Machine-learning for materials and physics discovery through symbolic regression and kernel methods Stephen R. Xie, Shreyas Honrao, and Richard G. Hennig, University of Florida

MPInterfaces - High throughput framework for 2D materials

VASPSol - Ab initio methods for solid/liquid interfaces

Powered by **MPInterfaces & materialsweb**

GASP - Genetic algorithm and machine learning for structure predictions

Open source available at <u>https://github.com/henniggroup</u>

Data available at http://materialsweb.org

Machine-learning for materials and physics discovery through symbolic regression and kernel methods

Stephen R. Xie, Shreyas Honrao, and Richard G. Hennig, University of Florida

Machine Learning

- Machine learning of energy landscapes using distribution functions
- Reduction of error by learning atomic energies with local RDF descriptors
- Learning of analytic equations to predict superconductivity using small data sets

Powered by **MPInterfaces & materialsweb**

GASP - Genetic algorithm and machine learning for structure predictions

Open source available at <u>https://github.com/henniggroup</u>

MPInterfaces - High throughput framework for 2D materials

Data available at http://materialsweb.org

- GASP genetic algorithm: B. Revard, W. Tipton, A. Yesupenko, H. Lester,
- Machine learning of physics and materials: S. Honrao, S. Xie, B. Antonio
- Collaborators: Hao Li (UTAustin), Graeme Henkelman (UTAustin), Dallas R. Trinkle (UIUC)
- Machine learning of superconductivity: S. Xie, P. Hirschfeld, J. Hamlin, G. Stewart
- Financial support by NSF, DOE, NIST
- Computational resources: HiPerGator@UF, NSF XSEDE, and Google Cloud Platform

rhennig@ufl.edu http://hennig.mse.ufl.edu

Machine Learning in Materials Science

Powered by MPInterfaces & materialsweb

Part I: Exploration of Materials Energy Landscapes by Evolutionary/Genetic Algorithms

Powered by **MPInterfaces & materialsweb**

rhennig@ufl.edu http://hennig.mse.ufl.edu

Genetic Algorithm Search for Crystalline Materials

Variable number of atoms and composition

Efficiency of Genetic Algorithm

Efficiency compared to random search

- 2.35 • Random search requires 2-3x more structure relaxations
- Genetic algorithm learns from previous structures

value Best 2.33

2.32

Powered by MPInterfaces & materialsweb

<u>https://github.com/henniggroup/gasp-python</u>

W. W. Tipton, RGH, J. Phys.: Cond. Matter 25, 495401 (2013) B. C. Revard, W. W. Tipton, A. Yesypenko, R. G. Hennig, PRB 93, 054117 (2016)

Problem:

Naïve algorithm oversamples average compositions

Solutions

- 1. Use larger endpoint structures
 - Works but expensive
- 2. Preferentially select parents with similar compositions
 - Needs metric for distance of structures in composition space

https://github.com/henniggroup/gasp-python B. C. Revard and RGH, in preparation

Phase Diagram Searching

Metric for distance in composition space

- Express composition as a vector
- Use *L*₁ Norm to define distance: \bullet

$$d_{XY} = \frac{1}{2} ||\mathbf{X} - \mathbf{Y}||_{1}$$
$$||\mathbf{A} - \mathbf{B}||_{1} = ||(1, -1, 0)||_{1} = |1| + |-1|$$

Fitness for structures

- $f_{\rm comp} = 1 d$ Composition fitness
- $f_{\rm rel} = w_{\rm comp} f_{\rm comp} + (1 w_{\rm comp}) f_{\rm reg}$ **Relative fitness**

Fitness for structures

- Sampling distribution improved but not uniform
- Use partial phase diagram searches if needed \bullet

Powered by MPInterfaces & materialsweb

B. C. Revard and RGH, in preparation

Powered by **MPInterfaces & materialsweb**

https://github.com/henniggroup/gasp http://hennig.mse.ufl.edu

Part II: Machine Learning of Energy Landscapes

Powered by MPInterfaces & materialsweb

<u>rhennig@ufl.edu</u> <u>http://hennig.mse.ufl.edu</u>

Machine Learning Regression

- Takes a vector $x \in \mathbb{R}^n$ as input and return a scalar y
- Must first construct a vector-based data representation of the crystal structure that encodes relevant physical information, *i.e.* chemical identity and position of the atoms

Structure representation (features) should ideally fulfill three criteria

- (i) **Invariance** with respect to choice of unit cell and crystal symmetry
- (ii) Uniqueness, so no two different crystal structures have the same vector representation
- (iii)Continuity, such that the energy difference between two crystal structures with vector representations x_1 and x_2 goes to zero in the limit $||x_1 - x_2|| \rightarrow 0$

Partial Radial Distribution Functions

$$g_{AB}(r) = \frac{1}{N_A} \sum_{i=1}^{N_A} \sum_{j=1}^{\infty} \frac{1}{r^n} \exp\left[-\frac{\left(r - d_{ij}^{AB}\right)^2}{2\sigma_g^2}\right] \Theta(d_c)$$

- Captures primary distance dependence of bonds
- Criteria:
 - + Invariance
 - + Continuity
 - Uniqueness
- Cannot distinguish between *homometric structures*, *i.e.* structures of identical atoms that exhibit the same set of interatomic distances

S. Honrao, RGH at al., submitted (2018)

Partial Radial Distribution Functions

$$g_{AB}(r) = \frac{1}{N_A} \sum_{i=1}^{N_A} \sum_{j=1}^{\infty} \frac{1}{r^n} \exp\left[-\frac{\left(r - d_{ij}^{AB}\right)^2}{2\sigma_g^2}\right] \Theta(d_c)$$

- Captures primary distance dependence of bonds
- Criteria:
 - + Invariance
 - + Continuity
 - Uniqueness
- Cannot distinguish between *homometric structures*, *i.e.* structures of identical atoms that exhibit the same set of interatomic distances

S. Honrao, RGH at al., submitted (2018)

Formation energies of Li-Ge structures

- 14,168 Li-Ge structures from genetic algorithm search for novel Li-Ge compounds
- Includes relaxed and unrelaxed structures from DFT relaxations of structure search
- Formation energy relative to crystal structure of pure components

$$E_{\rm f} = E_{\rm tot} -$$

• E_f is not simply counting bonds, sensitive to small changes in bonding character

Structure groups

- Group the structures according to the basin of attraction \Rightarrow 679 basin groups
- Splitting of data significantly reduces the correlation between testing and training set
- Provides more stringent and realistic test of the ML methods

 $X_{\mathrm{Li}}E_{\mathrm{Li}} - X_{\mathrm{Ge}}E_{\mathrm{Ge}}$

IPAM MLP Workshop I September 23-27, 2019 • UCLA

S. Honrao, RGH at al., submitted (2018)

Machine-learning models

Use <u>kernel-ridge regression</u> (KRR), <u>ε-support vector regression</u> (SVR), and <u>neural networks</u>

Input data preprocessing

- Feature scaling of components of input vector $\mathbf{x}_i = g^i_{AB}(r)$ in training set to obtain zero mean and unit standard deviation
- Standardizing each set of components avoids the norm from being biased towards vector components with higher variance
- 30% of data for learning, 70% for testing
- 10-fold cross validation for learning

Hyper parameter selection

- Determined from 10-fold cross validation
- ϵ for SVR: negligible changes for $\epsilon < 10$ meV/atom, use $\epsilon = 10$ meV/atom
- Cutoff distance varied from 5 40 Å, larger errors for 5 Å, select 10 Å

Algorithm	Kernel width	Average regularization parameter
KRR	21.2	0.015 (unit less)
SVR	54.3	10.5 meV/atom

• For neural network, 1 hidden layer and RELU function, 20 trials to estimate RMSE

Powered by **MPInterfaces & materialsweb**

S. Honrao, RGH at al., Comp. Mater. Sci. 158, 414 (2019)

Algorithm	MAE	RMSE	R ²
KRR	12.7	20.4	0.98
SVR	13.6	20.8	0.98
NN	12.8	20.2	0.98

- Similar prediction errors (meV/atom) for different machine-learning techniques
- NN most demanding
- SVR is computationally most efficient and provides best tradeoff between complexity and prediction error

Chemical accuracy for learning of energy landscape

Learning of Basin of Attractions from Unrelaxed Structures

Prediction of the relaxed energies (minima) from unrelaxed structures

Algorithm	MAE	RMS	R ²
KRR	12.7	20.4	0.98
SVR	13.6	20.8	0.98
NN	12.8	20.2	0.98
KRR-min	11.8	20.3	0.98
SVR-min	13.4	20.9	0.98

- Similar accuracy for minima prediction
- Useful for screening of GA structures to avoid costly DFT relaxations

ML learning of minima has similar accuracy as learning of energy landscape

- Often insufficient amount of data for ML
- Early stage of genetic algorithm searches:
 - Few dozen relaxed structure
 - Maybe 1,000 configurations
 - RMSE \approx 35 meV/atom

How can we improve the prediction error for small data sets?

Big Data in Materials Predictions?

Data Augmentation - Use Local Descriptors and Information

- Learn energy of individual atoms, separate ML models for each species Use local radial and angular distribution functions

$$g_i^{AB}(r) = \sum_{j=1}^{\infty} \frac{1}{r^2} \exp \left[-\frac{\left(r - d_{ij}^{AB}\right)^2}{2\sigma_g^2} \right] f(d_{ij}^{AB})$$

Dataset: GASP run with Ni-Al EAM and Cd-Te Stillinger-Weber potential

$$q_i^{ABC}(x) = \sum_{j=1}^{\infty} \sum_{k=1}^{\infty} \exp\left[-\frac{\left(x - \cos\theta_{jik}\right)^{-}}{2\sigma_g^2}\right] f(d_{ij}^{AB}),$$

4,673 relaxed Cd-Te structures

rhennig@ufl.edu http://hennig.mse.ufl.edu

 $\sqrt{2}$

Prediction of Total Energy for Al-Ni

Significant improvement of prediction error for same amount of data.

• Angular terms do not change prediction error for Al-Ni, expected for EAM pair functional form

Prediction of Total Energy for Cd-Te

Angular terms reduce prediction error for Cd-Te, expected for SW potential

Significant improvement of prediction error for same amount of data.

Learning Curves

Local RDF descriptor reduces prediction error even for small datasets.

Comparison to Other Descriptors for Cd-Te

Data Representation Local RDF & ADF **Global RDF & ADF** Baseline model = mean $E_{\rm f}$ **Coulomb matrix Orbital-field matrix Bag of bonds JARVIS-CFID AGNI fingerprints**

RMSE (meV/atom)	MAE (meV/atom)
11	8
33	24
109	85
88	64
64	47
77	57
47	35
108	82

Importance of local RDF descriptors to capture change in chemical bonding

Part III: Functional Form of the Superconducting **Critical Temperature from Machine Learning**

Stephen R. Xie, James Hamlin, Gregory R. Stewart, Peter J. Hirschfeld, Richard G. Hennig

Motivation

- Vast space of possible superconducting materials
- Significant efforts to apply computational methods with theory to screen materials - 2015: Prediction and discovery of T_c in H₃S at 200K and one megabar pressure

 - 2018: Prediction and discovery of T_c in Lanthanum Hydrides between 215-260K (approaching room temperature)
- What are the correct material "descriptors" that reflect the underlying mechanism of superconductivity?
- Machine-learning of materials often suffers from a small-data problem. What methods can overcome this issue?
- Can we use machine learning to identify analytical relationships between descriptors and T_c ?

rhennig@ufl.edu http://hennig.mse.ufl.edu

- Training data from Table I by Allen & Dynes (1975)
 - 29 materials with parameters derived from tunneling
 - Parameters to use: ω_{log} , λ , μ^*
 - Allen-Dynes: Most widely used Eq. to predict T_c

PHYSICAL REVIEW B

VOLUME 12, NUMBER 3

Transition temperature of strong-coupled superconductors reanalyzed

P. B. Allen*

Department of Physics, State University of New York, Stony Brook, New York 11790

R. C. Dynes Bell Laboratories, Murray Hill, New Jersey 07974 (Received 20 January 1975)

$$T_{c} = \frac{f_{1}f_{2}\omega_{\log}}{1.20} \exp\left(-\frac{1.04(1+\lambda)}{\lambda - \mu^{*} - 0.62\,\lambda\mu^{*}}\right)$$

Powered by **MPInterfaces & materialsweb**

rhennig@ufl.edu http://hennig.mse.ufl.edu

Training Data Set

1 AUGUST 1975

TABLE I. Parameters^a of superconductors derived from tunneling measurements. The value of μ^* is renormalized from previously reported values as described in the text.

Material	ω _{10g} (K)	$\overline{\omega}_1$ (K)	$\overline{\omega}_2$ (K)	λ	ω_{ph} (K)	μ^* (ω_{ph})	T_c (K)
Pb	56	60	65	1.55	110	0.105	7.2
In	68	79	89	0.805	179	0.097	3.40
Sn	99	110	121	0.72	209	0.092	3.75
Hg	29	38	49	1.6	162	0.098	4.19
TÌ	52	58	64	0.795	127	0.111	2.36
Та	132	140	148	0.69	228	0.093	4.48
a-Ga	55	77	101	1.62	291	0.095	8.56
β-Ga	87	108	129	0.97	285	0.092	5.90
$Tl_{0.9}Bi_{0.1}$	48	55	62	0.78	120	0.099	2.30
$Pb_{0.4}Tl_{0.6}$	48	56	62	1.15	121	0.094	4.60
$Pb_{0,6}Tl_{0,4}$	50	57	62	1.38	119	0.103	5.90
$Pb_{0.8}Tl_{0.2}$	50	56	61	1.53	116	0.101	6.80
$Pb_{0,6}Tl_{0,2}Bi_{0,2}$	48	53	58	1.81	112	0.111	7.26
$Pb_{0.9}Bi_{0.1}$	50	56	60	1.66	108	0.081	7.65
$Pb_{0.8}Bi_{0.2}$	46	52	57	1.88	109	0.093	7.95
$Pb_{0.7}Bi_{0.3}$	47	52	57	2.01	110	0.092	8.45
$Pb_{0.65}Bi_{0.35}$	45	50	55	2.13	110	0.093	8.95
$In_{0.9}Tl_{0.1}$	63	75	86	0.85	176	0.103	3.28
In _{0.73} Tl _{0.27}	55	67	77	0.93	166	0.110	3.36
In _{0.67} Tl _{0.33}	57	68	79	0.90	167	0.110	3.26
$In_{0.57}Tl_{0.43}$	53	64	7 4	0.85	165	0.117	2.60
$In_{0.5}Tl_{0.5}$	53	64	73	0.83	163	0.110	2.52
$In_{0.27}Tl_{0.73}$	42	53	63	1.09	151	0.094	3.64
$In_{0.17}Tl_{0.83}$	45	55	63	0.98	144	0.101	3.19
$In_{0.07}Tl_{0.93}$	49	56	63	0.89	131	0.107	2.77
In_2Bi	46	57	67	1.40	174	0.096	5.6
Sb_2Tl_7	37	48	58	1.43	134	0.102	5.2
Bi_2Tl	47	53	59	1.63	120	0.101	6.4
$a-\mathrm{Pb}_{0.45}\mathrm{Bi}_{0.55}$	29	38	47	2.59	128	0.116	7.0

^aTabulation of the data used to derive these parameters is available in J. M. Rowell, W. L. McMillan, and R. C. Dynes, J. Phys. Chem. Ref. Data (to be published).

> **IPAM MLP Workshop I** September 23-27, 2019 • UCLA

$\eta (eV/Å^2)$ 2.4 1.3 2.2 1.4 1.24.9 2.12.01.1 1.6 2.0 2.12.32.22.3 2.42.41.4 1.4 1.4 1.3 1.3 1.4 1.31.3 1.6 1.6 2.12.1

Symbolic Regression Machine-Learning

- Apply Sure Independence Screening and Sparsifying Operator (SISSO) method to generate predictive models from training data for 29 materials
 - Identifies *analytical relations* between a minimal set of descriptors and desired properties
 - Yields stable results with small training sets
- Compare equations by evaluating with testing data
 - 13 superconductors from literature including A15 phases
 - Measure interpolative and extrapolative capacity, i.e., transferability
 - Avoid overfitting, i.e., artificially low error in training data with high error in testing data

rhennig@ufl.edu http://hennig.mse.ufl.edu

- Primary features: ω_{log} , λ , μ^*
- <u>Sure Independence Screening SIS</u>
 - 1. Expand feature space Φ by recursively applying and combining algebraic/functional operation
 - +, -, ×, \div , exp, log, $\sqrt{1}$, $\frac{1}{2}$, $\frac{3}{3}$, (sin, cos not used)
 - Respect units with dimensional reduction
 - 2. Rank features by their correlation magnitude (dot product of feature and T_c)
- <u>Sparsifying Operator SO</u>

 - Use ℓ_0 -norm regularized minimization to find sparse solution of linear equations - 1D solution is trivially the first-ranked feature
 - *n*-dimensional descriptors are used for classification models

Powered by **MPInterfaces & materialsweb**

rhennig@ufl.edu http://hennig.mse.ufl.edu

• Feature: Quantity that is hypothesized to be relevant for describing target property, T_c

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

Powered by **MPInterfaces & materialsweb**

rhennig@ufl.edu http://hennig.mse.ufl.edu

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

IPAM MLP Workshop I September 23-27, 2019 • UCLA

9 • • •

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

IPAM MLP Workshop I September 23-27, 2019 • UCLA

. . . .

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

λ				
exp, log,	,	-1, 2, 3,	9	$\sqrt{, \sqrt[3]{}}$
$exp(\mu^*)$,	λ^3	9	$\sqrt{\mu^*}$
$\sqrt[3]{\mu^* + \lambda}$, λ	$^{3\times}(\omega_{\log} \times \lambda)$,	$exp(\lambda^3)$

rhennig@ufl.edu http://hennig.mse.ufl.edu

IPAM MLP Workshop I September 23-27, 2019 • UCLA

. . . .

9 • • •

Results in 3,414,094 analytic equations

Powered by **MPInterfaces & materialsweb**

rhennig@ufl.edu http://hennig.mse.ufl.edu

IPAM MLP Workshop I September 23-27, 2019 • UCLA

9 • • •

$$\begin{bmatrix} \Phi_0 \end{bmatrix} 3 \\ \begin{bmatrix} \Phi_1 \end{bmatrix} 34 \\ \begin{bmatrix} \Phi_2 \end{bmatrix} 1,342 \\ \begin{bmatrix} \Phi_3 \end{bmatrix} 3,414,094$$
 $\omega_{\log} \times \lambda$, $\omega_{\log} \times \lambda$, $\lambda^3 \times (\omega_{\log} \times \lambda)$, $\lambda^$

Select the equations with the highest linear correlation to T_c , inner product > 0.5

Powered by MPInterfaces & materialsweb

<u>rhennig@ufl.edu</u> <u>http://hennig.mse.ufl.edu</u>

ening

Use Physical Constraints to Reduce Feature Space

$$\begin{bmatrix} \Phi_0 \end{bmatrix} 3 \\ \begin{bmatrix} \Phi_1 \end{bmatrix} 34 \\ \begin{bmatrix} \Phi_2 \end{bmatrix} 1,342 \\ \begin{bmatrix} \Phi_3 \end{bmatrix} 3,414,094$$
 $\omega_{\log} \times \lambda$, $\sqrt{\mu^*}$, $\lambda^3 \times (\omega_{\log} \times \lambda)$, λ^3
 $\lambda^3 \times (\omega_{\log} \times \lambda)$, λ^3
 $\lambda^3 \times (\omega_{\log} \times \lambda) / (\lambda^3)$
 $\lambda^3 \times (\omega_{\log} \times \lambda) / (\lambda^3)$
Sure Independence Screet
Dimensions
 $15,886$ $\lambda \rightarrow 0$ Limit
 $10,839$ Strictly Positive
 $6,021$ Finite, Continuous, Real,

Powered by **MPInterfaces & materialsweb**

rhennig@ufl.edu http://hennig.mse.ufl.edu

ening

Monotonic

Tools available at <u>https://github.com/henniggroup/symbolic-regression-utilities</u>

- Fit multiplicative factor to features, e.g., $y' = C \frac{\lambda^4 \omega_{\log}}{\lambda^2 + \sqrt{\mu^*}}$
- Evaluate root-mean square (relative) error with leave-one-out cross-validation
- Figure shows distribution of resulting functions for $\mu^* = 0.1$
- Narrow distribution of training and testing data
- Data for large and small λ would be helpful

Powered by MPInterfaces & materialsweb

Best Model Performance

Best Model Performance

Outliers (MgB₂, NbS₂) indicate importance of anisotropic electron-phonon coupling.

Dimensionality and Complexity

Model	CV-RMSE (K) Training	RMSE (K) Testing	Materials Parameters	Numerical Coefficients
SISSO	0.25	3.2	3	1
mod. McMillan	0.92		3	4
Allen-Dynes	0.30		4	7

Machine-learned model has small RMSE and low computational complexity.

Powered by MPInterfaces & materialsweb

<u>rhennig@ufl.edu</u> <u>http://hennig.mse.ufl.edu</u>

Can the machine-learning identify relevant materials parameters?

- Fit models with up to 7 materials parameters for 29 materials
- Best model:

$$T_c^{\rm SISSO} = 0.09525 \frac{\lambda^4 \omega_{\log}}{\lambda^3 + \sqrt{\mu^*}}$$

• Second best model:

$$T_c = -0.059 \left(\omega_2 - \omega_1 - \frac{\omega_2}{\lambda}\right) \frac{\lambda^3}{\sqrt[3]{\lambda}}$$

• Adding parameters beyond ω_{\log} , λ , μ^* does not improve description

Machine-learning identifies most relevant materials parameters in agreement with McMillan and Allen & Dynes

Powered by MPInterfaces & materialsweb

rhennig@ufl.edu http://hennig.mse.ufl.edu

V

CV-RMSE = 0.25 K

CV-RMSE = 0.27K

Parameters^a of superconductors derived from tunneling measurements. μ^* is renormalized from previously reported values as described in the text

•		-	-					
Material	ω _{10g} (K)	<u>ω</u> ₁ (K)	<u>ω</u> 2 (K)	λ	ω _{ph} (K)	$\mu^*(\omega_{ph})$	<i>T</i> _c (K)	η (eV/Å ²)
Pb	56	60	65	1.55	110	0.105	7.2	2.4
In	68	79	89	0.805	179	0.097	3.40	1.3
Sn	99	110	121	0.72	209	0.092	3.75	2.2
Hg	29	38	49	1.6	162	0.098	4.19	1.4
TÌ	52	58	64	0.795	127	0.111	2.36	1.2
Та	132	140	148	0.69	228	0.093	4.48	4.9
a-Ga	55	77	101	1.62	291	0.095	8.56	2.1
β-Ga	87	108	129	0.97	285	0.092	5.90	2.0
$Tl_{0.9}Bi_{0.1}$	48	55	62	0.78	120	0.099	2.30	1.1
$Pb_{0.4}Tl_{0.6}$	48	56	62	1.15	121	0.094	4.60	1.6
$Pb_{0,6}Tl_{0,4}$	50	57	62	1.38	119	0.103	5.90	2.0
$Pb_{0.8}Tl_{0.2}$	50	56	61	1.53	116	0.101	6.80	2.1
$Pb_{0} {}_{6}Tl_{0} {}_{2}Bi_{0} {}_{2}$	48	53	58	1.81	112	0.111	7.26	2.3
$Pb_{0.9}Bi_{0.1}$	50	56	60	1.66	108	0.081	7.65	2.2
$Pb_{0.8}Bi_{0.2}$	46	52	57	1.88	109	0.093	7.95	2.3
$Pb_{0,7}Bi_{0,3}$	47	52	57	2.01	110	0.092	8.45	2.4
$Pb_{0,65}Bi_{0,35}$	45	50	55	2.13	110	0.093	8.95	2.4
$In_{0.9}Tl_{0.1}$	63	75	86	0.85	176	0.103	3.28	1.4
$In_{0.73}Tl_{0.27}$	55	67	77	0.93	166	0.110	3.36	1.4
In _{0.67} Tl _{0.33}	57	68	79	0.90	167	0.110	3.26	1.4
$In_{0.57}Tl_{0.43}$	53	64	7 4	0.85	165	0.117	2.60	1.3
$In_{0.5}Tl_{0.5}$	53	64	73	0.83	163	0.110	2.52	1.3
$In_{0.27}Tl_{0.73}$	42	53	63	1.09	151	0.094	3.64	1.4
$In_{0,17}Tl_{0,83}$	45	55	63	0.98	144	0.101	3.19	1.3
$In_{0.07}Tl_{0.93}$	49	56	63	0.89	131	0.107	2.77	1.3
In ₂ Bi	46	57	67	1.40	174	0.096	5.6	1.6
Sb_2T1_7	37	48	58	1.43	134	0.102	5.2	1.6
Bi ₂ Tl	47	53	59	1.63	120	0.101	6.4	2.1
$a - \mathbf{Pb}_{0.45} \mathbf{Bi}_{0.55}$	29	38	47	2.59	128	0.116	7.0	2.1

ion of the data used to derive these parameters is available in J. M. Rowell, W. L. McMilla and R. C. Dynes, J. Phys. Chem. Ref. Data (to be published)

- Can increasing the number of numerical coefficients improve description Include multiplicative and additive numerical coefficient to every materials parameter
- Best model:

$$T_{c} = \omega_{\log} \left(\frac{0.233 - 0.0170\lambda}{1.28\mu^{*} + 0.00784} + (0.791\lambda - 1.408)^{3} \right) \left(0.0655\lambda + 0.00530 - \frac{0.000780}{1.206\mu^{*} - 0.0725} - \frac{0.000780}{1.206\mu^{*} - 0.0725} \right)$$

$$CV-RMSE = 0.19 \text{ K}$$

 Significant improvement from 0.25 to 0.19 K, however, at cost of significant more complexity (increase from 1 to 11 numerical coefficients) and reduced physical interpretability (high power of λ)

rhennig@ufl.edu http://hennig.mse.ufl.edu

Conclusions

- Machine-learning of analytic equation with fewer parameters
- Identification of relevant physical parameters
- Use of analytic expressions and physical constraints can help overcome small-data problem
- Predict known superconductors of
- same type as the original Allen-Dynes dataset Anomalous outliers suggests need for new descriptors anisotropy of the electron-phonon interaction

$$T_c^{\rm SISSO} = 0.09525 \frac{\lambda^4 \omega_{\log}}{\lambda^3 + \sqrt{\mu^*}}$$

Powered by **MPInterfaces & materialsweb**

- (b) Testing and Extrapolation 40 **Training Data** Testing data ω_{log} , λ from tunneling • ω_{log} from ω_{D} , λ from $\rho(T)$ 30 $\star \omega_{\rm los}$ from $\omega_{\rm D}$, λ from calc T_c predicted (K) Nb₂Sn 20-Nb₂Ge CaC Nb₂Z LuNi₂B₂C Nb 10 La₃Ni₂B₂N₃ 30 20 10 () T_{c} from experiment (K) IPAM MLP Workshop I
- rhennig@ufl.edu http://hennig.mse.ufl.edu

September 23-27, 2019 • UCLA

Machine-learning for materials and physics discovery through symbolic regression and kernel methods

Stephen R. Xie, Shreyas Honrao, and Richard G. Hennig, University of Florida

Search for materials

MPInterfaces - High throughput framework for 2D materials

- Structure prediction by genetic algorithms
- Machine learning of energy landscapes using distribution functions
- Learning of Allen-Dynes equation for T_c
- Use of analytic equations and physical constraints to overcome small data problem

MPInterfaces & materialsweb

Powered by

and machine learning for structure predictions

GASP - Genetic algorithm

Open source available at <u>https://github.com/henniggroup</u>

Data available at http://materialsweb.org

