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Ganesh Sivaraman, Nicholas Jackson, Benjamin Sanchez-Lengeling, Alvaro
Vazquez-Mayagoitia, Alan Aspuru-Guzik, Venkatram Vishwanath, and Juan de
Pablo. “A diversified machine learning strategy for predicting and understanding
molecular melting points” (2019) (In Review).
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MOTIVATION

« The ability to predict multi-molecule processes, using only knowledge of single
molecule structure, stands as a grand challenge for molecular modeling.

— Molecular Melting points

« Molecule's MP can be correlated with a number of industrially vital material
properties. For example, solubilities of candidate drug-like molecules.
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MELTING POINT DATASETS
 An integrated dataset of 47k
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Tetko, Igor V., et al. "How accurately can we predict the melting points of drug-like compounds?." Journal of
chemical information and modeling 54.12 (2014)
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DISTRIBUTION OF MP INTERVALS

119 literature molecules exhibiting multiple crystal polymorphs.
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A DATA-DRIVEN APPROACH UTILIZING MACHINE LEARNING

Predict and understand the melting points (MP) of molecules.
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CHEMICAL CLASSIFICATION ANALYSIS
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Compound class
Organooxygen compounds
Carboxylic acids and derivatives
Benzene and substituted derivatives
Pyridines and derivatives
Azoles
Allyl-type 1,3-dipolar organic compounds
Organonitrogen compounds
Fatty Acyls
Unsaturated hydrocarbons
Saturated hydrocarbons
Other
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REGRESSSION BENCHMARK

Gold Standard ‘Bradley + Bergstrom’data set

Benchmark on BradBerg Dataset
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REGRESSION RESULTS

Table 1: MP Regression Results for Experimental Data Sets. 7 Model using only systems
with melting temperatures in the drug-like region [323.15, 523.15]K

Method JOCHEM MAE (K)/R?| Enamine MAE (K)/R? BradBerg MAE (K)/R? All MAE/R?

GPR 30.03(0.01)/0.77 28.60(0.00)/0.64 25.06(0.03)/0.88  28.85(0.01)/0.78
GPRt |  26.34(0.05)/0.60 25.65(0.02)/0.59 24.64(0.15)/0.64  25.80(0.03)/0.61

RF 37.56(0.07)/0.66 32.01(0.09)/0.56 35.60(0.75)/0.76  34.62(0.13)/0.66
GCN 31.59(0.83)/0.75 29.45(0.55) /0.62 28.51(0.80)/0.84  29.41(0.26)/0.75

MP Regression Results for Butina 0.6 Clustering Data Sets

Method MAE (K R?
GPR  28.24 (0.02) 0.75
RF 32.31 (0.28) 0.69

GON  29.26 (0.27) 0.74
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GRAPH ATTRIBUTION OF MP ON SIMILAR
MOLECULES.
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SUMMARY & OUTLOOK

 The inclusion of 3D structural and quantum-chemically derived features in
improving MP prediction accuracy by a modest ~1 - 2K improvement relative
to graph-based methods when using GPR, obtaining predicted MAE in the
range of 25-29 K.

GCN has the potential to approaches the target MAE~ 20K
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Thank you!
QUESTIONS?

This research used resources of the Argonne Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-

AC02-06CH11357.
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