.
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Many-Body Effects in Cs+ Hydration

introducing permutationally invariant polynomials (PIPs) that
effectively represent nonclassical contributions to molecular
interactions (e.g., charge transfer and penetration, and Pauli
repulsion),48,49 leads to further reduction of the 2B RMSEs to
0.05 kcal/mol. Finally, the correlation plots shown in panels d,
f, and h demonstrate that purely classical representations of 3B
interactions adopted by the TTM-nrg and (2B+NB)-MB-nrg
models are not sufficient to quantitatively reproduce the
CCSD(T) data, resulting in RMSEs of 0.17 kcal/mol.
Significantly higher accuracy in the description of 3B energies,
with an associated RMSE of 0.02 kcal/mol, is exhibited by the
(2B+3B+NB)-MB-nrg model, which supplements the classical
description of 3B Cs+−water interactions adopted by the
TTM-nrg and (2B+NB)-MB-nrg models with explicit PIPs
representing nonclassical 3B contributions.
Having established the accuracy of the four models in

reproducing the lower-order, and more relevant, many-body
effects in Cs+−water interactions, Figure 2 analyzes how the
differences found in the correlation plots of Figure 1 impact
the hydration structure of Cs+ in solution. The comparison
between the Cs+−O radial distribution functions (RDFs),
gCs+−O, calculated from MD and PIMD simulations with the
four models (Figure 2a) clearly shows that TIP4P-Ew predicts
a more structured distribution of water molecules around Cs+,
with a sequence of well-defined peaks located at ∼3.0, ∼5.0,
∼7.0, and ∼9.0 Å. Inclusion of an implicit description of many-
body effects through a classical polarization term as
implemented in the TTM-nrg model effectively leads to the
collapse of the hydration shell located at ∼5.0 Å in the TIP4P-
Ew RDF. This is accompanied by the broadening of the first
peak, corresponding to an expansion of the first hydration
shell, whose position consequently shifts to relatively larger
Cs+−O distances. As a result of this structural reorganization of
the water molecules around Cs+, the second and third peaks

(i.e., second and third hydration shells) in the TTM-nrg RDF
effectively correspond to the third and fourth peaks (i.e., third
and fourth hydration shells) in the TIP4P-Ew RDF.
Qualitatively different hydration structures are predicted by

the (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg models,
which progressively include explicit representations of 2B
and 3B contributions to Cs+−water interactions. Compared to
the TIP4P-Ew RDF, the RDFs calculated with both MB-nrg
models display a lower but broader first peak that extends up
to ∼4.5 Å, as well as a second, broader peak extending from
∼4.5 to ∼8.0 Å. Contrary to TTM-nrg predictions, the MB-nrg
RDFs display a well-defined sequence of hydration shells, with
a sharper first peak at ∼3.15 Å and a second, broader peak at
∼6.2 Å. Although comparisons between RDFs calculated from
simulations with (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg
suggest that the inclusion of an explicit 3B term in the (2B+3B
+NB)-MB-nrg model only leads to minor changes to the
overall hydration structure of Cs+, it nevertheless contributes
to sharpening the interstitial region between the first and
second peak, providing further evidence for the importance of
nonclassical 3B effects in Cs+−water interactions. Finally, the
comparison between the RDFs obtained from MD and PIMD
simulations with the (2B+3B+NB)-MB-nrg model indicates
that nuclear quantum effects play a minimal role in
determining the hydration structure of Cs+ in solution.
Figure 2b shows that the differences in the RDFs obtained

from simulations with the four models directly translate into
different distributions of water molecules around the Cs+ ion.
In particular, while MD simulations with the TIP4P-Ew model
predict that ∼8 molecules are within the first hydration shell of
Cs+, the lack of a well-defined second hydration shell makes it
difficult to unambiguously determine a coordination number
from the corresponding TTM-nrg simulations. The wider first
hydration shells predicted by simulations with both MB-nrg

Figure 2. (a) Radial distribution functions (RDFs) describing the spatial correlation between the Cs+ ion and the oxygen (O) atoms of the water
molecules calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models as well as from
PIMD simulations with the (2B+3B+NB)-MB-nrg model. (b) Corresponding coordination numbers calculated as a function of the Cs+−O
distance. (c) Two-dimensional plots comparing the density profiles calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-
nrg, and (2B+3B+NB)-MB-nrg models on the left of each panel with the corresponding results obtained from PIMD simulations with the (2B+3B
+NB)-MB-nrg model.
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ABSTRACT: A systematic analysis of the hydration structure of Cs+ ions in solution is
derived from simulations carried out using a series of molecular models built upon a
hierarchy of approximate representations of many-body effects in ion−water interactions.
It is found that a pairwise-additive model, commonly used in biomolecular simulations,
provides poor agreement with experimental X-ray spectra, indicating an incorrect
description of the underlying hydration structure. Although the agreement with
experiment improves in simulations with a polarizable model, the predicted hydration
structure is found to lack the correct sequence of water shells. Progressive inclusion of
explicit many-body effects in the representation of Cs+−water interactions as well as
accounting for nuclear quantum effects is shown to be necessary for quantitatively
reproducing the experimental X-ray spectra. Besides emphasizing the importance of many-
body effects, these results suggest that molecular models rigorously derived from many-
body expansions hold promise for realistic simulations of aqueous solutions.

Determining the driving forces and molecular mechanisms
that regulate the hydration properties of alkali-metal ions

is fundamental for a microscopic understanding of several
processes taking place in aqueous clusters, solutions, and
interfaces, which, in turn, have major implications for various
fields of science and engineering. For example, lithium salts are
widely used in rechargeable batteries1,2 and are effective agents
in the treatment of manic-depressive illness.3 Sodium and
potassium ions play important roles in the stabilization of
biomolecules,4−6 intracellular signal transduction,7,8 and
enzyme and nucleic acid catalysis.9−12 The heavier alkali-
metal ions (i.e., rubidium and cesium) are not as ubiquitous in
the environment or in living systems. However, the accident at
the Fukushima Daiichi reactor in 2011 has drawn attention to
the importance of a molecular-level understanding of
adsorption and desorption processes of soluble radionuclides,
such as 137Cs, for the development of efficient technologies for
the treatment of nuclear waste.13

In this context, deriving a molecular picture of the hydration
properties of Cs+ ions presents significant challenges to both
experiment and theoretical modeling due to the intricate
interplay between Cs+−water and water−water interactions,
which, being of similar magnitude, are difficult to disentangle.
As a result, large variability is found in the values reported in
the literature for both Cs+ coordination number and spatial
extent of the hydration shells around Cs+ ions in solution.
From large-angle X-ray (LAXS) and double difference infrared
(DDIR) spectroscopic experiments performed on a 2.0 M

cesium iodide solution, the mean distance between Cs+ and the
oxygen atoms of the water molecules (Cs+−O) within the first
hydration shell was estimated to be 3.07 Å, corresponding to a
coordination number of 8.14 Anomalous X-ray diffraction
patterns measured for a 3 m cesium iodide solution were used
to determine a coordination number of 7.9, assuming a Cs+−O
distance of 3.0 Å.15 Values in the range of 7.7−8 for the
coordination number and 3.1 Å − 3.2 Å for the Cs+−O
distance were reported from subsequent neutron and X-ray
diffraction measurements.16,17 Various theoretical and compu-
tational approaches, including ab initio molecular dynamics
(AIMD), quantum mechanics/molecular mechanics (QM/
MM), and classical molecular dynamics (MD), have also been
used to investigate the hydration structure of Cs+, resulting in
predictions for the coordination number and Cs+−O distance
in the range of 7−10 and 3.0−3.3 Å, respectively.18−23

As already implicit in the “flickering clusters of hydrogen-
bonded molecules” picture of liquid water proposed by Frank
and Wen,24 different hydrogen-bonding arrangements in
solution result from the delicate balance of many-body
interactions,25−27 which is further modulated by nuclear
quantum effects.28,29 By combination of measurements of
vibration−rotation tunneling spectra with analogous theoreti-
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Many-Body Effects in Cs+ Hydration

introducing permutationally invariant polynomials (PIPs) that
effectively represent nonclassical contributions to molecular
interactions (e.g., charge transfer and penetration, and Pauli
repulsion),48,49 leads to further reduction of the 2B RMSEs to
0.05 kcal/mol. Finally, the correlation plots shown in panels d,
f, and h demonstrate that purely classical representations of 3B
interactions adopted by the TTM-nrg and (2B+NB)-MB-nrg
models are not sufficient to quantitatively reproduce the
CCSD(T) data, resulting in RMSEs of 0.17 kcal/mol.
Significantly higher accuracy in the description of 3B energies,
with an associated RMSE of 0.02 kcal/mol, is exhibited by the
(2B+3B+NB)-MB-nrg model, which supplements the classical
description of 3B Cs+−water interactions adopted by the
TTM-nrg and (2B+NB)-MB-nrg models with explicit PIPs
representing nonclassical 3B contributions.
Having established the accuracy of the four models in

reproducing the lower-order, and more relevant, many-body
effects in Cs+−water interactions, Figure 2 analyzes how the
differences found in the correlation plots of Figure 1 impact
the hydration structure of Cs+ in solution. The comparison
between the Cs+−O radial distribution functions (RDFs),
gCs+−O, calculated from MD and PIMD simulations with the
four models (Figure 2a) clearly shows that TIP4P-Ew predicts
a more structured distribution of water molecules around Cs+,
with a sequence of well-defined peaks located at ∼3.0, ∼5.0,
∼7.0, and ∼9.0 Å. Inclusion of an implicit description of many-
body effects through a classical polarization term as
implemented in the TTM-nrg model effectively leads to the
collapse of the hydration shell located at ∼5.0 Å in the TIP4P-
Ew RDF. This is accompanied by the broadening of the first
peak, corresponding to an expansion of the first hydration
shell, whose position consequently shifts to relatively larger
Cs+−O distances. As a result of this structural reorganization of
the water molecules around Cs+, the second and third peaks

(i.e., second and third hydration shells) in the TTM-nrg RDF
effectively correspond to the third and fourth peaks (i.e., third
and fourth hydration shells) in the TIP4P-Ew RDF.
Qualitatively different hydration structures are predicted by

the (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg models,
which progressively include explicit representations of 2B
and 3B contributions to Cs+−water interactions. Compared to
the TIP4P-Ew RDF, the RDFs calculated with both MB-nrg
models display a lower but broader first peak that extends up
to ∼4.5 Å, as well as a second, broader peak extending from
∼4.5 to ∼8.0 Å. Contrary to TTM-nrg predictions, the MB-nrg
RDFs display a well-defined sequence of hydration shells, with
a sharper first peak at ∼3.15 Å and a second, broader peak at
∼6.2 Å. Although comparisons between RDFs calculated from
simulations with (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg
suggest that the inclusion of an explicit 3B term in the (2B+3B
+NB)-MB-nrg model only leads to minor changes to the
overall hydration structure of Cs+, it nevertheless contributes
to sharpening the interstitial region between the first and
second peak, providing further evidence for the importance of
nonclassical 3B effects in Cs+−water interactions. Finally, the
comparison between the RDFs obtained from MD and PIMD
simulations with the (2B+3B+NB)-MB-nrg model indicates
that nuclear quantum effects play a minimal role in
determining the hydration structure of Cs+ in solution.
Figure 2b shows that the differences in the RDFs obtained

from simulations with the four models directly translate into
different distributions of water molecules around the Cs+ ion.
In particular, while MD simulations with the TIP4P-Ew model
predict that ∼8 molecules are within the first hydration shell of
Cs+, the lack of a well-defined second hydration shell makes it
difficult to unambiguously determine a coordination number
from the corresponding TTM-nrg simulations. The wider first
hydration shells predicted by simulations with both MB-nrg

Figure 2. (a) Radial distribution functions (RDFs) describing the spatial correlation between the Cs+ ion and the oxygen (O) atoms of the water
molecules calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models as well as from
PIMD simulations with the (2B+3B+NB)-MB-nrg model. (b) Corresponding coordination numbers calculated as a function of the Cs+−O
distance. (c) Two-dimensional plots comparing the density profiles calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-
nrg, and (2B+3B+NB)-MB-nrg models on the left of each panel with the corresponding results obtained from PIMD simulations with the (2B+3B
+NB)-MB-nrg model.
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introducing permutationally invariant polynomials (PIPs) that
effectively represent nonclassical contributions to molecular
interactions (e.g., charge transfer and penetration, and Pauli
repulsion),48,49 leads to further reduction of the 2B RMSEs to
0.05 kcal/mol. Finally, the correlation plots shown in panels d,
f, and h demonstrate that purely classical representations of 3B
interactions adopted by the TTM-nrg and (2B+NB)-MB-nrg
models are not sufficient to quantitatively reproduce the
CCSD(T) data, resulting in RMSEs of 0.17 kcal/mol.
Significantly higher accuracy in the description of 3B energies,
with an associated RMSE of 0.02 kcal/mol, is exhibited by the
(2B+3B+NB)-MB-nrg model, which supplements the classical
description of 3B Cs+−water interactions adopted by the
TTM-nrg and (2B+NB)-MB-nrg models with explicit PIPs
representing nonclassical 3B contributions.
Having established the accuracy of the four models in

reproducing the lower-order, and more relevant, many-body
effects in Cs+−water interactions, Figure 2 analyzes how the
differences found in the correlation plots of Figure 1 impact
the hydration structure of Cs+ in solution. The comparison
between the Cs+−O radial distribution functions (RDFs),
gCs+−O, calculated from MD and PIMD simulations with the
four models (Figure 2a) clearly shows that TIP4P-Ew predicts
a more structured distribution of water molecules around Cs+,
with a sequence of well-defined peaks located at ∼3.0, ∼5.0,
∼7.0, and ∼9.0 Å. Inclusion of an implicit description of many-
body effects through a classical polarization term as
implemented in the TTM-nrg model effectively leads to the
collapse of the hydration shell located at ∼5.0 Å in the TIP4P-
Ew RDF. This is accompanied by the broadening of the first
peak, corresponding to an expansion of the first hydration
shell, whose position consequently shifts to relatively larger
Cs+−O distances. As a result of this structural reorganization of
the water molecules around Cs+, the second and third peaks

(i.e., second and third hydration shells) in the TTM-nrg RDF
effectively correspond to the third and fourth peaks (i.e., third
and fourth hydration shells) in the TIP4P-Ew RDF.
Qualitatively different hydration structures are predicted by

the (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg models,
which progressively include explicit representations of 2B
and 3B contributions to Cs+−water interactions. Compared to
the TIP4P-Ew RDF, the RDFs calculated with both MB-nrg
models display a lower but broader first peak that extends up
to ∼4.5 Å, as well as a second, broader peak extending from
∼4.5 to ∼8.0 Å. Contrary to TTM-nrg predictions, the MB-nrg
RDFs display a well-defined sequence of hydration shells, with
a sharper first peak at ∼3.15 Å and a second, broader peak at
∼6.2 Å. Although comparisons between RDFs calculated from
simulations with (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg
suggest that the inclusion of an explicit 3B term in the (2B+3B
+NB)-MB-nrg model only leads to minor changes to the
overall hydration structure of Cs+, it nevertheless contributes
to sharpening the interstitial region between the first and
second peak, providing further evidence for the importance of
nonclassical 3B effects in Cs+−water interactions. Finally, the
comparison between the RDFs obtained from MD and PIMD
simulations with the (2B+3B+NB)-MB-nrg model indicates
that nuclear quantum effects play a minimal role in
determining the hydration structure of Cs+ in solution.
Figure 2b shows that the differences in the RDFs obtained

from simulations with the four models directly translate into
different distributions of water molecules around the Cs+ ion.
In particular, while MD simulations with the TIP4P-Ew model
predict that ∼8 molecules are within the first hydration shell of
Cs+, the lack of a well-defined second hydration shell makes it
difficult to unambiguously determine a coordination number
from the corresponding TTM-nrg simulations. The wider first
hydration shells predicted by simulations with both MB-nrg

Figure 2. (a) Radial distribution functions (RDFs) describing the spatial correlation between the Cs+ ion and the oxygen (O) atoms of the water
molecules calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models as well as from
PIMD simulations with the (2B+3B+NB)-MB-nrg model. (b) Corresponding coordination numbers calculated as a function of the Cs+−O
distance. (c) Two-dimensional plots comparing the density profiles calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-
nrg, and (2B+3B+NB)-MB-nrg models on the left of each panel with the corresponding results obtained from PIMD simulations with the (2B+3B
+NB)-MB-nrg model.
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FIG. 1. (a) Sketch-map representation
for the training data set for dimer config-
urations. Points are colored according
to O–O distance, and a few reference
configurations are also shown. (b) His-
togram of the training point positions
on the sketch-map. The train set den-
sity is also reported on other plots as
a reference for comparison. (c) Condi-
tional average of the 2B energies for
different parts of the train set. [(d)–(f)]
Conditional average RMSE for the PIP,
BPNN, and GAP fits of the 2B energy
in different parts of the test set.

h(x, y) = h�(x � xi)�(y � yi)i ,

V2B
short(x, y) =

D
V2B

short(i)�(x � xi)�(y � yi)
E

h(x, y)
.

(20)

Figure 1 demonstrates the application of this analysis to
the dimer dataset. One of the sketch-map coordinates corre-
lates primarily with the O–O distance, while different relative
orientations and internal monomer deformations are mixed
in the other direction. Conformational space is very non-
uniformly sampled [Fig. 1(b)], with a large number of con-
figurations at a large O–O distance—which correspond to
V2B

short of less than 0.01 kcal/mol—and at intermediate dis-
tances, with sparser sampling in the high-energy, repulsive
region [Fig. 1(c)]. It is interesting to see that the three regres-
sion schemes we considered exhibit very similar performance
in the various regions, with tiny errors <0.01 kcal/mol for far-
away molecules, and much larger errors, as large as 1 kcal/mol,
for configurations in the repulsive region. These large errors are
not only due to the high energy scale of V2B

short in this region:
the largest errors appear in the portion of the map which is
characterized by both large V2B

short and low density of sample
points.

The non-uniform sampling of the dimer space configura-
tion means that there is room to improve it. Figure 2 compares
the test RMSE obtained by BPNN fits constructed on subsets
of the overall training set. The error can be reduced by up
to a factor of five by choosing the subset with a FPS strat-
egy, rather than at random. This observation is consistent with
recent observations made using SOAP-GAP in a variety of
systems.86,92 Selecting training configurations from a larger
database of potential candidates using FPS gives a viable

strategy to reduce the number of high-end calculations that
have to be performed to describe accurately interactions in the
construction of a MB potential.

Figure 3 shows a similar analysis for the case of the trimer
data and V3B

short. 3B energies span a smaller range than the 2B
component, which includes most of the core repulsion. The
higher dimensionality of the problem, however, makes this
a harder regression problem, as is apparent from the irreg-
ular correlations between energy and position on the map,
which reveals an alternation of regions of positive and negative
contributions.

As a result, the absolute RMSE accuracy of the regression
models is comparable to that for the 2B terms, with PIP and
GAP yielding comparable accuracy (RMSE ⇡ 0.05 kcal/mol),
followed closely by BPNN (RMSE ⇡ 0.06 kcal/mol). As in

FIG. 2. TEST RMSE as a function of the size of the train set for the 2B energy
contribution, using a BPNN for the regression. Training configurations were
selected at random (5 independent selections, average and standard deviation
shown) or by farthest point sampling.

Learning Physics from Many-Body Models

introducing permutationally invariant polynomials (PIPs) that
effectively represent nonclassical contributions to molecular
interactions (e.g., charge transfer and penetration, and Pauli
repulsion),48,49 leads to further reduction of the 2B RMSEs to
0.05 kcal/mol. Finally, the correlation plots shown in panels d,
f, and h demonstrate that purely classical representations of 3B
interactions adopted by the TTM-nrg and (2B+NB)-MB-nrg
models are not sufficient to quantitatively reproduce the
CCSD(T) data, resulting in RMSEs of 0.17 kcal/mol.
Significantly higher accuracy in the description of 3B energies,
with an associated RMSE of 0.02 kcal/mol, is exhibited by the
(2B+3B+NB)-MB-nrg model, which supplements the classical
description of 3B Cs+−water interactions adopted by the
TTM-nrg and (2B+NB)-MB-nrg models with explicit PIPs
representing nonclassical 3B contributions.
Having established the accuracy of the four models in

reproducing the lower-order, and more relevant, many-body
effects in Cs+−water interactions, Figure 2 analyzes how the
differences found in the correlation plots of Figure 1 impact
the hydration structure of Cs+ in solution. The comparison
between the Cs+−O radial distribution functions (RDFs),
gCs+−O, calculated from MD and PIMD simulations with the
four models (Figure 2a) clearly shows that TIP4P-Ew predicts
a more structured distribution of water molecules around Cs+,
with a sequence of well-defined peaks located at ∼3.0, ∼5.0,
∼7.0, and ∼9.0 Å. Inclusion of an implicit description of many-
body effects through a classical polarization term as
implemented in the TTM-nrg model effectively leads to the
collapse of the hydration shell located at ∼5.0 Å in the TIP4P-
Ew RDF. This is accompanied by the broadening of the first
peak, corresponding to an expansion of the first hydration
shell, whose position consequently shifts to relatively larger
Cs+−O distances. As a result of this structural reorganization of
the water molecules around Cs+, the second and third peaks

(i.e., second and third hydration shells) in the TTM-nrg RDF
effectively correspond to the third and fourth peaks (i.e., third
and fourth hydration shells) in the TIP4P-Ew RDF.
Qualitatively different hydration structures are predicted by

the (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg models,
which progressively include explicit representations of 2B
and 3B contributions to Cs+−water interactions. Compared to
the TIP4P-Ew RDF, the RDFs calculated with both MB-nrg
models display a lower but broader first peak that extends up
to ∼4.5 Å, as well as a second, broader peak extending from
∼4.5 to ∼8.0 Å. Contrary to TTM-nrg predictions, the MB-nrg
RDFs display a well-defined sequence of hydration shells, with
a sharper first peak at ∼3.15 Å and a second, broader peak at
∼6.2 Å. Although comparisons between RDFs calculated from
simulations with (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg
suggest that the inclusion of an explicit 3B term in the (2B+3B
+NB)-MB-nrg model only leads to minor changes to the
overall hydration structure of Cs+, it nevertheless contributes
to sharpening the interstitial region between the first and
second peak, providing further evidence for the importance of
nonclassical 3B effects in Cs+−water interactions. Finally, the
comparison between the RDFs obtained from MD and PIMD
simulations with the (2B+3B+NB)-MB-nrg model indicates
that nuclear quantum effects play a minimal role in
determining the hydration structure of Cs+ in solution.
Figure 2b shows that the differences in the RDFs obtained

from simulations with the four models directly translate into
different distributions of water molecules around the Cs+ ion.
In particular, while MD simulations with the TIP4P-Ew model
predict that ∼8 molecules are within the first hydration shell of
Cs+, the lack of a well-defined second hydration shell makes it
difficult to unambiguously determine a coordination number
from the corresponding TTM-nrg simulations. The wider first
hydration shells predicted by simulations with both MB-nrg

Figure 2. (a) Radial distribution functions (RDFs) describing the spatial correlation between the Cs+ ion and the oxygen (O) atoms of the water
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nonclassical 3B effects in Cs+−water interactions. Finally, the
comparison between the RDFs obtained from MD and PIMD
simulations with the (2B+3B+NB)-MB-nrg model indicates
that nuclear quantum effects play a minimal role in
determining the hydration structure of Cs+ in solution.
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In particular, while MD simulations with the TIP4P-Ew model
predict that ∼8 molecules are within the first hydration shell of
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difficult to unambiguously determine a coordination number
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Figure 2. (a) Radial distribution functions (RDFs) describing the spatial correlation between the Cs+ ion and the oxygen (O) atoms of the water
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+NB)-MB-nrg model.

The Journal of Physical Chemistry Letters Letter

DOI: 10.1021/acs.jpclett.8b03829
J. Phys. Chem. Lett. 2019, 10, 406−412

408

Many-Body Effects Determine the Local Hydration Structure of Cs+
in Solution
Debbie Zhuang,† Marc Riera,† Gregory K. Schenter,‡ John L. Fulton,*,‡ and Francesco Paesani*,†,§,∥

†Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
‡Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United
States
§Materials Science and Engineering, University of California, San Diego, La Jolla, California 92093, United States
∥San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States

*S Supporting Information

ABSTRACT: A systematic analysis of the hydration structure of Cs+ ions in solution is
derived from simulations carried out using a series of molecular models built upon a
hierarchy of approximate representations of many-body effects in ion−water interactions.
It is found that a pairwise-additive model, commonly used in biomolecular simulations,
provides poor agreement with experimental X-ray spectra, indicating an incorrect
description of the underlying hydration structure. Although the agreement with
experiment improves in simulations with a polarizable model, the predicted hydration
structure is found to lack the correct sequence of water shells. Progressive inclusion of
explicit many-body effects in the representation of Cs+−water interactions as well as
accounting for nuclear quantum effects is shown to be necessary for quantitatively
reproducing the experimental X-ray spectra. Besides emphasizing the importance of many-
body effects, these results suggest that molecular models rigorously derived from many-
body expansions hold promise for realistic simulations of aqueous solutions.

Determining the driving forces and molecular mechanisms
that regulate the hydration properties of alkali-metal ions

is fundamental for a microscopic understanding of several
processes taking place in aqueous clusters, solutions, and
interfaces, which, in turn, have major implications for various
fields of science and engineering. For example, lithium salts are
widely used in rechargeable batteries1,2 and are effective agents
in the treatment of manic-depressive illness.3 Sodium and
potassium ions play important roles in the stabilization of
biomolecules,4−6 intracellular signal transduction,7,8 and
enzyme and nucleic acid catalysis.9−12 The heavier alkali-
metal ions (i.e., rubidium and cesium) are not as ubiquitous in
the environment or in living systems. However, the accident at
the Fukushima Daiichi reactor in 2011 has drawn attention to
the importance of a molecular-level understanding of
adsorption and desorption processes of soluble radionuclides,
such as 137Cs, for the development of efficient technologies for
the treatment of nuclear waste.13

In this context, deriving a molecular picture of the hydration
properties of Cs+ ions presents significant challenges to both
experiment and theoretical modeling due to the intricate
interplay between Cs+−water and water−water interactions,
which, being of similar magnitude, are difficult to disentangle.
As a result, large variability is found in the values reported in
the literature for both Cs+ coordination number and spatial
extent of the hydration shells around Cs+ ions in solution.
From large-angle X-ray (LAXS) and double difference infrared
(DDIR) spectroscopic experiments performed on a 2.0 M

cesium iodide solution, the mean distance between Cs+ and the
oxygen atoms of the water molecules (Cs+−O) within the first
hydration shell was estimated to be 3.07 Å, corresponding to a
coordination number of 8.14 Anomalous X-ray diffraction
patterns measured for a 3 m cesium iodide solution were used
to determine a coordination number of 7.9, assuming a Cs+−O
distance of 3.0 Å.15 Values in the range of 7.7−8 for the
coordination number and 3.1 Å − 3.2 Å for the Cs+−O
distance were reported from subsequent neutron and X-ray
diffraction measurements.16,17 Various theoretical and compu-
tational approaches, including ab initio molecular dynamics
(AIMD), quantum mechanics/molecular mechanics (QM/
MM), and classical molecular dynamics (MD), have also been
used to investigate the hydration structure of Cs+, resulting in
predictions for the coordination number and Cs+−O distance
in the range of 7−10 and 3.0−3.3 Å, respectively.18−23

As already implicit in the “flickering clusters of hydrogen-
bonded molecules” picture of liquid water proposed by Frank
and Wen,24 different hydrogen-bonding arrangements in
solution result from the delicate balance of many-body
interactions,25−27 which is further modulated by nuclear
quantum effects.28,29 By combination of measurements of
vibration−rotation tunneling spectra with analogous theoreti-
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How good are simulations of hydration?
• Many-body interactions at both short and long ranges 

determine the hydration structure of monovalent ions 
• Common force fields are unable to correctly predict 

the hydration structure of monovalent ions



From Water to Ice…

DRAFT

Fig. 3. Simulated difference in molar free energy per molecule
of amorphous and crystalline water clusters in the size range
from n=70 to n=293. For nÆ120, initial structures were taken
from Bandow and Hartke (5). For larger clusters, mW was used
to nucleate clusters of varying sizes used as initial structures.
Background shading indicates approximately the regions for
which ice I is unstable (dark blue), amorphous and ice I clusters
coexist through heterophasic oscillations in time (medium blue),
and clusters crystallize to ice I through a well-defined first order
transition (light blue). Snapshots of each simulated size of
crystalline cluster are also included for comparison.

band clearly deviates between slow and fast cooling conditions228

(Figure 2B and C) in the analyzed size range we can rule out229

that the simultaneous red shift in the bonded OH band, the230

established indicator of crystallinity in water clusters(2, 3, 20),231

is related to a di�erent structural e�ect.232

To rationalize the IR spectroscopic results, we analyze the233

relative stability of crystalline and amorphous water cluster234

structures, spanning from slightly below the early onset size235

for crystallization observed in this work (n=90) to the delayed236

onset sizes (up to n=293) in earlier studies(2, 3, 13), not-237

ing that indications for emerging crystallinity around n=100238

were reported for protonated water clusters(33). We calcu-239

late the free energies with MB-pol using the quasi-harmonic240

approximation(34, 35) on energies and vibrational normal241

modes obtained from cluster structures identified by Bandow242

and Hartke(5) as starting points for n=70, 90, and 120 and243

by simulations with mW for all larger sizes(6).244

Figure 3 shows the di�erence in free energy Fcrystalline-245

Famorphous of optimized amorphous and crystalline clusters246

from n=70 to 293 computed at 100 K and 150 K. Though there247

is, as expected, a temperature dependence for the amorphous248

to crystalline transition, we find that already for n=90 the249

crystallized and purely amorphous clusters are equally stable250

within the error bars at T =100 K and 150 K. We note that251

the discrimination between amorphous and ice-like clusters is252

challenging for n=70 due to the small crystalline core of ‘ice253

I-like’ cluster isomers and distributed molecules in ‘ice I-like’254

geometry in amorphous clusters (see snapshots in Figure 3 and255

Figure S4 in the supporting information). At larger cluster256

sizes, crystalline structures become gradually more stable and257

the corresponding ‘ice I-like’ signal is much more pronounced258

in the IR spectra. Snapshots of the simulated crystalline clus-259

ters in Figure 3 also illustrate the growing ice-like core in the260

analyzed size region. These free energy calculations are in261

good agreement with the Gibbs-Thomson analysis of the size-262

dependent equilibrium melting temperature of water clusters,263

which predicts Tm=140 ± 8 K for n=90 and Tm=128 ± 9264

K for n=70(6). Based on the indistinguishable free energies265

of the amorphous and crystallized clusters with n=90 in the266

simulations, the presence of fully crystalline (intensity increase267

centered around 3200 cm≠1) and amorphous (high remaining 268

intensity above 3400 cm≠1) features in the experimental spec- 269

tra, and the agreement between the spectra in the experiment 270

and molecular simulations in Figure 2, we assign the exper- 271

imental IR spectra above n=90 to mixtures of amorphous, 272

liquid-like and crystalline clusters. The presence of mixtures 273

is consistent with molecular heat capacities from calorime- 274

try experiments in this size and temperature range(36). The 275

free energy calculations of Figure 3, together with the Gibbs- 276

Thomson analysis of ref.(6), paint a picture consistent with 277

the experimental and simulated results outlined in Figure 2: 278

the formation of a crystalline core becomes more and more 279

energetically unfeasible below n=100 resulting in amorphous 280

clusters. The disconnected nature and negligible fraction of 281

molecules with ice I order in the n=70 clusters, together with 282

the crossing between the glass transition temperature Tg and 283

the Tm of the clusters for that size is consistent with the 284

experimental analysis indicating that the end of ice I occurs 285

for clusters with n=90±10 water molecules. 286

The growing stability of crystalline structures at T =100 287

and 150 K above the region near n=140 explains previous 288

experimental assignments of onset sizes above n=200(2, 3, 13). 289

This, and the coexistence of crystallized and amorphous clus- 290

ters above the onset size, point to delicate thermodynamic 291

and kinetic constraints for ice nucleation in the size range 292

from n=60 to n=300 studied here. The interdependence of 293

crystallization barriers and critical cooling rates was studied 294

in simulations with the mW water model by Johnston and 295

Molinero(6). They found that clusters with n around 400 could 296

be crystallized at a cooling rate of 0.1 K/ns, but those with 297

n=159 molecules required cooling rates slower than 0.05 K/ns 298

to nucleate ice at 150 K(6). More intriguing, the simulations 299

revealed that at n=137, the free energy barrier for the transi- 300

tion between all liquid and crystallized clusters at 150 K was 301

comparable to the thermal energy, and the clusters oscillated 302

in time between the amorphous and crystallized states with a 303

small ice I core surrounded by disordered water(6). Ice-liquid 304

phase coexistence through oscillations has also been recently 305

reported for water in nanoscale confinement(37). Multiple 306

heterophasic oscillations of the n=137 cluster occurred along 307

4 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Moberg et al.

Homogeneous ice nucleation
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of amorphous and crystalline water clusters in the size range
from n=70 to n=293. For nÆ120, initial structures were taken
from Bandow and Hartke (5). For larger clusters, mW was used
to nucleate clusters of varying sizes used as initial structures.
Background shading indicates approximately the regions for
which ice I is unstable (dark blue), amorphous and ice I clusters
coexist through heterophasic oscillations in time (medium blue),
and clusters crystallize to ice I through a well-defined first order
transition (light blue). Snapshots of each simulated size of
crystalline cluster are also included for comparison.
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Conclusions and Outlook
In this study, we use molecular simulations with three levels
of resolution to elucidate the mechanism by which TmAFP

recognizes ice, and the spectroscopic signatures of the AC motif
that binds the protein to ice. We find that water at the ice-
binding surface of hyperactive AFPs does not have ice-like or
AC-like order in solution. Instead, ice recognition is achieved by
slow diffusion of the protein to find the proper orientation with
respect to the ice surface, followed by fast collective organization
of the hydration water at the IBS of TmAFP to form the AC
motif that seals the protein to the crystal surface. We conclude
that preordering of interfacial water at the IBS is not required
for ice recognition by hyperactive AFPs.
The most potent synthetic ice recrystallization inhibition

molecule, polyvinyl alcohol (PVA), has been recently shown to
bind ice through a cooperative zipper mechanism (9). The
cooperativity is found to arise from a different scaling in the loss
of entropy and gain of enthalpy upon binding of each monomer:
Binding of the first monomer results in loss of the center-of-mass
translational entropy, while binding of subsequent monomers
results in progressively smaller losses of configurational entropy
of the polymer chain (9). As TmAFP is conformationally rigid
(12, 48), the entropy loss upon binding is even smaller than for

A

B

Fig. 4. Calculated infrared and Raman spectra of the interfacial water of
TmAFP. (A) Infrared and (B) unpolarized Raman spectra of OH-stretching
frequency for bulk ice (cyan), bulk water (blue), water solvating the IBS
(light-green line), and non-IBS (dark green) of TmAFP in solution, and the AC
motif that binds TmAFP to the basal plane of ice (orange). The intensity of
each spectrum is shown normalized by its maximum. The spectra reported
here are computed with the 1B + 2B + NB approximation to the dipole
moment surface from classical MD simulations evolved with MB-pol, starting
from configurations equilibrated with TIP4P/2005. Spectra of ice Ih is com-
puted at 248 K, bulk water at 250 K, solvation water in the liquid at 252 K,
and AC at 246 K. The spectrum of the ice bilayer (SI Appendix, Fig. S6) below the
AC binding motif indicates that the AC structure seamlessly integrates to ice. SI
Appendix, Fig. S7 shows the infrared and Raman spectra of the AC with error
bars. All spectra have been red-shifted by 168–171 cm−1 for simulations at 246 to
252 K, respectively, to account for nuclear quantum effects as follows from de
Broglie’s relationship (45, 49, 57).

A

B

C

Fig. 5. Molecular mechanism of ice recognition by TmAFP. (A) Snapshots of
a typical binding event of TmAFP to the basal plane ice in a united atom
simulation. The color scheme is the same as in Fig. 1. The cyan sticks show all
water molecules that are identified as ice (considering cubic and hexagonal
ice) using the CHILL+ algorithm (58). Water molecules in the liquid are
shown with gray points and the AC motif with orange sticks. (B) Time evo-
lution of the orientation θ of the main axis of TmAFP with respect to the a1
axis of the basal ice surface (see sketch in inset) along a 100-ns simulation of
TmAFP with its center of mass restrained to ∼14.5 Å from the ice surface. (C)
Time evolution of the tilt ϕ of the main axis of TmAFP with respect to the
plane of the surface (see sketch in the Inset) along the same simulation as in
B. We expect that binding of the protein to the primary prismatic plane of
ice occurs only when the protein is aligned in the c II or c ⊥ orientations and
the plane of the IBS is parallel to the plane of ice (10). The time evolutions of
ϕ and θ are qualitatively similar in all restrained simulations of protein
binding (SI Appendix, Fig. 8). A free-energy landscape G(θ,ϕ) built from 15
independent simulations of binding of restrained TmAFP, each 100 ns long,
is shown in SI Appendix, Fig. S9 and supports the existence of three distinct
bound states on the basal plane, with the long axis of the protein aligned
with each of the three a axes of the crystal.
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Machine learning a highly accurate exchange and correlation functional of the
electronic density

Sebastian Dick and Marivi Fernandez-Serra
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Stony Brook, New York 11794-3800, United States and

Institute for Advanced Computational Science, Stony Brook University,
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Density Functional Theory (DFT) is the standard formalism to study the electronic structure of
matter at the atomic scale. The balance between accuracy and computational cost that DFT-based
simulations provide allows researchers to understand the structural and dynamical properties of
increasingly large and complex systems at the quantum mechanical level. In Kohn-Sham DFT, this
balance depends on the choice of exchange and correlation functional, which only exists in approxi-
mate form. Increasing the non-locality of this functional and climbing the figurative Jacob’s ladder
of DFT, one can systematically reduce the amount of approximation involved and thus approach the
exact functional. Doing this, however, comes at the price of increased computational cost, and so,
for extensive systems, the predominant methods of choice can still be found within the lower-rung
approximations. Here we propose a framework to create highly accurate density functionals by using
supervised machine learning, termed NeuralXC. These machine-learned functionals are designed to
lift the accuracy of local and semilocal functionals to that provided by more accurate methods while
maintaining their e�ciency. We show that the functionals learn a meaningful representation of the
physical information contained in the training data, making them transferable across systems. We
further demonstrate how a functional optimized on water can reproduce experimental results when
used in molecular dynamics simulations. Finally, we discuss the e↵ects that our method has on
self-consistent electron densities by comparing these densities to benchmark coupled-cluster results.

For many years, density functional theory (DFT) has
served as the standard tool to study the electronic struc-
ture of materials and condensed systems. Striking an op-
timal balance between accuracy and computational cost
[1], DFT makes a first-principles description of complex
and large systems possible that is otherwise out of reach
for more accurate ab initio approaches. To achieve this
balance, DFT is mapped onto a mean-field single electron
description within the Kohn-Sham (KS)[2] approach. In
KS-DFT, all the complexities of the many-body electron-
electron interaction are reduced within a functional of
the density. This functional consists of an exchange (X)
and a correlation (C) part, the former capturing e↵ects
from Pauli-exchange, and the latter approximating corre-
lations of electrons within the many-body wavefunction.

There is a well-defined roadmap to creating more ac-
curate XC functional formulations, the so-called Jacob’s
ladder of John Perdew [3, 4], with each rung represent-
ing increasing levels of complexity and decreasing levels
of approximation to the exact XC functional. Following
this roadmap, the simplest approximation to the XC den-
sity functional is the local density approximation (LDA)
[5]. The next rung, known as the generalized gradient ap-
proximations (GGAs) [6], adds a functional dependence
on the gradient of the density. In meta-GGA (MGGA)
functionals, the kinetic energy density and possibly the
Laplacian of the density are introduced in the parameter-
ization of the functional. The construction of functionals
following this map allows to incorporate the added com-
plexities in a controlled and physically motivated way,
imposing the necessary constraints that these formula-
tions should satisfy to correctly and universally describe

the underlying physics. As an example of the success of
this approach, the MGGA functional SCAN [7] is consid-
ered to be one of the most accurate and e�cient methods
to simulate both solids [8] and molecular systems [9]. Hy-
brid functionals move one step closer to the exact solution
by using a fixed fraction of Hartree-Fock exchange. In-
cluding this ”exact exchange” particularly helps correct
the well known band-gap problem [10] that local (LDA)
and semilocal (GGA) KS-DFT exhibits. Both hybrid
and MGGA functionals no longer explicitly depend on
the electronic density. Therefore, their corresponding XC
potentials are not computed as functional derivatives of
the density, but as derivatives of the KS wavefunctions in-
stead [10], and hence are non-multiplicative (each orbital
experiences a di↵erent XC potential), and more expen-
sive to compute.

A completely di↵erent approach to obtaining more ac-
curate functionals is to replace the physically motivated
path by a data-driven search. Functionals created fol-
lowing this approach are often referred to as semiem-
pirical [11], and versions of these functionals implement
all the previously described levels of approximations. In
recent years, unprecedented computational capacity has
made the calculation of physical properties of molecules
and solids with ab initio fully correlated accuracy possi-
ble. Such developments have allowed researchers to take
the semiempirical approach to the extreme, inaugurat-
ing an era of machine learning (ML) methods in density
functional development. This path produced the recent
!B97M-V [12], a range-separated hybrid meta-GGA with
non-local correlation. It was designed using a combinato-
rial technique taking Becke’s B97 family of semiempirical
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We describe a method, that we call data projection onto parameter space (DPPS), to optimize an
energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes.
Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically
from existing ab initio functionals. The resulting functional maximizes the probability of being the
“correct” parameterization of a given functional form, in the sense of Bayes theory. The application
of DPPS to water sheds new light on why density functional theory has performed rather poorly for
liquid water, on what improvements are needed, and on the intrinsic limitations of the generalized
gradient approximation to electron exchange and correlation. Finally, we present tests of our water-
optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of
condensed water systems. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4953081]

I. INTRODUCTION

Liquid water is arguably the most important substance
for life, as well as for an immense number of problems
of huge scientific and technological importance.1,2 At the
same time, despite its molecular simplicity, it is a liquid of
astonishing complexity, with tens of thermodynamic anom-
alies. Ultimately, this complexity stems from the coexistence
of covalent, electrostatic, and dispersion interactions, that
have very di↵erent magnitudes but also subtle and critical
interrelations.3–5 Thus, it is not surprising that electron
density functional theory (DFT), a universal and completely
non-empirical method, has had a particularly hard time in
describing all these interactions with the required accuracy.3 In
fact, at present, DFT simulations cannot match the success of
empirical force fields in simulating a wide range of e↵ects and
anomalies.6,7 However, empirical methods are not necessarily
reliable outside the range where they have been fitted, like
in deeply undercooled water, a state in which it has been
predicted to have a liquid-liquid transition that could explain
many of its anomalies at higher temperatures.8–10 Therefore,
its accurate description by DFT remains a very important
challenge to understand the intricate structure and properties
of liquid water. In this work we aim at uncovering in detail
the deficiencies of present functionals and at developing an
optimized exchange functional within the generalized gradient
approximation (GGA), to be combined with a nonlocal van
der Waals correlation functional.

The parameterization and optimization of complex
models is a pervasive problem in many areas, and in
particular in the development of interatomic potentials and
functionals for molecular dynamics. Generally, it requires
to choose largely arbitrary functional forms that depend
on many parameters, followed by a lengthy and di�cult

trial and error optimization.11 The balance between the
number of parameters and the size of the fitted data
sets involves di�cult and subjective decisions that are
nevertheless critical to the results. Therefore, the computer-
driven combination of ab initio constraints with accurate
datasets,12 the use of Bayesian methods,13,14 and of
machine learning algorithms15,16 has become an increasing
tendency in DFT. Here we describe a general and powerful
optimization scheme, data projection onto parameter space
(DPPS), and its application to the optimization of an
exchange-correlation (xc) energy functional of the electron
density.

II. DATA PROJECTION ONTO PARAMETER SPACE

Before addressing functional optimization, it is useful
to consider the method from a broader perspective. DPPS
tries to find the optimal parameters for a complex model that
“predicts” (calculates) a scalar function E (say the potential
energy) that depends on a large number of variables Ri

(say the atomic positions) and parameters. To be specific,
imagine that we want to fit a pairwise interatomic potential
V (R) (assuming a single chemical species). The first step
would be to choose a number of radial interpolation mesh
points R↵ for the interatomic distance. The parameters of
the model would then be the values ✏↵ ⌘ V (R↵), from
which we would interpolate V (R) = P↵ ✏↵p↵(R), where p↵(R)
are a suitable set of interpolation basis functions. They
are unambiguously determined by the interpolation scheme
(e.g., cubic splines17,18) and by the interpolation points: thus
p↵(R) is the result of interpolating a function f (R) with
f (R�) = �↵�. Thus, p↵(R�) = �↵� and, for a su�ciently fine
mesh, p↵(R) ' �(R � R↵).

0021-9606/2016/144(22)/224101/9/$30.00 144, 224101-1 Published by AIP Publishing.

“As prior information for the Bayesian optimization, we have used the 15 enhancement factors shown in Fig. 1. For the reference 
energies, we use the MB-pol force field, a sophisticated fit to highly accurate quantum chemical calculations of water monomers and 
clusters.”

“It is important to emphasize that, although fitted only to monomers, dimers, and trimers, the MB-pol force field has been shown to 
reproduce accurately the structural and thermodynamic properties of condensed phases of water.”
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FIG. 1. (a) Sketch-map representation
for the training data set for dimer config-
urations. Points are colored according
to O–O distance, and a few reference
configurations are also shown. (b) His-
togram of the training point positions
on the sketch-map. The train set den-
sity is also reported on other plots as
a reference for comparison. (c) Condi-
tional average of the 2B energies for
different parts of the train set. [(d)–(f)]
Conditional average RMSE for the PIP,
BPNN, and GAP fits of the 2B energy
in different parts of the test set.

h(x, y) = h�(x � xi)�(y � yi)i ,

V2B
short(x, y) =

D
V2B

short(i)�(x � xi)�(y � yi)
E

h(x, y)
.

(20)

Figure 1 demonstrates the application of this analysis to
the dimer dataset. One of the sketch-map coordinates corre-
lates primarily with the O–O distance, while different relative
orientations and internal monomer deformations are mixed
in the other direction. Conformational space is very non-
uniformly sampled [Fig. 1(b)], with a large number of con-
figurations at a large O–O distance—which correspond to
V2B

short of less than 0.01 kcal/mol—and at intermediate dis-
tances, with sparser sampling in the high-energy, repulsive
region [Fig. 1(c)]. It is interesting to see that the three regres-
sion schemes we considered exhibit very similar performance
in the various regions, with tiny errors <0.01 kcal/mol for far-
away molecules, and much larger errors, as large as 1 kcal/mol,
for configurations in the repulsive region. These large errors are
not only due to the high energy scale of V2B

short in this region:
the largest errors appear in the portion of the map which is
characterized by both large V2B

short and low density of sample
points.

The non-uniform sampling of the dimer space configura-
tion means that there is room to improve it. Figure 2 compares
the test RMSE obtained by BPNN fits constructed on subsets
of the overall training set. The error can be reduced by up
to a factor of five by choosing the subset with a FPS strat-
egy, rather than at random. This observation is consistent with
recent observations made using SOAP-GAP in a variety of
systems.86,92 Selecting training configurations from a larger
database of potential candidates using FPS gives a viable

strategy to reduce the number of high-end calculations that
have to be performed to describe accurately interactions in the
construction of a MB potential.

Figure 3 shows a similar analysis for the case of the trimer
data and V3B

short. 3B energies span a smaller range than the 2B
component, which includes most of the core repulsion. The
higher dimensionality of the problem, however, makes this
a harder regression problem, as is apparent from the irreg-
ular correlations between energy and position on the map,
which reveals an alternation of regions of positive and negative
contributions.

As a result, the absolute RMSE accuracy of the regression
models is comparable to that for the 2B terms, with PIP and
GAP yielding comparable accuracy (RMSE ⇡ 0.05 kcal/mol),
followed closely by BPNN (RMSE ⇡ 0.06 kcal/mol). As in

FIG. 2. TEST RMSE as a function of the size of the train set for the 2B energy
contribution, using a BPNN for the regression. Training configurations were
selected at random (5 independent selections, average and standard deviation
shown) or by farthest point sampling.
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FIG. 3. (a) Sketch-map representation
for the training data set for trimer config-
urations. Points are colored according
to the root mean square of the three
O–O distances; trimer geometries are
also represented as triangles, together
with a few structures for which a snap-
shot is shown. (b) Histogram of the
training point positions on the sketch-
map. The train set density is also
reported on other plots as a reference for
comparison. (c) Conditional average of
the 3B energies for different parts of the
train set. [(d)–(f)] Conditional average
RMSE for the PIP, BPNN, and GAP fits
of the 3B energy in different parts of the
test set.

FIG. 4. Isomers of water clusters
(H2O)n, n = 4, 5, 6, used for the
analysis of the performance of PIP,
BPNN, and GAP representations of
2B and 3B energies. Reproduced with
permission from Reddy et al., J. Chem.
Phys. 145, 194504 (2016). Copyright
2016 AIP Publishing LLC.
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FIG. 1. Visualization of many-body tensor representation. Shown are distributions of inverse distances (k = 2, quadratic
weighting) for aspirin (C9O4H8, left), and, distributions of angles (k = 3, exponential weighting) for fcc salt (NaCl, right).

diagonalized, loosing information which violates (ii) [13],
or sorted, causing discontinuities that violate (iii). An-
other shortcoming is the use of Z, which is not well suited
for interpolation [22] as it overly decorrelates chemical
elements from the same column of the periodic table.
The related BoB [15] representation arranges the same
terms di↵erently. For each pair of chemical elements,
corresponding Coulomb terms are stored in sorted order,
which can be viewed as an Ne⇥Ne⇥d tensor, where Ne is
number of elements and d is su�ciently large. We retain
stratification by elements, but avoid sorting by defining

fBoB

�
x, z1, z2

�
=

NaX

i,j=1

�
�
x� d�1

i,j

�
�(z1, Zi)�(z2, Zj), (1)

where Na is number of atoms, �(·) is Dirac’s delta, and
�(·, ·) is Kronecker’s delta. fBoB has mixed continuous-
discrete domain and encodes all (inverse) distances be-
tween atoms with elements z1 and z2. Arranging dis-
tances on a real-space axis x removes the need for sort-
ing. For a smoother measure, we replace Dirac’s �
with another probability distribution D, “broadening” or
“smearing” it [11, 23], for which we use the normal dis-
tribution in this work. Adding a weighting function w2

and replacing the Kronecker � functions by an element
correlation matrix C 2 RNe⇥Ne yields

f2
�
x, z1, z2

�
=

NaX

i,j=1

w2(i, j)D
�
x, g2(i, j)

�
Cz1,ZiCz2,Zj (2)

of which (1) is a special case. In general, g2 describes a
relation between atoms i and j, D broadens the result of
g2, and w2 allows to weight down contributions, for ex-
ample from far-away atoms. f2 encodes two-body terms.
Following recent work connecting ML with many-body
expansions [17,24], we generalize to the MBTR equation

fk(x, z) =
NaX

i=1

wk(i)D
�
x, gk(i)

� kY

j=1

Czj ,Zij
, (3)

where z 2 Nk are atomic numbers, i = (i1, . . . , ik) 2
{1, . . . , Na}k are index tuples, and wk, gk assign a scalar
to k atoms in M. [25] Canonical choices of gk for
k = 1, 2, 3, 4 are atom counts, (inverse) distances, an-
gles, and dihedral angles. We measure the similarity of
two molecules as the Euclidean distance between their
representations. In practice, we adjust (3) for symme-
tries. Discretizing the continuous axis results in a rank
k+ 1 tensor of dimensions Ne ⇥ · · · ⇥ Ne ⇥ Nx with
Nx = (xmax�xmin)/�x. Linearizing element ranks yields
Nk

e ⇥Nx matrices, allowing for visualization (Fig. 1) and
e�cient numerical implementation via linear algebra rou-
tines.
Periodic systems, used to model bulk crystals and sur-

faces, can be viewed as unit cells surrounded by infinitely
many translated images of themselves. For such systems,
Na = 1 and the sum in (3) diverges. We prevent this by
requiring an index of i to be in the (same) primitive unit
cell. [26] This accounts for translational symmetry and
prevents double-counting. Use of weighting functions wk

such as exponentially decaying weights [27] ensures con-
vergence of the sum. Fig. 1 (right) presents the resulting
distribution of angles for fcc NaCl as an example. Note
that the k-body terms gk do not depend on choice of unit
cell geometry (lattice vectors). This ensures unique rep-
resentation of Bravais lattices where the choice of basis
vectors is not unique, for example 2D hexagonal lattices
where the angle between lattice vectors can be 1

3
⇡ or 2

3
⇡.

RESULTS

To validate MBTR we demonstrate accurate predictions
for properties of molecules and bulk crystals. Focusing
on the representation, we employ plain kernel ridge re-
gression models [5].
To demonstrate interpolation across changes in the

chemical structure of molecules we utilize a benchmark
dataset [21] of 7,211 small organic molecules composed of
up to seven C, N, O, S and Cl atoms, saturated with H.
Molecules were relaxed to their ground state using the
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ABSTRACT: A systematic analysis of the hydration structure of Cs+ ions in solution is
derived from simulations carried out using a series of molecular models built upon a
hierarchy of approximate representations of many-body effects in ion−water interactions.
It is found that a pairwise-additive model, commonly used in biomolecular simulations,
provides poor agreement with experimental X-ray spectra, indicating an incorrect
description of the underlying hydration structure. Although the agreement with
experiment improves in simulations with a polarizable model, the predicted hydration
structure is found to lack the correct sequence of water shells. Progressive inclusion of
explicit many-body effects in the representation of Cs+−water interactions as well as
accounting for nuclear quantum effects is shown to be necessary for quantitatively
reproducing the experimental X-ray spectra. Besides emphasizing the importance of many-
body effects, these results suggest that molecular models rigorously derived from many-
body expansions hold promise for realistic simulations of aqueous solutions.

Determining the driving forces and molecular mechanisms
that regulate the hydration properties of alkali-metal ions

is fundamental for a microscopic understanding of several
processes taking place in aqueous clusters, solutions, and
interfaces, which, in turn, have major implications for various
fields of science and engineering. For example, lithium salts are
widely used in rechargeable batteries1,2 and are effective agents
in the treatment of manic-depressive illness.3 Sodium and
potassium ions play important roles in the stabilization of
biomolecules,4−6 intracellular signal transduction,7,8 and
enzyme and nucleic acid catalysis.9−12 The heavier alkali-
metal ions (i.e., rubidium and cesium) are not as ubiquitous in
the environment or in living systems. However, the accident at
the Fukushima Daiichi reactor in 2011 has drawn attention to
the importance of a molecular-level understanding of
adsorption and desorption processes of soluble radionuclides,
such as 137Cs, for the development of efficient technologies for
the treatment of nuclear waste.13

In this context, deriving a molecular picture of the hydration
properties of Cs+ ions presents significant challenges to both
experiment and theoretical modeling due to the intricate
interplay between Cs+−water and water−water interactions,
which, being of similar magnitude, are difficult to disentangle.
As a result, large variability is found in the values reported in
the literature for both Cs+ coordination number and spatial
extent of the hydration shells around Cs+ ions in solution.
From large-angle X-ray (LAXS) and double difference infrared
(DDIR) spectroscopic experiments performed on a 2.0 M

cesium iodide solution, the mean distance between Cs+ and the
oxygen atoms of the water molecules (Cs+−O) within the first
hydration shell was estimated to be 3.07 Å, corresponding to a
coordination number of 8.14 Anomalous X-ray diffraction
patterns measured for a 3 m cesium iodide solution were used
to determine a coordination number of 7.9, assuming a Cs+−O
distance of 3.0 Å.15 Values in the range of 7.7−8 for the
coordination number and 3.1 Å − 3.2 Å for the Cs+−O
distance were reported from subsequent neutron and X-ray
diffraction measurements.16,17 Various theoretical and compu-
tational approaches, including ab initio molecular dynamics
(AIMD), quantum mechanics/molecular mechanics (QM/
MM), and classical molecular dynamics (MD), have also been
used to investigate the hydration structure of Cs+, resulting in
predictions for the coordination number and Cs+−O distance
in the range of 7−10 and 3.0−3.3 Å, respectively.18−23

As already implicit in the “flickering clusters of hydrogen-
bonded molecules” picture of liquid water proposed by Frank
and Wen,24 different hydrogen-bonding arrangements in
solution result from the delicate balance of many-body
interactions,25−27 which is further modulated by nuclear
quantum effects.28,29 By combination of measurements of
vibration−rotation tunneling spectra with analogous theoreti-
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ABSTRACT: A systematic analysis of the hydration structure of Cs+ ions in solution is
derived from simulations carried out using a series of molecular models built upon a
hierarchy of approximate representations of many-body effects in ion−water interactions.
It is found that a pairwise-additive model, commonly used in biomolecular simulations,
provides poor agreement with experimental X-ray spectra, indicating an incorrect
description of the underlying hydration structure. Although the agreement with
experiment improves in simulations with a polarizable model, the predicted hydration
structure is found to lack the correct sequence of water shells. Progressive inclusion of
explicit many-body effects in the representation of Cs+−water interactions as well as
accounting for nuclear quantum effects is shown to be necessary for quantitatively
reproducing the experimental X-ray spectra. Besides emphasizing the importance of many-
body effects, these results suggest that molecular models rigorously derived from many-
body expansions hold promise for realistic simulations of aqueous solutions.

Determining the driving forces and molecular mechanisms
that regulate the hydration properties of alkali-metal ions

is fundamental for a microscopic understanding of several
processes taking place in aqueous clusters, solutions, and
interfaces, which, in turn, have major implications for various
fields of science and engineering. For example, lithium salts are
widely used in rechargeable batteries1,2 and are effective agents
in the treatment of manic-depressive illness.3 Sodium and
potassium ions play important roles in the stabilization of
biomolecules,4−6 intracellular signal transduction,7,8 and
enzyme and nucleic acid catalysis.9−12 The heavier alkali-
metal ions (i.e., rubidium and cesium) are not as ubiquitous in
the environment or in living systems. However, the accident at
the Fukushima Daiichi reactor in 2011 has drawn attention to
the importance of a molecular-level understanding of
adsorption and desorption processes of soluble radionuclides,
such as 137Cs, for the development of efficient technologies for
the treatment of nuclear waste.13

In this context, deriving a molecular picture of the hydration
properties of Cs+ ions presents significant challenges to both
experiment and theoretical modeling due to the intricate
interplay between Cs+−water and water−water interactions,
which, being of similar magnitude, are difficult to disentangle.
As a result, large variability is found in the values reported in
the literature for both Cs+ coordination number and spatial
extent of the hydration shells around Cs+ ions in solution.
From large-angle X-ray (LAXS) and double difference infrared
(DDIR) spectroscopic experiments performed on a 2.0 M

cesium iodide solution, the mean distance between Cs+ and the
oxygen atoms of the water molecules (Cs+−O) within the first
hydration shell was estimated to be 3.07 Å, corresponding to a
coordination number of 8.14 Anomalous X-ray diffraction
patterns measured for a 3 m cesium iodide solution were used
to determine a coordination number of 7.9, assuming a Cs+−O
distance of 3.0 Å.15 Values in the range of 7.7−8 for the
coordination number and 3.1 Å − 3.2 Å for the Cs+−O
distance were reported from subsequent neutron and X-ray
diffraction measurements.16,17 Various theoretical and compu-
tational approaches, including ab initio molecular dynamics
(AIMD), quantum mechanics/molecular mechanics (QM/
MM), and classical molecular dynamics (MD), have also been
used to investigate the hydration structure of Cs+, resulting in
predictions for the coordination number and Cs+−O distance
in the range of 7−10 and 3.0−3.3 Å, respectively.18−23

As already implicit in the “flickering clusters of hydrogen-
bonded molecules” picture of liquid water proposed by Frank
and Wen,24 different hydrogen-bonding arrangements in
solution result from the delicate balance of many-body
interactions,25−27 which is further modulated by nuclear
quantum effects.28,29 By combination of measurements of
vibration−rotation tunneling spectra with analogous theoreti-
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Zhai, Caruso, Gao & FP, in progress

Actively learning water-Cs+ many-body interactions

original model 
full 2B - full 3B 
full 2B - 3B MBTR 5K configs 
2B MBTR 4K configs - 3B MBTR 5K configs 
2B MBTR 4K configs - full 
2B MBTR 6K configs - 3B MBTR 10K configs 
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• Many-body interactions at both short and long ranges 
determine the hydration structure of monovalent ions 

• Common force fields are unable to correctly predict 
the hydration structure of monovalent ions

What makes water water?
• Low-order many-body interactions determine 

the local structure of water 
• Delocalization errors make current DFT models 

unreliable for water

Data-driven many-body models: Quo vadis?
241725-7 Nguyen et al. J. Chem. Phys. 148, 241725 (2018)

FIG. 1. (a) Sketch-map representation
for the training data set for dimer config-
urations. Points are colored according
to O–O distance, and a few reference
configurations are also shown. (b) His-
togram of the training point positions
on the sketch-map. The train set den-
sity is also reported on other plots as
a reference for comparison. (c) Condi-
tional average of the 2B energies for
different parts of the train set. [(d)–(f)]
Conditional average RMSE for the PIP,
BPNN, and GAP fits of the 2B energy
in different parts of the test set.

h(x, y) = h�(x � xi)�(y � yi)i ,

V2B
short(x, y) =

D
V2B

short(i)�(x � xi)�(y � yi)
E

h(x, y)
.

(20)

Figure 1 demonstrates the application of this analysis to
the dimer dataset. One of the sketch-map coordinates corre-
lates primarily with the O–O distance, while different relative
orientations and internal monomer deformations are mixed
in the other direction. Conformational space is very non-
uniformly sampled [Fig. 1(b)], with a large number of con-
figurations at a large O–O distance—which correspond to
V2B

short of less than 0.01 kcal/mol—and at intermediate dis-
tances, with sparser sampling in the high-energy, repulsive
region [Fig. 1(c)]. It is interesting to see that the three regres-
sion schemes we considered exhibit very similar performance
in the various regions, with tiny errors <0.01 kcal/mol for far-
away molecules, and much larger errors, as large as 1 kcal/mol,
for configurations in the repulsive region. These large errors are
not only due to the high energy scale of V2B

short in this region:
the largest errors appear in the portion of the map which is
characterized by both large V2B

short and low density of sample
points.

The non-uniform sampling of the dimer space configura-
tion means that there is room to improve it. Figure 2 compares
the test RMSE obtained by BPNN fits constructed on subsets
of the overall training set. The error can be reduced by up
to a factor of five by choosing the subset with a FPS strat-
egy, rather than at random. This observation is consistent with
recent observations made using SOAP-GAP in a variety of
systems.86,92 Selecting training configurations from a larger
database of potential candidates using FPS gives a viable

strategy to reduce the number of high-end calculations that
have to be performed to describe accurately interactions in the
construction of a MB potential.

Figure 3 shows a similar analysis for the case of the trimer
data and V3B

short. 3B energies span a smaller range than the 2B
component, which includes most of the core repulsion. The
higher dimensionality of the problem, however, makes this
a harder regression problem, as is apparent from the irreg-
ular correlations between energy and position on the map,
which reveals an alternation of regions of positive and negative
contributions.

As a result, the absolute RMSE accuracy of the regression
models is comparable to that for the 2B terms, with PIP and
GAP yielding comparable accuracy (RMSE ⇡ 0.05 kcal/mol),
followed closely by BPNN (RMSE ⇡ 0.06 kcal/mol). As in

FIG. 2. TEST RMSE as a function of the size of the train set for the 2B energy
contribution, using a BPNN for the regression. Training configurations were
selected at random (5 independent selections, average and standard deviation
shown) or by farthest point sampling.

Learning Physics from Many-Body Models

• Materials discovery for: anti-icing, water harvesting 
and desalination, separation   

• Reference for more accurate DFT models 
• Improved approaches for many-body training sets

introducing permutationally invariant polynomials (PIPs) that
effectively represent nonclassical contributions to molecular
interactions (e.g., charge transfer and penetration, and Pauli
repulsion),48,49 leads to further reduction of the 2B RMSEs to
0.05 kcal/mol. Finally, the correlation plots shown in panels d,
f, and h demonstrate that purely classical representations of 3B
interactions adopted by the TTM-nrg and (2B+NB)-MB-nrg
models are not sufficient to quantitatively reproduce the
CCSD(T) data, resulting in RMSEs of 0.17 kcal/mol.
Significantly higher accuracy in the description of 3B energies,
with an associated RMSE of 0.02 kcal/mol, is exhibited by the
(2B+3B+NB)-MB-nrg model, which supplements the classical
description of 3B Cs+−water interactions adopted by the
TTM-nrg and (2B+NB)-MB-nrg models with explicit PIPs
representing nonclassical 3B contributions.
Having established the accuracy of the four models in

reproducing the lower-order, and more relevant, many-body
effects in Cs+−water interactions, Figure 2 analyzes how the
differences found in the correlation plots of Figure 1 impact
the hydration structure of Cs+ in solution. The comparison
between the Cs+−O radial distribution functions (RDFs),
gCs+−O, calculated from MD and PIMD simulations with the
four models (Figure 2a) clearly shows that TIP4P-Ew predicts
a more structured distribution of water molecules around Cs+,
with a sequence of well-defined peaks located at ∼3.0, ∼5.0,
∼7.0, and ∼9.0 Å. Inclusion of an implicit description of many-
body effects through a classical polarization term as
implemented in the TTM-nrg model effectively leads to the
collapse of the hydration shell located at ∼5.0 Å in the TIP4P-
Ew RDF. This is accompanied by the broadening of the first
peak, corresponding to an expansion of the first hydration
shell, whose position consequently shifts to relatively larger
Cs+−O distances. As a result of this structural reorganization of
the water molecules around Cs+, the second and third peaks

(i.e., second and third hydration shells) in the TTM-nrg RDF
effectively correspond to the third and fourth peaks (i.e., third
and fourth hydration shells) in the TIP4P-Ew RDF.
Qualitatively different hydration structures are predicted by

the (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg models,
which progressively include explicit representations of 2B
and 3B contributions to Cs+−water interactions. Compared to
the TIP4P-Ew RDF, the RDFs calculated with both MB-nrg
models display a lower but broader first peak that extends up
to ∼4.5 Å, as well as a second, broader peak extending from
∼4.5 to ∼8.0 Å. Contrary to TTM-nrg predictions, the MB-nrg
RDFs display a well-defined sequence of hydration shells, with
a sharper first peak at ∼3.15 Å and a second, broader peak at
∼6.2 Å. Although comparisons between RDFs calculated from
simulations with (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg
suggest that the inclusion of an explicit 3B term in the (2B+3B
+NB)-MB-nrg model only leads to minor changes to the
overall hydration structure of Cs+, it nevertheless contributes
to sharpening the interstitial region between the first and
second peak, providing further evidence for the importance of
nonclassical 3B effects in Cs+−water interactions. Finally, the
comparison between the RDFs obtained from MD and PIMD
simulations with the (2B+3B+NB)-MB-nrg model indicates
that nuclear quantum effects play a minimal role in
determining the hydration structure of Cs+ in solution.
Figure 2b shows that the differences in the RDFs obtained

from simulations with the four models directly translate into
different distributions of water molecules around the Cs+ ion.
In particular, while MD simulations with the TIP4P-Ew model
predict that ∼8 molecules are within the first hydration shell of
Cs+, the lack of a well-defined second hydration shell makes it
difficult to unambiguously determine a coordination number
from the corresponding TTM-nrg simulations. The wider first
hydration shells predicted by simulations with both MB-nrg

Figure 2. (a) Radial distribution functions (RDFs) describing the spatial correlation between the Cs+ ion and the oxygen (O) atoms of the water
molecules calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models as well as from
PIMD simulations with the (2B+3B+NB)-MB-nrg model. (b) Corresponding coordination numbers calculated as a function of the Cs+−O
distance. (c) Two-dimensional plots comparing the density profiles calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-
nrg, and (2B+3B+NB)-MB-nrg models on the left of each panel with the corresponding results obtained from PIMD simulations with the (2B+3B
+NB)-MB-nrg model.
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0.05 kcal/mol. Finally, the correlation plots shown in panels d,
f, and h demonstrate that purely classical representations of 3B
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models are not sufficient to quantitatively reproduce the
CCSD(T) data, resulting in RMSEs of 0.17 kcal/mol.
Significantly higher accuracy in the description of 3B energies,
with an associated RMSE of 0.02 kcal/mol, is exhibited by the
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description of 3B Cs+−water interactions adopted by the
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Having established the accuracy of the four models in
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differences found in the correlation plots of Figure 1 impact
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between the Cs+−O radial distribution functions (RDFs),
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and 3B contributions to Cs+−water interactions. Compared to
the TIP4P-Ew RDF, the RDFs calculated with both MB-nrg
models display a lower but broader first peak that extends up
to ∼4.5 Å, as well as a second, broader peak extending from
∼4.5 to ∼8.0 Å. Contrary to TTM-nrg predictions, the MB-nrg
RDFs display a well-defined sequence of hydration shells, with
a sharper first peak at ∼3.15 Å and a second, broader peak at
∼6.2 Å. Although comparisons between RDFs calculated from
simulations with (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg
suggest that the inclusion of an explicit 3B term in the (2B+3B
+NB)-MB-nrg model only leads to minor changes to the
overall hydration structure of Cs+, it nevertheless contributes
to sharpening the interstitial region between the first and
second peak, providing further evidence for the importance of
nonclassical 3B effects in Cs+−water interactions. Finally, the
comparison between the RDFs obtained from MD and PIMD
simulations with the (2B+3B+NB)-MB-nrg model indicates
that nuclear quantum effects play a minimal role in
determining the hydration structure of Cs+ in solution.
Figure 2b shows that the differences in the RDFs obtained

from simulations with the four models directly translate into
different distributions of water molecules around the Cs+ ion.
In particular, while MD simulations with the TIP4P-Ew model
predict that ∼8 molecules are within the first hydration shell of
Cs+, the lack of a well-defined second hydration shell makes it
difficult to unambiguously determine a coordination number
from the corresponding TTM-nrg simulations. The wider first
hydration shells predicted by simulations with both MB-nrg

Figure 2. (a) Radial distribution functions (RDFs) describing the spatial correlation between the Cs+ ion and the oxygen (O) atoms of the water
molecules calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models as well as from
PIMD simulations with the (2B+3B+NB)-MB-nrg model. (b) Corresponding coordination numbers calculated as a function of the Cs+−O
distance. (c) Two-dimensional plots comparing the density profiles calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-
nrg, and (2B+3B+NB)-MB-nrg models on the left of each panel with the corresponding results obtained from PIMD simulations with the (2B+3B
+NB)-MB-nrg model.
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Many-Body Effects Determine the Local Hydration Structure of Cs+
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ABSTRACT: A systematic analysis of the hydration structure of Cs+ ions in solution is
derived from simulations carried out using a series of molecular models built upon a
hierarchy of approximate representations of many-body effects in ion−water interactions.
It is found that a pairwise-additive model, commonly used in biomolecular simulations,
provides poor agreement with experimental X-ray spectra, indicating an incorrect
description of the underlying hydration structure. Although the agreement with
experiment improves in simulations with a polarizable model, the predicted hydration
structure is found to lack the correct sequence of water shells. Progressive inclusion of
explicit many-body effects in the representation of Cs+−water interactions as well as
accounting for nuclear quantum effects is shown to be necessary for quantitatively
reproducing the experimental X-ray spectra. Besides emphasizing the importance of many-
body effects, these results suggest that molecular models rigorously derived from many-
body expansions hold promise for realistic simulations of aqueous solutions.

Determining the driving forces and molecular mechanisms
that regulate the hydration properties of alkali-metal ions

is fundamental for a microscopic understanding of several
processes taking place in aqueous clusters, solutions, and
interfaces, which, in turn, have major implications for various
fields of science and engineering. For example, lithium salts are
widely used in rechargeable batteries1,2 and are effective agents
in the treatment of manic-depressive illness.3 Sodium and
potassium ions play important roles in the stabilization of
biomolecules,4−6 intracellular signal transduction,7,8 and
enzyme and nucleic acid catalysis.9−12 The heavier alkali-
metal ions (i.e., rubidium and cesium) are not as ubiquitous in
the environment or in living systems. However, the accident at
the Fukushima Daiichi reactor in 2011 has drawn attention to
the importance of a molecular-level understanding of
adsorption and desorption processes of soluble radionuclides,
such as 137Cs, for the development of efficient technologies for
the treatment of nuclear waste.13

In this context, deriving a molecular picture of the hydration
properties of Cs+ ions presents significant challenges to both
experiment and theoretical modeling due to the intricate
interplay between Cs+−water and water−water interactions,
which, being of similar magnitude, are difficult to disentangle.
As a result, large variability is found in the values reported in
the literature for both Cs+ coordination number and spatial
extent of the hydration shells around Cs+ ions in solution.
From large-angle X-ray (LAXS) and double difference infrared
(DDIR) spectroscopic experiments performed on a 2.0 M

cesium iodide solution, the mean distance between Cs+ and the
oxygen atoms of the water molecules (Cs+−O) within the first
hydration shell was estimated to be 3.07 Å, corresponding to a
coordination number of 8.14 Anomalous X-ray diffraction
patterns measured for a 3 m cesium iodide solution were used
to determine a coordination number of 7.9, assuming a Cs+−O
distance of 3.0 Å.15 Values in the range of 7.7−8 for the
coordination number and 3.1 Å − 3.2 Å for the Cs+−O
distance were reported from subsequent neutron and X-ray
diffraction measurements.16,17 Various theoretical and compu-
tational approaches, including ab initio molecular dynamics
(AIMD), quantum mechanics/molecular mechanics (QM/
MM), and classical molecular dynamics (MD), have also been
used to investigate the hydration structure of Cs+, resulting in
predictions for the coordination number and Cs+−O distance
in the range of 7−10 and 3.0−3.3 Å, respectively.18−23

As already implicit in the “flickering clusters of hydrogen-
bonded molecules” picture of liquid water proposed by Frank
and Wen,24 different hydrogen-bonding arrangements in
solution result from the delicate balance of many-body
interactions,25−27 which is further modulated by nuclear
quantum effects.28,29 By combination of measurements of
vibration−rotation tunneling spectra with analogous theoreti-
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How good are simulations of hydration?



Riera, Smith, Simmonett & FP, http://paesanigroup.ucsd.edu/software/mbx.html

MBX: C++ Library for Data-Driven Many-Body Models

MBX is a standalone C++ library that provides an interface to 
MD drivers, such as i-PI, and enables classical and path-
integral molecular dynamics simulations using MB-pol and 
MB-nrg potential energy functions
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introducing permutationally invariant polynomials (PIPs) that
effectively represent nonclassical contributions to molecular
interactions (e.g., charge transfer and penetration, and Pauli
repulsion),48,49 leads to further reduction of the 2B RMSEs to
0.05 kcal/mol. Finally, the correlation plots shown in panels d,
f, and h demonstrate that purely classical representations of 3B
interactions adopted by the TTM-nrg and (2B+NB)-MB-nrg
models are not sufficient to quantitatively reproduce the
CCSD(T) data, resulting in RMSEs of 0.17 kcal/mol.
Significantly higher accuracy in the description of 3B energies,
with an associated RMSE of 0.02 kcal/mol, is exhibited by the
(2B+3B+NB)-MB-nrg model, which supplements the classical
description of 3B Cs+−water interactions adopted by the
TTM-nrg and (2B+NB)-MB-nrg models with explicit PIPs
representing nonclassical 3B contributions.
Having established the accuracy of the four models in

reproducing the lower-order, and more relevant, many-body
effects in Cs+−water interactions, Figure 2 analyzes how the
differences found in the correlation plots of Figure 1 impact
the hydration structure of Cs+ in solution. The comparison
between the Cs+−O radial distribution functions (RDFs),
gCs+−O, calculated from MD and PIMD simulations with the
four models (Figure 2a) clearly shows that TIP4P-Ew predicts
a more structured distribution of water molecules around Cs+,
with a sequence of well-defined peaks located at ∼3.0, ∼5.0,
∼7.0, and ∼9.0 Å. Inclusion of an implicit description of many-
body effects through a classical polarization term as
implemented in the TTM-nrg model effectively leads to the
collapse of the hydration shell located at ∼5.0 Å in the TIP4P-
Ew RDF. This is accompanied by the broadening of the first
peak, corresponding to an expansion of the first hydration
shell, whose position consequently shifts to relatively larger
Cs+−O distances. As a result of this structural reorganization of
the water molecules around Cs+, the second and third peaks

(i.e., second and third hydration shells) in the TTM-nrg RDF
effectively correspond to the third and fourth peaks (i.e., third
and fourth hydration shells) in the TIP4P-Ew RDF.
Qualitatively different hydration structures are predicted by

the (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg models,
which progressively include explicit representations of 2B
and 3B contributions to Cs+−water interactions. Compared to
the TIP4P-Ew RDF, the RDFs calculated with both MB-nrg
models display a lower but broader first peak that extends up
to ∼4.5 Å, as well as a second, broader peak extending from
∼4.5 to ∼8.0 Å. Contrary to TTM-nrg predictions, the MB-nrg
RDFs display a well-defined sequence of hydration shells, with
a sharper first peak at ∼3.15 Å and a second, broader peak at
∼6.2 Å. Although comparisons between RDFs calculated from
simulations with (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg
suggest that the inclusion of an explicit 3B term in the (2B+3B
+NB)-MB-nrg model only leads to minor changes to the
overall hydration structure of Cs+, it nevertheless contributes
to sharpening the interstitial region between the first and
second peak, providing further evidence for the importance of
nonclassical 3B effects in Cs+−water interactions. Finally, the
comparison between the RDFs obtained from MD and PIMD
simulations with the (2B+3B+NB)-MB-nrg model indicates
that nuclear quantum effects play a minimal role in
determining the hydration structure of Cs+ in solution.
Figure 2b shows that the differences in the RDFs obtained

from simulations with the four models directly translate into
different distributions of water molecules around the Cs+ ion.
In particular, while MD simulations with the TIP4P-Ew model
predict that ∼8 molecules are within the first hydration shell of
Cs+, the lack of a well-defined second hydration shell makes it
difficult to unambiguously determine a coordination number
from the corresponding TTM-nrg simulations. The wider first
hydration shells predicted by simulations with both MB-nrg

Figure 2. (a) Radial distribution functions (RDFs) describing the spatial correlation between the Cs+ ion and the oxygen (O) atoms of the water
molecules calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models as well as from
PIMD simulations with the (2B+3B+NB)-MB-nrg model. (b) Corresponding coordination numbers calculated as a function of the Cs+−O
distance. (c) Two-dimensional plots comparing the density profiles calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-
nrg, and (2B+3B+NB)-MB-nrg models on the left of each panel with the corresponding results obtained from PIMD simulations with the (2B+3B
+NB)-MB-nrg model.
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models display a lower but broader first peak that extends up
to ∼4.5 Å, as well as a second, broader peak extending from
∼4.5 to ∼8.0 Å. Contrary to TTM-nrg predictions, the MB-nrg
RDFs display a well-defined sequence of hydration shells, with
a sharper first peak at ∼3.15 Å and a second, broader peak at
∼6.2 Å. Although comparisons between RDFs calculated from
simulations with (2B+NB)-MB-nrg and (2B+3B+NB)-MB-nrg
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simulations with the (2B+3B+NB)-MB-nrg model indicates
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Figure 2. (a) Radial distribution functions (RDFs) describing the spatial correlation between the Cs+ ion and the oxygen (O) atoms of the water
molecules calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-nrg, and (2B+3B+NB)-MB-nrg models as well as from
PIMD simulations with the (2B+3B+NB)-MB-nrg model. (b) Corresponding coordination numbers calculated as a function of the Cs+−O
distance. (c) Two-dimensional plots comparing the density profiles calculated from MD simulations with the TIP4P-Ew, TTM-nrg, (2B+NB)-MB-
nrg, and (2B+3B+NB)-MB-nrg models on the left of each panel with the corresponding results obtained from PIMD simulations with the (2B+3B
+NB)-MB-nrg model.
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ABSTRACT: A systematic analysis of the hydration structure of Cs+ ions in solution is
derived from simulations carried out using a series of molecular models built upon a
hierarchy of approximate representations of many-body effects in ion−water interactions.
It is found that a pairwise-additive model, commonly used in biomolecular simulations,
provides poor agreement with experimental X-ray spectra, indicating an incorrect
description of the underlying hydration structure. Although the agreement with
experiment improves in simulations with a polarizable model, the predicted hydration
structure is found to lack the correct sequence of water shells. Progressive inclusion of
explicit many-body effects in the representation of Cs+−water interactions as well as
accounting for nuclear quantum effects is shown to be necessary for quantitatively
reproducing the experimental X-ray spectra. Besides emphasizing the importance of many-
body effects, these results suggest that molecular models rigorously derived from many-
body expansions hold promise for realistic simulations of aqueous solutions.

Determining the driving forces and molecular mechanisms
that regulate the hydration properties of alkali-metal ions

is fundamental for a microscopic understanding of several
processes taking place in aqueous clusters, solutions, and
interfaces, which, in turn, have major implications for various
fields of science and engineering. For example, lithium salts are
widely used in rechargeable batteries1,2 and are effective agents
in the treatment of manic-depressive illness.3 Sodium and
potassium ions play important roles in the stabilization of
biomolecules,4−6 intracellular signal transduction,7,8 and
enzyme and nucleic acid catalysis.9−12 The heavier alkali-
metal ions (i.e., rubidium and cesium) are not as ubiquitous in
the environment or in living systems. However, the accident at
the Fukushima Daiichi reactor in 2011 has drawn attention to
the importance of a molecular-level understanding of
adsorption and desorption processes of soluble radionuclides,
such as 137Cs, for the development of efficient technologies for
the treatment of nuclear waste.13

In this context, deriving a molecular picture of the hydration
properties of Cs+ ions presents significant challenges to both
experiment and theoretical modeling due to the intricate
interplay between Cs+−water and water−water interactions,
which, being of similar magnitude, are difficult to disentangle.
As a result, large variability is found in the values reported in
the literature for both Cs+ coordination number and spatial
extent of the hydration shells around Cs+ ions in solution.
From large-angle X-ray (LAXS) and double difference infrared
(DDIR) spectroscopic experiments performed on a 2.0 M

cesium iodide solution, the mean distance between Cs+ and the
oxygen atoms of the water molecules (Cs+−O) within the first
hydration shell was estimated to be 3.07 Å, corresponding to a
coordination number of 8.14 Anomalous X-ray diffraction
patterns measured for a 3 m cesium iodide solution were used
to determine a coordination number of 7.9, assuming a Cs+−O
distance of 3.0 Å.15 Values in the range of 7.7−8 for the
coordination number and 3.1 Å − 3.2 Å for the Cs+−O
distance were reported from subsequent neutron and X-ray
diffraction measurements.16,17 Various theoretical and compu-
tational approaches, including ab initio molecular dynamics
(AIMD), quantum mechanics/molecular mechanics (QM/
MM), and classical molecular dynamics (MD), have also been
used to investigate the hydration structure of Cs+, resulting in
predictions for the coordination number and Cs+−O distance
in the range of 7−10 and 3.0−3.3 Å, respectively.18−23

As already implicit in the “flickering clusters of hydrogen-
bonded molecules” picture of liquid water proposed by Frank
and Wen,24 different hydrogen-bonding arrangements in
solution result from the delicate balance of many-body
interactions,25−27 which is further modulated by nuclear
quantum effects.28,29 By combination of measurements of
vibration−rotation tunneling spectra with analogous theoreti-
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FIG. 1. (a) Sketch-map representation
for the training data set for dimer config-
urations. Points are colored according
to O–O distance, and a few reference
configurations are also shown. (b) His-
togram of the training point positions
on the sketch-map. The train set den-
sity is also reported on other plots as
a reference for comparison. (c) Condi-
tional average of the 2B energies for
different parts of the train set. [(d)–(f)]
Conditional average RMSE for the PIP,
BPNN, and GAP fits of the 2B energy
in different parts of the test set.

h(x, y) = h�(x � xi)�(y � yi)i ,

V2B
short(x, y) =

D
V2B

short(i)�(x � xi)�(y � yi)
E

h(x, y)
.

(20)

Figure 1 demonstrates the application of this analysis to
the dimer dataset. One of the sketch-map coordinates corre-
lates primarily with the O–O distance, while different relative
orientations and internal monomer deformations are mixed
in the other direction. Conformational space is very non-
uniformly sampled [Fig. 1(b)], with a large number of con-
figurations at a large O–O distance—which correspond to
V2B

short of less than 0.01 kcal/mol—and at intermediate dis-
tances, with sparser sampling in the high-energy, repulsive
region [Fig. 1(c)]. It is interesting to see that the three regres-
sion schemes we considered exhibit very similar performance
in the various regions, with tiny errors <0.01 kcal/mol for far-
away molecules, and much larger errors, as large as 1 kcal/mol,
for configurations in the repulsive region. These large errors are
not only due to the high energy scale of V2B

short in this region:
the largest errors appear in the portion of the map which is
characterized by both large V2B

short and low density of sample
points.

The non-uniform sampling of the dimer space configura-
tion means that there is room to improve it. Figure 2 compares
the test RMSE obtained by BPNN fits constructed on subsets
of the overall training set. The error can be reduced by up
to a factor of five by choosing the subset with a FPS strat-
egy, rather than at random. This observation is consistent with
recent observations made using SOAP-GAP in a variety of
systems.86,92 Selecting training configurations from a larger
database of potential candidates using FPS gives a viable

strategy to reduce the number of high-end calculations that
have to be performed to describe accurately interactions in the
construction of a MB potential.

Figure 3 shows a similar analysis for the case of the trimer
data and V3B

short. 3B energies span a smaller range than the 2B
component, which includes most of the core repulsion. The
higher dimensionality of the problem, however, makes this
a harder regression problem, as is apparent from the irreg-
ular correlations between energy and position on the map,
which reveals an alternation of regions of positive and negative
contributions.

As a result, the absolute RMSE accuracy of the regression
models is comparable to that for the 2B terms, with PIP and
GAP yielding comparable accuracy (RMSE ⇡ 0.05 kcal/mol),
followed closely by BPNN (RMSE ⇡ 0.06 kcal/mol). As in

FIG. 2. TEST RMSE as a function of the size of the train set for the 2B energy
contribution, using a BPNN for the regression. Training configurations were
selected at random (5 independent selections, average and standard deviation
shown) or by farthest point sampling.
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