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The multiple components that compose our universe
Current composition (as the fractions evolve with time)

Dark matter

Dark energy

A g \ L A'
Neutrinos
69% i _
Photons .

Black holesl

Three different types of neutrinos comprise at least
0.1%, the cosmic background radiation makes up

0.01%, and black holes comprise at least 0.005%.
Dawvid Spergel (Science, 2015)
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® 84% of the matter is Dark(DM)

® DM interacts through gravity.

® Further DM interactions unobserved so far,
Such couplings must be very weak, much |
weaker than weak interactions.
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PROPERTY OF 5

* Early time evolution (linear regme): Cosmological
Perturbation Theory [See Modern Cosmology by S.

Dodelson, or CP Ma, E Bertschinger arXiv: 95060/72]: cosmic
microwave background

* Late time evolution (Non-linear): N=Body Simulation:
Large-scale structure



N-Body Simulation of
Cold Dark Matter

Simulation by Andrey Kravtsov (The University of Chicago) and
Anatoly Klypin (New Mexico State University)
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N-BODY SIMULATION:
DARK MAIT TER

Max-Planck-Institut fiir Astrophysik (2005)



T - - L ’_
- .
. .

-

. .

-N-Body Simulation on Cold
Dark Matter

& In varlous cusmologlcal N-body s1mulat10n

~ the A Cold Dark Matter (ACDM) model

preform Well gspemally on the large scale
structure (e g Mlllenmum Run 2005)!: "

, Max’anck Instltut fur Astrophy51k (2005)
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Missing Satellites Problem

CDM Simulation (Mayer and Kazantzidis)
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Strong lensing: Natural place to
probe dark matter substructures

Image credit: ESA/Hubble & NASA




Strong lensing
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| ensing basic

Lens equation
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In terms of angular coord.:
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[Schneider et al. 2006]
Slides credit: Sherry Suyu




L ensing basic: caustic &
critical curve

Figure from Narayan & Bartelmann (1995)



Strong lensing simulations

source galaxy
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Strong lensing for subhalos:
Two approaches

e gravitational imaging vs flux ratio anomalies




Subhalo detection

"Subhalo

los perturber b g los perturber
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Figure 2. A simple sketch of the method we used to create our mock data;
subhaloes and line-of-sight haloes are placed so that their lensing effect lies
in the same projected position on the plane of the main lens; the grey region
gives an example of the line-of-sight volume that is taken into account.

Despali et al. (1710.05029)



Strong lensing with substructure as
perturber

source galaxy source galaxy source galaxy
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Strong lensing with substructure as
perturber

Smooth Lensing



Strong lensing with substructure as
perturber

Lensing with perturber



Subhalo Hidden in ALMA
Gravitational Lens Image

Hezaveh (2016) ArXiv:1601.01388
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Figure 6. Top lef: the sky emission model m band 6 for the bestfit smooth hupmfottn SDP.81 data. Top maddle: the same for the pertarbed modd. Top
nght: the diffeence between the two modeds. The bottom panels show the same for band 7. The bnght featue m the difference plots = mamly casused by the
astrometnic ancmaly of the arc. In each row, the images have been scaled to the peak flux of the smooth model.

Hezaveh et al.. (2016)




LOOKING INTO THE FUTURE:

New Lenses

For future surveys we find that, assuming Poisson limited lens
galaxy subtraction, searches of the DES, LSST, and Euclid data sets

should discover 2400, 120000, and 170000 galaxy-galaxy strong
lenses, respectively

Collett, ApJ. 2015

Slides from Laurence Perreault Levasseur




Looking into the future:

Methods?

How are we going to analyze 170,000 lenses?

Lens modeling is very slow.

Even a simple lens model can take
2-3 days of human and CPU time,
translating to 1,400 years !!!

Even if we pay 100 people to work
on this, it'll be 14 years!!! Old
method are simply not feasible.

Lens modeling sweatshop of 2022

Slides from Laurence Perreault Levasseur



Can Al (deep learning) helps”

Early artificial intelligence
stirs excitement.

Machine learning begins

to flourish.
Deep learning breakthroughs
drive Al boom.
m
1950’s 1960’s 1970’s 1980’s 1990’s 2000’s 2010’s

Image credit: Nvidia



Deep learning setup

20000 simulated data as training set
J e 20000 simulated data [images and subhalo

ground truth]as training set

lensing image o subahlo ground truth

e 2000 “DIFFERENT” data [images] as test set

e Simulation with SIE (marco lens) contains 0-5
subhalos(perturbers)

lensingimage | subahloground truth e Loss function: Binary Cross Entropy with
Logits Loss (of subhalo probability map)

e Adam Optimizer, learning rate = 1e-4

lensing image e NN model: DenseNet 121

« Nvidia GPU: 1080Ti PY TbR CH




DenseNet

DenseNet architecture (121 layers)

Gao Huang et al., ArXiv:1608.06993

Position density map output

Dense |ayers Transition layer Dense Iayers Transition layer




|_et's check how NN Is doing
BRACEOURSELE




Prediction: subhalo
detected!




Prediction: subhalo
detected!
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Prediction: subhalo
detected!




Prediction: subhalo
detected!




Prediction: multiple subhalos!

subhalo ground truth prediction

0 0
.
0 0
0 100 200 0 100 200

Macro:
pred [(0.2658, 0.0345, 0.0166, 0.1423, 0.9035, 0.0023, -0.0046, 1.0)
target [ 0.2831 -0.0776¢ 0.1189 0.0781 0.7854 0.




Prediction: multiple subhalos!

lensing image . subahlo ground truth prediction




Prediction: multiple subhalos!

subhalo ground truth prediction

0 0

0 0

0 0
0 100 200 0 100 200

Macro:
pred [0.213, 0.064, -0.0276, 0.1478, 0.8645, 0.0065,
target [ 0.2699 -0.0707 0.2289 0.0256 0.7854 0.




‘Falled” good examples:
Can’t see in the dark

100 200 0 100 200 0 100 200




‘Falled” good examples:
Can’t see in the dark

subahlo ground truth

e
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Prediction: No subhalo

lensing image subahlo ground truth prediction

0 .
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Prediction: No subhalo

lensing image subahlo ground truth prediction
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‘Rejection” of subhalo(s)
around the arc

lensing image . subahlo ground truth . prediction
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‘Rejection” of subhalo(s)
around the arc

lensing image . subahlo ground truth . prediction

50

00

50




‘Failled” prediction:
Are they learning center of the mass”




‘Failled” prediction:
Are they learning center of the mass”




‘Failled” prediction:
Are they learning center of the mass”




Realistic simulation

lensing image smooth model source galaxy
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lensing image smooth model source galaxy
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lensing image smooth model source galaxy
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Summary for this project

* Deep learning shows some promising result in dark matter
substructures detection in lensing.

* “rejections” for no subhalos around the strong lensing arc.

» “detections” and “regression” for subhalos around the




Thank you!

Image Credit: Hubble/STScl & NASA




