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Agenda: Numerical Analysis of Deep Neural Networks

I Notation: Deep Learning

I Case 1: Invertibility
I Case 2: Time Integrators
I Example: higher order or conservative?

I Case 3: Discretize-then-Optimize
I Example: Neural ODEs

I Case 4: Ill-conditioning
I Example: Single layer neural network

I Conclusion and Summary

Key question: What can numerical analysts do in the
age of ML?
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Deep Learning
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Deep Learning Revolution (?)
Yj+1 = σ(KjYj + bj)
Yj+1 = Yj + σ(KjYj + bj)
Yj+1 = Yj + σ (Kj,2σ(Kj,1Yj + bj,1) + bj,2)

...

(Notation: Yj : features, Kj, bj: weights, σ : activation)

I deep learning: use neural networks (from ≈ 1950’s) with many hidden
layers

I able to ”learn” complicated patterns from data
I applications: image classification, face recognition, segmentation,

driverless cars, . . .
I recent success fueled by: massive data sets, computing power
I A few recent references:
I A radical new neural network design could overcome big challenges in

AI, MIT Tech Review ’18
I Data Scientist: Sexiest Job of the 21st Century, Harvard Business Rev ’17
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Optimal Control Framework for Deep Learning

training data, Y0,C prop. features, Y(T),C classification result

Supervised Deep Learning Problem

Given training data, Y0, and labels, C, find network parameters θ and
classification weights W, µ such that the DNN predicts the data-label
relationship (and generalizes to new data), i.e., solve

minimizeθ,W,µ loss[g(W + µ),C] + regularizer[θ,W,µ]
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Deep Residual Neural Networks (simplified)

Award-winning forward propagation

Yj+1 = Yj + hKj,2σ(Kj,1Yj + bj), ∀ j = 0, 1, . . . ,N − 1.

ResNet is forward Euler discretization of

∂ty(t) = K2(t)σ (K1(t)y(t) + b(t)) , y(0) = y0.

Notation: θ(t) = (K1(t),K2(t),b(t)) and

∂ty(t) = f (y,θ(t)), y(0) = y0

where f (y,θ) = K2(t)σ (K1(t)y(t) + b(t)) .

K. He, X. Zhang, S. Ren, and J. Sun
Deep residual learning for image recognition.
IEEE Conf. on CVPR, 770–778, 2016.

input features, Y0

propagated features, YN
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(Some) Related Work

DNNs as (stochastic) Dynamical Systems
I Weinan E, Proposal on ML via Dynamical

Systems, Commun. Math. Stat., 5(1), 2017.
I E Haber, LR, Stable Architectures for DNNs,

Inverse Problems, 2017.
I Q. Li, L. Chen, C. Tai, Weinan E, Maximum

Principle Based Algorithms, arXiv, 2017.
I B. Wang, B. Yuan, Z. Shi, S. Osher, ResNets

Ensemble via the Feynman-Kac Formalism, arXiv,
2018.

Numerical Time Integrators
I Y. Lu, A. Zhong, Q. Li, B. Dong, Beyond Finite

Layer DNNs, arXiv, 2017.
I B. Chang, L. Meng, E. Haber, LR, D. Begert, E.

Holtham, Reversible architectures for DNNs,
AAAI, 2018.

I T. Chen, Y. Rubanova, J. Bettencourt, D.
Duvenaud, Neural ODEs, NeurIPS, 2018.

I E. Haber, K. Lensink, E. Treister, LR, IMEXnet:
Forward Stable DNN. ICML, 2019.

Optimal Control
I S. Günther, LR, J.B. Schroder,

E.C. Cyr, N.R. Gauger,
Layer-parallel training of ResNets,
arXiv, 2018.

I A. Gholami, K. Keutzer, G. Biros,
ANODE: Unconditionally Accurate
Memory-Efficient Gradients for
Neural ODEs, arXiv, 2019.

I T. Zhang, Z. Yao, A. Gholami, K.
Keutzer, J. Gonzalez, G. Biros, M.
Mahoney, ANODEV2: A Coupled
Neural ODE Evolution Framework,
arXiv, 2019.

PDE-motivated Approaches
I E. Haber, LR, E. Holtham,

Learning across scales - Multiscale
CNNs, AAAI, 2018.

I LR, E. Haber, DNNs motivated by
PDEs, arXiv, 2018.

Title Intro Rev Black-Box D→O cond Σ 7



Lars Ruthotto Numerical Analysis of DNNs @ IPAM, 2019

Numerical Methods for Deep Learning

An (almost perfectly) true statement

backpropagation + GPU +


TensorFlow

Caffe
Torch

...

⇒ success

So, why study numeric methods for deep learning?
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A Simple Example
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Predict the output of:

x = param(0.0)
f = abs(x)
Tracker.back!(f)
Tracker.grad(x)
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Case 1: Reversibility
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Reversibility: Continuous vs. Discrete

Goal: If Y = NN(X, θ), want X = NN−1(Y, θ)!

Idea 1: ResNet

∂tY = tanh(K(t)Y + b(t))

I discretize: RK4, 16 time steps
I 4 channels, pad inputs with 0
I inverse: integrate backward in time

Idea 2: Hamiltonian NN

∂t

(
Y
Z

)
=

(
tanh(K(t)Z + b(t))

− tanh(K(t)>Y + b(t))

)

I discretize: Verlet, 32 time steps
I no padding, trivial inverse
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Case 2: Black-box
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Example: High-order vs. Symplectic?
Consider linear harmonic oscillator

∂t

(
q
p

)
=

(
0 1
−1 0

)(
q
p

)
associated with H(p, q) = p2 + q2

h large h small
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Verlet
RK4
true
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1

Use the right (in this case lower-order) integrators more bang for the buck!

U Ascher
Numerical methods for evolutionary differential
equations.
SIAM, 2008

S Greydanus, M Dzamba, J Yosinski
Hamiltonian Neural Networks.
arXiv:1906.01563
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Case 3: Discrete vs. Continuous
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Optimal Control Framework for Deep Learning

training data, Y0,C prop. features, Y(T),C classification result

Supervised Deep Learning Problem

Given training data, Y0, and labels, C, find network parameters θ and
classification weights W, µ such that the DNN predicts the data-label
relationship (and generalizes to new data), i.e., solve

minimizeθ,W,µ loss[g(W + µ),C] + regularizer[θ,W,µ]
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Optimal Control Background: Diff→Disc vs. Disc→Diff

minimizeθ,W,µ loss[g(WY(T) + µ),C] + regularizer[θ,W,µ]

subject to ∂tY(t) = f (Y(t),θ(t)) , Y(0) = Y0.

I First-Differentiate-then-Discretize ( Diff→Disc)
I Keep θ,b,Y continuous in time
I Euler-Lagrange-Equations adjoint equation (≈ backprop)
I flexible choice of ODE solver in forward and adjoint
I gradients only useful if fwd and adjoint solved well
I use optimization to obtain discrete solution of ELE

I First-Discretize-then-Differentiate (Disc→Diff)
I Discretize θ,b,Y in time (could use different grids)
I Differentiate objective (e.g., use automatic differentiation)
I / gradients related to adjoints but no choice of solver
I gradients useful even if discretization is inaccurate
I use nonlinear optimization tools to approximate minimizer

MD Gunzburger
Perspectives in flow control
and optimization.
SIAM, 2013.

TQ Chen et al.,
Neural Ordinary
Differential Equations.
NeurIPS, 2018.

A Gholami, K Keutzer, G Biros
ANODE: Unconditionally
Accurate Memory-Efficient
Gradients for Neural ODEs.
arXiv:1902.10298
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Example: Gradient Test Disc→Diff
Goal: Find weights of neural network F(u, θ) such that

∂tu = F(u, θ), u(0) = u0

fits true ODE at 0 < t1 < t2 < · · · < tn ≤ 1.5; details Sec. 8 from paper below.

Question: How does accuracy of ODE solvers impact the quality of gradient?
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103

E0
E1
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10−2

103

E0
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10−2

103
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E1

εrel = 10−7, εabs = 10−9 εrel = 10−2, εabs = 10−2 Disc→Diff, rk4, nt = 30

C Rackauckas, M Innes, Y Ma, J Bettencourt, L White, V Dixit
DiffEqFlux.jl - A Julia Library for Neural Differential Equations.
arXiv:1902.02376
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Neural ODE, εrel = 10−7, εabs = 10−9 Disc→Diff, RK4, 30 steps

Training: ADAM with default setting, same initialization
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Neural ODE, εrel = 10−7, εabs = 10−9 Disc→Diff, RK4, 30 steps

Training: ADAM with default setting, same initialization

Title Intro Rev Black-Box D→O cond Σ 19



Lars Ruthotto Numerical Analysis of DNNs @ IPAM, 2019

Neural ODE, εrel = 10−2, εabs = 10−2 Disc→Diff, RK4, 30 steps

Training: ADAM with default setting, same initialization
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Impact of Network Architecture on Optimization - 1

min
θ

1
2
‖YN(θ)− C‖2

F Yj+1(θ) = Yj(θ) +
10
N

tanh (KYj(θ))

where C = Y200(1, 1), Y0 ∼ N (0, 1), and

K(θ) =

−θ1 − θ2 θ1 θ2
θ2 −θ1 − θ2 θ1
θ1 θ2 −θ1 − θ2


loss, N = 5 loss, N = 100

Next: Compare examples for different inputs ∼ generalization
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Impact of Network Architecture on Optimization - 2

objective, Ytrain
0 objective, Ytest

0 abs. diff
un

st
ab

le
,N

=
5

st
ab

le
,N

=
10

0
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Case 4: Conditioning
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Conditioning of the Learning Problem
Consider the regression problem with a single neural network layer

min
W,K

1
2s
‖R(W,K)‖2, where R(W,K) = Wσ(KY)− C

I Y ∈ Rd×s - input features
I C ∈ Rn×s - output features
I K ∈ Rm×d,W ∈ Rn×m - weights for fully-connected transformation
I σ : R→ R - activation function (applied to each element)
The problem above is a non-linear least squares problem (NNLS). Common
to look at the Jacobian of r, i.e., J = [JW JK] where

JW = σ(KY)> ⊗ I, and JK = (I⊗W) diag(σ′(KY)) (Y> ⊗ I)

(here, we vectorized R, I is identity, and ⊗ is the Kronecker product)

Q: What are the properties of J?
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Example: Condition Numbers

sing. vals. m = 8 sing. vals. m = 16 sing. vals. m = 32
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102
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10−6

10−2

102

0 20 40 60 80 100
10−6

10−2

102

R(K,W) = Wσ(KY)− C
I d = 3/n = 1 input/output features
I s = 100 examples ∼ U([−1, 1]d)
I m = {8, 16, 32} width of network
I σ = tanh

I K,W ∼ N (0, 1)

Discussion:
I problem is ill-posed regularize!
I cond(J) large smart LinAlg
I how about single/half precision?
I NNLS solvers will not be effective
I need better initialization / method
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Conclusion
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I course launched Spring 18 at Emory and UBC
I slides + simple MATLAB codes available (pyTorch to come)
I next offerings: Fall ’19 at UBC and Spring ’20 at Emory

check it out: https://github.com/IPAIopen
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Numerical Methods for Deep Learning

An (almost perfectly) true statement

backpropagation + GPU +


TensorFlow

Caffe
Torch

...

⇒ success

So, why study numeric methods for deep learning?

Transfer Learning
I DL is similar to path planning, optimal control, differential equations . . .

Do More With Less
I Better modeling and algorithms process more data, use less resources
I How about 3D images and videos?

Power Of Abstraction
I Use continuous interpretation to design/relate architectures
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Σ: Numerical Analysis of Deep Neural Networks

I Case 1: Invertibility
I often but not always important
I it does not come for free

I Case 2: Time integrators
I conserving physical quantities can simplify numerics

I Case 3: Discretize-then-Optimize
I Neural ODE: need high accuracy to obtain good gradients
I Disc→Diff: can be more efficient/predictable

I Case 4: Ill-conditioning
I even simple learning problems can be ill-posed
I need more analysis, especially in low-precisions

There are a lot of challenges in ML for computational and
applied mathematicians
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