IPAM: FROM PASSIVE TO ACTIVE: GENERATIVE AND REINFORCEMENT LEARNING WITH PHYSICS

A diversified machine learning strategy for predicting and understanding molecular melting points

GANESH SIVARAMAN

Postdoctoral Appointee Argonne Leadership Computing Facility EMAIL: gsivaraman@anl.gov

September 26 (2019) Los Angeles, California

Experimental Melting Points

Temperature (K)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

<u>Ganesh Sivaraman</u>, Nicholas Jackson, Benjamin Sanchez-Lengeling, Álvaro Vázquez-Mayagoitia, Alán Aspuru-Guzik, Venkatram Vishwanath, and Juan de Pablo. "A diversified machine learning strategy for predicting and understanding molecular melting points" (2019) (In Review).

MOTIVATION

• The ability to predict multi-molecule processes, using only knowledge of single molecule structure, stands as a grand challenge for molecular modeling.

- Molecular Melting points

 Molecule's MP can be correlated with a number of industrially vital material properties. For example, solubilities of candidate drug-like molecules.

MELTING POINT DATASETS

 An integrated dataset of 47k molecules with experimental meting points of organic molecules, and augmented with 3D molecular structures and quantum chemical properties.

Tetko, Igor V., *et al.* "How accurately can we predict the melting points of drug-like compounds?." *Journal of chemical information and modeling* 54.12 (2014)

U.S. DEPARTMENT OF ENERGY Argonne National Laboratory is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

DISTRIBUTION OF MP INTERVALS

119 literature molecules exhibiting multiple crystal polymorphs.

Acknowledgment Prof. Lian Yu, <u>University of Wisconsin–Madison</u>

• ML strategies have been widely employed for the prediction of MPs, with models routinely achieving prediction errors of 35-50K[1].

A DATA-DRIVEN APPROACH UTILIZING MACHINE LEARNING

Predict and understand the melting points (MP) of molecules.

CHEMICAL CLASSIFICATION ANALYSIS

U.S. DEPARTMENT OF U.S. Department of Energy laboratory managed by UChicago Argonne, LLC.

REGRESSSION BENCHMARK

Gold Standard 'Bradley + Bergstrom'data set

REGRESSION RESULTS

Table 1: MP Regression Results for Experimental Data Sets. † Model using only systems with melting temperatures in the drug-like region [323.15, 523.15]K

Method	OCHEM MAE $(K)/R^2$	Enamine MAE $(K)/R^2$	BradBerg MAE (K)/ R^2	All MAE/ R^2
GPR	30.03(0.01)/0.77	28.60(0.00)/0.64	25.06(0.03)/0.88	28.85(0.01)/0.78
GPR^{\dagger}	26.34(0.05)/0.60	25.65(0.02)/0.59	24.64(0.15)/0.64	25.80(0.03)/0.61
RF	37.56(0.07)/0.66	32.01(0.09)/0.56	35.60(0.75)/0.76	34.62(0.13)/0.66
GCN	31.59(0.83)/0.75	29.45(0.55)/0.62	28.51(0.80)/0.84	29.41(0.26)/0.75

MP Regression Results for Butina 0.6 Clustering Data Sets

]	Method	MAE (K)	R^2
	GPR	28.24(0.02)	0.75
	RF	$32.31 \ (0.28)$	0.69
	GCN	29.26(0.27)	0.74

GRAPH ATTRIBUTION OF MP ON SIMILAR MOLECULES.

SUMMARY & OUTLOOK

- The inclusion of 3D structural and quantum-chemically derived features in improving MP prediction accuracy by a modest ~1 - 2K improvement relative to graph-based methods when using GPR, obtaining predicted MAE in the range of 25-29 K.
- GCN has the potential to approaches the target MAE~ 20K

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

