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(b)    2D Pb-O System  (a)    2D Sn-O System 
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Open source available at h-ps://github.com/henniggroup

Data available at h-p://materialsweb.org 

VASPSol - Ab ini?o methods 

for solid/liquid interfaces

Solvated Water in DMC

Method Dielectric energy Cavitation energy Solvation energy

DFT -19 mHa

DMC -20(1) mHa

Classical DFT* 4.90 mHa

Classical DFT+DMC -15(1) mHa

Expt5 -10 mHa

5.  T. Truong and E. Stefanovich, Chem. Phys. Lett. 240. 253 (1995).* Classical DFT from Ravishankar Sundararaman

Machine-learning for materials and physics discovery 
through symbolic regression and kernel methods
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Open source available at h-ps://github.com/henniggroup

Data available at h-p://materialsweb.org 

Machine-learning for materials and physics discovery 
through symbolic regression and kernel methods

Machine Learning 
• Machine learning of energy landscapes 

using distribu?on func?ons 

• Reduc?on of error by learning atomic 
energies with local RDF descriptors 

• Learning of analy?c equa?ons to predict 
superconduc?vity using small data sets
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Supervised Learning
• High-throughput screening for proper?es

• Surrogate models for structure explora?on

• Symbolic regression for analy?c expressions

Unsupervised Learning
• Iden?fica?on of new configura?ons in MD simula?ons

Machine Learning in Materials Science

Model 1, Eq. (4)

Models 2 to 100

Modif. McMillan

Testing dataAllen & Dynes
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Part I: Explora?on of Materials Energy Landscapes 

by Evolu?onary/Gene?c Algorithms
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GeneSc Algorithm Search for Crystalline Materials

ModificaSon for 
0D, 1D, 2D structure search

h-ps://github.com/henniggroup/gasp-python 

W. W. Tipton, RGH, J. Phys.: Cond. Ma-er 25, 495401 (2013) 

B. C. Revard, W. W. Tipton, A. Yesypenko, R. G. Hennig, PRB 93, 054117 (2016)

Surface

Solvent or Vacuum

⇒+
Solvent or Vacuum

Begin 

Create Pool from 
Initial Population 

No Yes 

Create Initial 
Population 

Done! 

Create Offspring 
Organism 

Pre-Evaluation 
Development 

Structure Relaxation and Energy 
Evaluation with External Code 

Post-Evaluation 
Development 

Convergence 
Achieved? 

Add Offspring 
to Pool 

Grand canonical geneSc algorithm  
Variable number of atoms and composiSon
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Efficiency of GeneSc Algorithm

h-ps://github.com/henniggroup/gasp-python 

W. W. Tipton, RGH, J. Phys.: Cond. Ma-er 25, 495401 (2013) 

B. C. Revard, W. W. Tipton, A. Yesypenko, R. G. Hennig, PRB 93, 054117 (2016)

Efficiency compared to random search 
• Random search requires 2-3x 

more structure relaxa?ons 

• Gene?c algorithm learns from 
previous structures
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Phase Diagram Searching

Problem: 
• Naïve algorithm oversamples average composi?ons 

SoluSons 

1. Use larger endpoint structures 

• Works but expensive 

2. Preferen?ally select parents 
with similar composi?ons 

• Needs metric for distance  
of structures in composi?on space
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h-ps://github.com/henniggroup/gasp-python 

B. C. Revard and RGH, in prepara?on
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Phase Diagram Searching

h-ps://github.com/henniggroup/gasp-python 

B. C. Revard and RGH, in prepara?on

Metric for distance in composiSon space
• Express composi?on as a vector

• Use L1 Norm to define distance:

Fitness for structures

• Composi?on fitness   fcomp = 1 − d
• Rela?ve fitness   frel = wcomp fcomp + (1 − wcomp)freg

Fitness for structures
• Sampling distribu?on improved but not uniform

• Use par?al phase diagram searches if needed
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FIG. 3. Composition fitness as a function of composition in
a binary system relative to first parent organisms with three
di↵erent compositions: AB, AB4 and pure B. We note that
when the first parent organism is located at an endpoint of
the composition space, the composition fitnesses of other or-
ganisms at that endpoint are set to zero.

dXY =
1

2

����X�Y
����
1

We note that this normalization holds for composition
spaces of arbitrary dimension.

Now that we have a way to compute the distances be-
tween points in composition space, we may return to the
original problem of preventing the population from drift-
ing toward intermediate compositions. Our approach is
to select the first parent organism in the standard way,
and then to modify the selection probabilities of the re-
maining organisms such that those with compositions
closer to that of the first parent are more likely to be
selected.

After selecting the first parent organism, we assign fit-
ness values to the remaining organisms in the population
relative to the first parent. The fitness of an organism
relative to the first parent organism is defined by

frel = wcompfcomp + (1 � wcomp)freg (2)

where freg is the regular fitness of the organism (i.e.,
based on it’s objective function value), and fcomp is the
composition fitness of the organism relative to the com-
position of the first parent:

fcomp = 1 � d

where d is the normalized distance in composition
space between the organism and the first parent. We
note that like the regular fitness, the composition fitness
ranges from 0 to 1. An exception to how the composition
fitness is computed arises when the first parent happens
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FIG. 4. Weight assigned to the composition fitness as a func-
tion of the composition of the first parent organism in a binary
system. The weights are shown for three di↵erent choices of
the parameters wmax and p in Equation 3.

to lie at an endpoint of the composition space. In that
case, the composition fitnesses of other organisms with
the same composition are set to zero. This is done to
prevent the algorithm from oversampling the endpoint
compositions (the regions that are undersampled tend
to be the compositions that are near to the endpoints,
but not the endpoints themselves). Fig. 3 illustrates the
composition fitnesses of organisms in a binary system for
several di↵erent compositions of the first parent organ-
ism.

From Equation 2, we see that the relative fitness is the
weighted average of the regular fitness and the compo-
sition fitness, where wcomp is the weight assigned to the
composition fitness and lies in [0, 1]. So in order to com-
pute relative fitnesses, we must choose a value for wcomp.
If the first parent organism is located near a region of
the composition space that tends to be under-sampled,
we would like the eventual o↵spring structure to lie in
that region as well. Therefore, we should choose the sec-
ond parent such that it has a composition close to that
of the first, which can be achieved by increasing wcomp.
On the other hand, if the first parent organism is located
in a region of the composition space that tends to be
over-sampled, it is not as important that the o↵spring
structure also be located in that region. In this case we
are relatively indi↵erent to the composition of the sec-
ond parent, which is expressed by using a small value for
wcomp.

To apply these considerations, the value we assign to
wcomp depends on the composition of the first parent
organism. In particular, we use a power law relation:

wcomp = wmaxd
p (3)

where wmax is the maximum value of wcomp (at the
endpoints), and d is the distance between the composi-
tion of the first parent organism and the center of the
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energy calculation.

D. Phase Diagram Search

TODO: introduction to and motivation for phase dia-
gram searching. Reference Will’s paper for motivation
to search for phase diagrams (maybe also the review
chapter), and also some of the di�culties associated with
searching over composition space. Say that here we dis-
cuss our new modifications to improve searching for phase
diagrams.
a. Partial Phase Diagram Search In some cases, we

are interested only in a certain region of a phase diagram
and would prefer not to expend computational resources
searching areas outside of this region. Investigating the
hydrogen-rich side of a high-pressure phase diagram2,3 is
an example of this situation. To facilitate these types
of searches, we have implemented searching for partial
phase diagrams; that is, phase diagrams with one or more
non-elemental endpoint compositions.

Care should be taken when searching for phase dia-
grams with non-elemental endpoints and interpreting the
results of such searches. In particular, unless all the end-
point compositions correspond to points on the convex
hull of the entire system, it will not be possible for the
algorithm to find the correct partial phase diagram.
b. Preventing Population Drift In phase diagram

searches, the cut-and-splice mating variation tends to
produce o↵spring structures with compositions between
those of the two parents. Over time, this causes the pop-
ulation of structures to drift toward the middle regions
of the composition space, leaving the more extreme com-
positions (those closer the endpoints of the composition
space) under-sampled. To address this problem, we mod-
ify the selection probabilities such that the two parent
structures are likely to have similar compositions.

Before we can select parent structures with similar
compositions, we need a general method of determining
the distance between points in composition space. That
is, we need a distance metric for composition spaces with
an arbitrary number of dimensions. We observe that a
phase diagram with n endpoints may be considered to be
the portion of the L1 norm unit sphere that lies in the
positive orthant of an n-dimensional space, where each
dimension corresponds to the fraction of an endpoint of
the composition space. Fig. 2 illustrates this idea for a
binary and ternary phase diagram.

We note that the L1 norm satifies the requirements
of a distance metric in composition space. For example,
consider a ternary phase diagram with endpoint compo-
sitions A, B and C, as shown in Fig. 2(b). Any point in
the composition space may be expressed in terms of the
fractions of A, B and C, and the endpoints themselves
can be defined by the following vectors:

A = (1, 0, 0) B = (0, 1, 0) C = (0, 0, 1) (1)
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FIG. 2. Illustration of the composition space for (a) binary
and (b) ternary systems. In the binary system, the compo-
sition space ranges from pure A to pure B, and is shown by
the blue line, which is the part of the L1 norm unit circle
that lies in the positive quadrant. In the ternary system,
the composition space has three endpoints: pure A, B and
C. The three blue lines outline the shaded region that repre-
sents the ternary composition space, and each line comprises
a binary composition space between two of the endpoints.
The ternary composition space corresponds to the part of the
three-dimensional L1 norm unit sphere that lies in the posi-
tive octant.

Consider the distance between A and B, that is, the
distance between two of the endpoints of the composition
space. Using the L1 norm as the distance metric, we have
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Now consider the distance between A and a point P
halfway between B and C. That is,
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We know that the distance between A and P must
be equivalent to the distance between A and B (and A
and C) because composition P contains none of endpoint
A. That is, P is orthogonal to A (just like B and C).
Computing the distance between A and P using the L1

norm, we have
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which is the desired result.
It is convenient to normalize the distances between

points in the composition space such that the maximum
possible distance between points is 1. From the examples
above, we see that this can be achieved by dividing the L1

norm distance by 2. So in general, we take the distance
between any two compositions X and Y in a composition
space to be
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structures are likely to have similar compositions.

Before we can select parent structures with similar
compositions, we need a general method of determining
the distance between points in composition space. That
is, we need a distance metric for composition spaces with
an arbitrary number of dimensions. We observe that a
phase diagram with n endpoints may be considered to be
the portion of the L1 norm unit sphere that lies in the
positive orthant of an n-dimensional space, where each
dimension corresponds to the fraction of an endpoint of
the composition space. Fig. 2 illustrates this idea for a
binary and ternary phase diagram.

We note that the L1 norm satifies the requirements
of a distance metric in composition space. For example,
consider a ternary phase diagram with endpoint compo-
sitions A, B and C, as shown in Fig. 2(b). Any point in
the composition space may be expressed in terms of the
fractions of A, B and C, and the endpoints themselves
can be defined by the following vectors:

A = (1, 0, 0) B = (0, 1, 0) C = (0, 0, 1) (1)

1.0 

1.0 

B fraction 

A fraction 

1.0 

1.0 

B fraction 
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1.0 

C fraction 

(a) (b) 

FIG. 2. Illustration of the composition space for (a) binary
and (b) ternary systems. In the binary system, the compo-
sition space ranges from pure A to pure B, and is shown by
the blue line, which is the part of the L1 norm unit circle
that lies in the positive quadrant. In the ternary system,
the composition space has three endpoints: pure A, B and
C. The three blue lines outline the shaded region that repre-
sents the ternary composition space, and each line comprises
a binary composition space between two of the endpoints.
The ternary composition space corresponds to the part of the
three-dimensional L1 norm unit sphere that lies in the posi-
tive octant.

Consider the distance between A and B, that is, the
distance between two of the endpoints of the composition
space. Using the L1 norm as the distance metric, we have
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Similarly, the distance between A and C is
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Now consider the distance between A and a point P
halfway between B and C. That is,
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We know that the distance between A and P must
be equivalent to the distance between A and B (and A
and C) because composition P contains none of endpoint
A. That is, P is orthogonal to A (just like B and C).
Computing the distance between A and P using the L1

norm, we have
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which is the desired result.
It is convenient to normalize the distances between

points in the composition space such that the maximum
possible distance between points is 1. From the examples
above, we see that this can be achieved by dividing the L1

norm distance by 2. So in general, we take the distance
between any two compositions X and Y in a composition
space to be
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examples will be incorporated into the computer labs and homework problems and we will distribute 
the module through nanoHUB.org and MatDL.org. 

• Workshop. We will hold a 1-week workshop in year 3 of the project on “Materials Discovery and De-
sign by Ab-Initio Methods, Machine-Learning Techniques, and Genetic Algorithms.” The PI, other local 
experts, and graduate students will give the lectures and labs. This workshop will benefit from our pre-
vious successful workshop in Santiago Chile that was supported by the NSF PASI program. Through 
targeted advertisement to HBCU’s and specific research groups, we will ensure a diverse group of stu-
dents and we will encourage women and other underrepresented minorities to participate. 

• Mentoring. Through the research, workshop, and software distribution, we will assemble a multidisci-
plinary community focused on algorithm and software development for materials discovery and design 
that will provide a challenging and nurturing environment for students. The project will provide exten-
sive research opportunities for undergraduates and we will continue to encourage women and other un-
derrepresented minorities to participate in the research. 

2.3. Software Design of the Genetic Algorithms for Structure Prediction - GASP 
In much of this proposal, we focus on the methodology behind our approach as well as applications that 
are of both technological and fundamental scientific interest. However, the GASP software package itself 
is an important deliverable, and the design, implementation, and maintenance of the code is an important 
part of project.  In designing the code, we have two primary objectives. First, the package needs to func-
tion as a useful tool for materials engineers and other researchers who simply want to use it to solve struc-
ture prediction problems – that is, for people not intimately familiar with the code itself. For this to be 
possible, the code itself needs to be robust and user-friendly. Additionally, it needs to be well document-
ed, and responsive help needs to be available for users. Second, the code needs to function as a platform 
for research into the structure prediction methodology itself. 
These two goals motivated us to carefully design the software. If we follow a more ad hoc design ap-
proach, the changing requirements and implementations implied by the second objective could conflict 
with the robustness objectives of the first. A modern object oriented design, making heavy use of design 
patterns79 and implemented in Java, allows us to achieve both objectives.  Incidentally, the computational 
cost incurred by choosing Java is negligible, since external energy codes are the dominant users of com-
puter time. Three singletons provide single points of access to the input and output mechanisms and to the 
state of the search procedure. At the heart of the genetic algorithm illustrated in Fig. 4 is a loop, which 
generates new structures and then evaluates their energies. The code uses variation operators such as mu-
tations and mating as illustrated in Fig. 5 to generate new structures.10 The main loop is a template meth-
od, which describes a genetic algorithm in general terms, that is, the main algorithm is loosely coupled to 
particular implementations. Loose coupling between components of the code makes swapping out com-
ponents of the algorithm easy and error-free. A related design principle is to encapsulate what varies. For 
example, much of the machinery of choosing parent structures and using them to make children is the 
same regardless of the variation operators. Furthermore, much of that machinery does not change, while 
we frequently add, remove, or change variation operators. The part of the code that changes – that which 
accepts particular parent structures and returns a child – should be separated from the rest of the code. In 

Figure 4. Flowchart of the genetic algo-
rithm for structure prediction. To improve 
the efficiency of the structure generation 
(a) of the algorithm we will utilize surro-
gate models that are generated on the fly 
using machine learning techniques show in 
(b). No
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Part II: Machine Learning of Energy Landscapes
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Structure representaSon (features) should ideally fulfill three criteria 

(i) Invariance with respect to choice of unit cell and crystal symmetry 

(ii) Uniqueness, so no two different crystal structures have the same vector representa?on 

(iii)ConSnuity, such that the energy difference between two crystal structures with vector 

representa?ons x1 and x2 goes to zero in the limit || x1 − x2 ||→ 0

Machine Learning Surrogate Models

Machine Learning Regression 
• Takes a vector x ∈ R

n
 as input and return a scalar y 

• Must first construct a vector-based data representa?on of the crystal structure that 

encodes relevant physical informa?on, i.e. chemical iden?ty and posi?on of the atoms

S. Honrao, RGH at al., submi-ed (2018)
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ParSal Radial DistribuSon FuncSons
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• Captures primary distance dependence of bonds 

• Criteria: 

+ Invariance 
+ ConSnuity 
- Uniqueness 

• Cannot dis?nguish between homometric structures,  
i.e. structures of iden?cal atoms that exhibit 
the same set of interatomic distances

S. Honrao, RGH at al., submi-ed (2018)

Atomic Structure Descriptors
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ParSal Radial DistribuSon FuncSons
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• Captures primary distance dependence of bonds 

• Criteria: 

+ Invariance 
+ ConSnuity 
- Uniqueness 

• Cannot dis?nguish between homometric structures,  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S. Honrao, RGH at al., submi-ed (2018)
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Data Set of Li-Ge Structures

FormaSon energies of Li-Ge structures 

• 14,168 Li-Ge structures from gene?c algorithm search for novel Li-Ge compounds 

• Includes relaxed and unrelaxed structures from DFT relaxa?ons of structure search 

• Forma?on energy rela?ve to crystal structure of pure components 

• Ef is not simply counSng bonds, sensiSve to small changes in bonding character 

Structure groups  

• Group the structures according to the basin of a-rac?on ⇒ 679 basin groups 

• Splilng of data significantly reduces the correla?on between tes?ng and training set 

• Provides more stringent and realis?c test of the ML methods

Ef = Etot �XLiELi �XGeEGe

S. Honrao, RGH at al., submi-ed (2018)
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Test Data

Training Data

Model Parameters

Research Objective

The goal of this work is to use machine learning algorithms to 
devise a surrogate energy model which utilizes a data 
representation of a given structure as input to quickly evaluates 
the structure’s energy. 

Motivation

Calculating the energies of crystal structures involves 
performing arduous quantum-mechanical calulcations.  For 
calculating energies of larger sets of crystals, this computational 
time can take an hour up to a month. 

Machine learning techniques enable us to calculate the energies 
of a smaller set of structures, and develop a surrogate model 
describing the relationship between structure and energy. This 
model can then be used to quickly compute the energy of other 
candiate structures. The goal is to reduce the amount of time 
required to perform energy calculations.

.0203 eV/atom  

.0069 eV/atom 

Crystal Structure Energy Prediction Using Machine Learning 
Bryan Anthonio1, Rohit Ramanathan2,  Richard G. Hennig2 

1 Department of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853
2 Department of Materials Science and Engineering,  Cornell University, Ithaca, New York 14853
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Support Vector Regression Energy Model 

Optimization
Ignore prediction errors within epsilon margin
Reduce prediction errors of support vectors

Support Vectors

Non-support Vectors

Fit

Data Set of Crystal Structures

Energies of structures range from -0.3 eV/atom 
to .12 eV/atom

Data Set
~14,000 Li-Ge crystal structures randomly generated from 
a genetic algorithm

Machine Learning

Data Representation

Modified Radial Distribution Function

: Distance between and atoms
: Number of     atoms 
: Gaussian Width 
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Examples:

Results

RMS Error

C = 6.02    = 0.009

Contact Info

bea24@cornell.edu

*Parameters obtained via 10-fold cross validation

Optimization Parameters
C: Regularization Parameter

: Gaussian Width Parameter

Bryan Anthonio
rr544@cornell.edu
Rohit Ramanathan
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.0063 eV/atom MAE 

RMS Error .01362 eV/atom MAE 

Machine Learning

Machine-learning models 

• Use kernel-ridge regression (KRR), ε-support vector regression (SVR), and neural networks 

Input data preprocessing   
• Feature scaling of components of input vector xi = gi

AB(r) in training set 
to obtain zero mean and unit standard devia?on 

• Standardizing each set of components avoids the norm from  
being biased towards vector components with higher variance 

• 30% of data for learning, 70% for tes?ng 

• 10-fold cross valida?on for learning

x0
ij =

xij � µi

�i

S. Honrao, RGH at al., Comp. Mater. Sci. 158, 414 (2019)
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Machine Learning

Hyper parameter selecSon 

• Determined from 10-fold cross valida?on 

• ε for SVR: negligible changes for ε < 10 meV/atom, use ε = 10 meV/atom 

• Cutoff distance varied from 5 - 40 Å, larger errors for 5 Å, select 10 Å 

• For neural network, 1 hidden layer and RELU func?on, 20 trials to es?mate RMSE

Algorithm Kernel width Average regularizaSon parameter

KRR 21.2 0.015 (unit less)

SVR 54.3 10.5 meV/atom

S. Honrao, RGH at al., Comp. Mater. Sci. 158, 414 (2019)
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Machine Learning Methods

Algorithm MAE RMSE R2

KRR 12.7 20.4 0.98

SVR 13.6 20.8 0.98

NN 12.8 20.2 0.98

• Similar predic?on errors (meV/atom) for 
different machine-learning techniques  

• NN most demanding 

• SVR is computa?onally most efficient 
and provides best tradeoff 
between complexity and predic?on error

SVR 
Error on  

tes?ng data

S. Honrao, RGH at al., submi-ed (2018)

DFT Energy (eV/atom)

Unrelaxed formation energies

Pr
ed

ic
te

d 
En

er
gy

 (e
V

/a
to

m
)

–0.4

–0.2

0.2

0.2

–0.1

–0.3

0.1

0.0

–0.4 –0.2 –0.1–0.3 0.10.0

S. Honrao, RGH at al., Comp. Mater. Sci. 158, 414 (2019)Chemical accuracy for learning of energy landscape

mailto:rhennig@ufl.edu?subject=
http://hennig.mse.ufl.edu


rhennig@ufl.edu 

h-p://hennig.mse.ufl.edu

Powered by
MPInterfaces & materialsweb

 IPAM MLP Workshop I  
September 23-27, 2019 • UCLA

Pr
ed

ic
te

d 
En

er
gy

 (e
V

/a
to

m
)

–0.4

–0.2

0.2

–0.1

–0.3

0.1

0.0

DFT Energy (eV/atom)
0.2–0.4 –0.2 –0.1–0.3 0.10.0

Relaxed formation energies

Learning of Basin of AaracSons from Unrelaxed Structures

• Predic?on of the relaxed energies (minima) from unrelaxed structures

Algorithm MAE RMS R2

KRR 12.7 20.4 0.98

SVR 13.6 20.8 0.98

NN 12.8 20.2 0.98

KRR-min 11.8 20.3 0.98

SVR-min 13.4 20.9 0.98

• Similar accuracy for minima predic?on 

• Useful for screening of GA structures to avoid 
costly DFT relaxa?ons

S. Honrao, RGH at al., submi-ed (2018)

SVR 
Error on  

tes?ng data

S. Honrao, RGH at al., Comp. Mater. Sci. 158, 414 (2019)ML learning of minima has similar accuracy as learning of energy landscape
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Big Data in Materials PredicSons?

• Ouen insufficient amount of data for ML

• Early stage of gene?c algorithm searches:

- Few dozen relaxed structure

- Maybe 1,000 configura?ons

- RMSE ≈ 35 meV/atom
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S. Honrao, RGH at al., Comp. Mater. Sci. 158, 414 (2019)How can we improve the predicSon error for small data sets?
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• Learn energy of individual atoms, separate ML models for each species

• Use local radial and angular distribu?on func?ons

• Dataset: GASP run with Ni-Al EAM and Cd-Te  S?llinger-Weber poten?al

Data AugmentaSon - Use Local Descriptors and InformaSon

g AB
i (r) =

∞

∑
j= 1

1
r2 exp −

(r − d AB
ij )

2

2σ2g
f(d AB

ij ) q ABC
i (x) =

∞

∑
j= 1

∞

∑
k= 1

exp −
(x − cosθjik)

2

2σ2g
f(d AB

ij ) f(d AC
ik )

2,161 relaxed 

Al-Ni structures

4,673 relaxed 

Cd-Te structures
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PredicSon of Total Energy for Al-Ni

Global RDF Descriptor 

RMSE = 17 meV/atom RMSE = 4 meV/atom

Significant improvement of predicSon error for same amount of data.

Local RDF Descriptor 

• Angular terms do not change predic?on error for Al-Ni, expected for EAM pair func?onal form
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PredicSon of Total Energy for Cd-Te

Global RDF Descriptor 

RMSE = 33 meV/atom RMSE = 11 meV/atom

Significant improvement of predicSon error for same amount of data.

Local RDF Descriptor 

• Angular terms reduce predic?on error for Cd-Te, expected for SW poten?al
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Learning Curves

Local RDF descriptor reduces predicSon error even for small datasets.

Global descriptors

Local descriptors Importance of angular terms
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Comparison to Other Descriptors for Cd-Te

Data Representation RMSE
(meV/atom)

MAE
(meV/atom)

Local RDF & ADF 11 8
Global RDF & ADF 33 24

Baseline model = mean Ef 109 85
Coulomb matrix 88 64

Orbital-field matrix 64 47
Bag of bonds 77 57
JARVIS-CFID 47 35

AGNI fingerprints 108 82

Importance of local RDF descriptors to capture change in chemical bonding
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Part III: Func?onal Form of the Superconduc?ng 

Cri?cal Temperature from Machine Learning

Stephen R. Xie, James Hamlin, Gregory R. Stewart, Peter J. Hirschfeld, Richard G. Hennig

Tc from experiment (K)Tc from experiment (K)

T c p
re

di
ct

ed
 (K

)

T c p
re

di
ct

ed
 (K

)

(a) Training (b) Testing and Extrapolation

Mod. McMillan
RMSE = 0.92 K
Allen-Dynes
RMSE = 0.30 K
SISSO Eq. (4)
RMSE = 0.25 K

Training Data

Al NbS2

Nb

La3Ni2B2N3

MgB2 (1)
LuNi2B2C

MgB2 (2)
Nb3Ge

NbN

Nb3Sn

Nb3Al
V3Ga

CaC6

Nb3Zr

0

2

4

6

8

10

0 2 4 6 8 10
0

10

20

30

40

0 10 20 30 40

Testing data

ωlog from ωD, λ from ρ(T)
ωlog from ωD, λ from calc.

ωlog, λ from tunneling
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• Vast space of possible superconducting materials

• Significant efforts to apply computational methods with theory to screen materials

- 2015: Prediction and discovery of Tc in H3S at 200K and one megabar pressure

- 2018: Prediction and discovery of Tc in Lanthanum Hydrides between 215-260K  
(approaching room temperature)

• What are the correct material “descriptors” that reflect the underlying  
mechanism of superconductivity?

• Machine-learning of materials often suffers from a small-data problem. 
What methods can overcome this issue?

• Can we use machine learning to identify analytical relationships between 
descriptors and T

c
?

MoSvaSon
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• Training data from Table I by Allen & Dynes (1975) 

- 29 materials with parameters 
derived from tunneling 

- Parameters to use: ωlog, λ, μ* 

- Allen-Dynes: Most widely used Eq. to predict Tc

Training Data Set

TRANSITION TEMPERATURE OF STRONG-COUPI ED. . .
TABLE I. Parameters of superconductors derived from tunneling measurements. The value of

p* is renormalized from previously reported values as described in the text.

Material (,) q (K) (~g (K) (,)2 (K) &~,„(K) P*((.~ph) r, (K) q (eV/A')

Pb
In
Sn
Hg
Tl
Ta
a-Ga
P-Ga
Tlp 9Bip
Pbp. 4T1p. 6

Pbp 6Tlp 4

Pbp 8Tlp 2

Pbp 6Tlp 2Bip 2

Pbp ~Bip g

Pbp 8Bip p

Pbp vBip 3
Pbp 65Blp
»p. pTlp. ~
Inp v3Tlp 2v

Inp. 6vT lp. 33
Inp 5vTlp 43

In() 5Tlp (
Inp „Tlp
Inp. i vTlp, 83
I p pv p p3
In2Bx
Sb2Tlv
Bi,Tl
-Pbp 45Bip 55

56
68
99
29
52
132
55
8V
48
48

50
50
48
50
46
47
45
63
55
57

53
53
42
45
49
46
37
47
29

60
79
110
38
58
140
77
108
55
56

57
56
53
56
52
52
50
75
67
68

64
64
53
55
56
57
48
53
38

65
89
121
49

148
101
129
62
62

62
61
58
60
57
57
55
86
77
79

74
73
63
63
63
67
58
59
47

l.55
0.805
0.72
1.6
0.795
0.69
1.62
0.97
0.78
1.15
1.38
1.53l. 81
1.66
l. 88
2. 01
2. 13
0.85
0.93
0.90
0.85
0.83
l.09
0.98
0.89
1.40
1.43
1.63
2.59

110
179
209
162
127
228
291
285
120
121

119
116
112
108
109
110
110
176
166
167

165
163
151
144
131
174
134
120
128

0.105
0.097
0.092
0.098
0.111
0.093
0.095
0.092
0.099
0.094
0. 103
0. 101
0.111
0.081
0. 093
0. 092
0. 093
0. 103
0.110
0.110
0.117
0.110
0.094
0. 101
0.107
0.096
0.102
0.101
0.116

7.2
3.40
3.75
4.19
2.36
4.48
8.56
5.90
2.30
4. 60
5.90
6.80
V. 26
V. 65
7.95
8.45
8.95
3.28
3.36
3.26
2.60
2, 52
3.64
3.19
2.77
5.6
5.2
6.4
7.0

2.4
1.3
2.2
1.4
1.2
4 ~ 9
2. 1
2.0
1.1
1.6
2. 0
2. 1
2.3
2.2
2~ 3
2. 4
2. 4
1.4
1.4
1.4
1.3
1~ 3
1.4
1.3
1.3
1.6
1.6
2. 1
2. 1

'Tabulation of the data used to derive these parameters is available in J. M. Howell, W. L. McMillan,
and R. C. Dynes, J. Phys. Chem. Ref. Data (to be published).

IV. TUNNELING DATA

The data with which we compare our calculations '

is that obtained from superconducting tunneling
measurements. Via quasiparticle tunneling through
thin insulating barriers in the configuration nor-
mal-metal-insulator-superconductor, and nor-
malizing this with measurements when the super-
conductor is in the normal state, direct informa-
tion about the density of quasiparticle excitations
and hence the function nsF((d) can be obtained.
From the ratio of conductances in the supercon-
ducting, o's((d), and normal o'„(e) states, one ob-
tains

Here N8 &» is the density of excitations in the super-
conducting (normal) state and b, (&u) is the complex
energy-dependent energy-gap parameter which re-
flects the strong electron-phonon coupling in its
detailed structure. Using an iterative unfolding
procedure the gap parameter b, ((d) and the spectral

function nsF(v) are extracted from the conductance
data by inversion of the zero-temperature Eliash-
berg gap equations.
The zero-frequency energy gap ~, is also direct-

ly measured in a tunneling experiment. This pa-
rameter is a direct measure of the net attractive
interaction a pair experiences, i.e. , the sum of
the attractive part [as represented by n F(e), or
more properly &] and the Coulomb repulsion —p,*,
Hence we have, in addition to c(sF((d), a, measure
of p,*. We saw in the preceding sections that this
term depends on one's choice of cutoff energies
for the electrons and phonons of the system. In
practice, in the solution of the Eliashberg gap
equations to extract c(sF(&u), the integrations are
performed to a cutoff frequency &, which is =10
~», where &» is the cutoff energy of the phonon
spectrum. Beyond 10(d», 6((d) is structureless
and hence further integration is unnecessary. The
actual value of p.* used in the inversion process to
fit ho is scaled to this (arbitrarily chosen) frequen-
cy v„. It has been the usual practice to publish
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Transition temperature of strong-coupled superconductors reanalyzed

P. B. Allen*
Department of Physics, State University of New York, Stony Brook, New York 11790

R. C. Dynes
Bell Laboratories, Murray Hill, ¹wJersey 07974

(Received 20 January 1975)

A thorough analysis is made of the dependence of the superconducting transition temperature T, on
material properties (X, p, , phonon spectrum) as contained in Eliashberg theory. The most striking new
feature of the analysis is in the asymptotic regime of very large X where T, is found to equal
0.15(X(co'))'" (assuming p, ~ = 0.1). This result implies the surprising conclusion that within
Eliashberg theory T, is not limited by the phonon frequencies, and also shows that McMillan's "X =
2 limit" is spurious. The McMillan equation (with a prefactor altered from 8L,/1.45 to co„,/1.2) is
found to be highly accurate for all known materials with X ( 1.5 but in error for large values of 'A.
Correction factors to McMillan's equation are found in terms of X, p.*, and one additional parameter,
((o)'))'"/o)log. The frequency COlpg is defined as exp(lnco) where the averages (inc@) and (co') are
defined using (2/Xco)a'E(co) as a weight factor. These conclusions are based on a combination of

1

analytic and numerical solutions of the Eliashberg equations, and are supported by a comparison with
tunneling data, Especially strong support comes from a new experimental result for amorphous
Pb04,Bio» reported herein. This material has parameters X = 2.59 and T,/co, g

= 0.284, in serious
disagreement with McMillan's formula but in good agreement when the correction factors are included.
The McMillan-Hopfield parameter g [or N(0) (I')] is extracted from tunneling measurements or from
a combination of empirical values of X and neutron-scattering measurements of phonon dispersion. It is
proposed that q (which is now known not to be accurately constant) is the most significant single
parameter in understanding the origin of high T, and the limitation of T, by colvalent instabilities.

I. INTRODUCTION

The most extensive study of the relation between
microscopic theory and observed superconducting
transition temperature 7.', was made by McMillan. '
In the subsequent seven years there has been a
significant accumulation of microscopic information
on strong-coupling superconductors coming most
notably from tunneling experiments but also from
inelastic neutron scattering, electron spectroscopy,
and energy-band theory. In this paper, McMillan's
work is reexamined in the light of this new infor-
mation. We find several aspects of his work which
agreed mell with information available at the time
on medium-coupling superconductors (0. 5 & X & 1)
but need modification for strongly coupled materials
(X&1)which have been more recently studied. We
attempt to make the appropriate modifications.
McMillan's work is based on the Eliashberg equa-

tions which are extensions of the original Bardeen-
Cooper-Schrieffer (BCS) theory, ' and were first
written in their finite-temperature form by Scala-
pino, Schrieffer, and %'ilkins. The microscopic
ingredients of Eliashberg theory are the Coulomb
repulsion p =N, (0)I V, I [where N, (0) is the single-
spin density of electronic states at the Fermi sur-
face], and the electron-phonon spectral function
n'E(~) defined as

&2E(&) N (0) ~4k IMihlh I 5(&—&g) 5(&a) 5(ea ) (1)
&.a 5(&~) 5(ea )

~1
where Q =k —k, & and &„ are phonon and electron
energies, respectively, Q and 0 run over wave num-
ber and band quantum numbers for phonons and
electrons, M», is the electron-phonon coupling
matrix element, and the 6 functions restrict the
electrons to the Fermi surface. Given these param-
eters, the zero-temperature Eliashberg theory
determines the complex energy-gap function 4(v),
and the finite-temperature Eliasberg theory deter-
mines 7,. The quantity 14(&u) l~ is measureable by
quasiparticle tunneling, and McMillan and Rowell'
have been able to use measured tunneling conduc-
tances to determine o. E(&u) and p* by inverting the
zero-temperature Eliashberg theory. The resulting
functions n'F(~) tende to have a close similarity
to the phonon density of states E(&u) as deduced from
neutron scattering. It is primarily information de-
rived from this technique that has motivated the
present work.
The principal content of McMillan's 1968 paper'

is the solution of the finite-temperature Eliashberg
theory to find T, for various cases, and the con-
struction from this of an approximate equation re-
lating &, to a small number of simple parameters:

(&u) 1.04(1+&)
1.20 ~ X —p"(1+0 62K)) '

The original McMillan equation contained OD/1. 45
instead of (~)/1. 20, which was introduced later by
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TABLE II. "Empirical" values of g for some bcc transition metals and Nb3Sn. The empirical values of (d, ~, i, )&, ~&

are calculated from Born-von Karman analysis of neutron data assuming z E=E, or (where indicated) from tunneling
measurements of e E. The values of & found by McMillan (column 8) were calculated assuming j(L*=0.13 and taking OHD/

1.45 as the prefactor in the McMillan equation. We find the prefactor &z&~/1. 2 is smaller than OD/1. 45 and consequently
obtain larger values of g (column 7). However, if p is assumed to be 0. 1 (arguments in favor of this are given in the
text), then values of g very similar to McMillan's are found (column 6). In the case of NbBSn, the tunneling experiment
doesn't yield an accurate experimental value of X; our calculated values of & can be used to normalize the experimentally
measured z F((d). Values of g (column 11) are calculated using & from column 6 and (e ) from column 5. These differ
from McMillan's values of q because of a difference in (~ ), and are in better agreement with the theory of Evans et al.
(H.ef. 30).

lMaterial
1

v
Cr
Nb
Mo
Ta
ra
(tunneling)

W
Nb3Sn
(tunneling)

(oi~(K)
2

222
308
166
236
142

132
208

&, (K)
3

230
317
175
244
148

140
215

&2(K)

238
324
183
251
153

148
220

&,(K)
5

5.30

9.22
0.92
4.48

4. 48
0. 012

18.1

Eq. (34)
p, *=0.10

6

0.60

0.85
0.39
0, 67

0.69
0.25

Eq. (34)
p, *=0.13

7

0.67

0.94
0.45
0.74

0.76
0.28

1.83

McMillan
Hef. 1
P =0. 13

8

0.60

0.82
Q. 41
0.65

0.65
0.28

Z (expt)
9

0.69

p,* (expt)
10

0.093

g (eV/A. )
11
3.1

4. 7
4.2
5. 1

4 9
4, 5

7.9

f,) to describe these two effects;
f~f~&„g 1.04(1+ A)

c 120 P I * 062K ~

We have found approximate formulas for f, and fz
which involve only one additional parameter, &~
=(&u )' . By requiringf, and fz to be unity for
small A. we ensure a good fit at small X. The
"strong-coupling correction" f, must scale as X'~

for large X, while the "shape correction" fz must
go to vz/~„, at large X. Acting together, these
two corrections allow Eg. (34) to attain the correct
asymptotic behavior given in Eq. (22). We have
somewhat arbitrarily chosen the forms

f, = [I+(X/A, )"']"',
((dg/(d~oz —I)X

+

(35)

The exponents in these equations could have been
altered somewhat; our choice represents a com-
promise between simplicity a.nd accuracy. The pa-
rameters A& and A2 are given by

A& -—- 2.46(1 +3. 6p. *),
A, = 1.62(l + 6. 3p*) ((u~/ru, ~),

(3'7)

(36)

where the numerical coefficients have been chosen
by least-squares analysis of the 21'7 selected nu-
merical solutions. The rms percent deviation is
5. 6%.
One of the principal uses of approximate T, equa-

tions is the estimation of approximate "empirical"
values of X from measured values of T„We illus-

trate this in Table II, where new empirical values
of ~ are obtained for five bcc transition elements.
Because the values of X are all below 1, the correc-
tion factors f~ and f2 a.re entirely negligible. There
are two sources of uncertainty in the empirical val-
ues of X. The largest source is the value of ~„,.
This uncertainty accounts for disagreements of
greater than 10' between our estimates of X and
McMillan's for some materials. McMillan used
values of 8~/1. 45 while we have used ~,~/l. 2,
where ~„,is computed from the phonon density
of states E(~) in the same way that ~„,is com-
puted from n F(~). The similarity between n E(~)
as measured by tunneling ' and E(&u) as deduced
from neutron scattering in tantalum suggests that
w&,~ should be an excellent approximation to x&,~
in these materials. A second source of uncertainty
is empirical values of X is the uncertainty in p, ~.
We do not follow McMillan in assuming p, *=0.13 for
all transition elements. For the bcc transition ele-
ments, the isotope effect in Mo and tunneling in Ta
yield values of p. * of 0. 09. McMillan suggested that
a larger value of p,* should occur for transition
metals than for s-p metals because of a larger p,

[both N(0) and V, are probably larger] and a small-
er ln(~„/~»). Garland also suggested that In(~„/
&u») was smaller in transition elements in order
to explain isotope effects. However, we suggest
that the latter factor probably increases rather
than decreases for transition elements, The elec-
tronic cutoff e„is defined by the cutoff in Im[1/
e(Q, &u)], just as ~» is the cutoff of u 'E(&u). Re-
cent optical measurements'7 show that Im[l/e(0, ~)]
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• Apply Sure Independence Screening and Sparsifying Operator (SISSO) method to 

generate predictive models from training data for 29 materials

- Identifies analytical relations between a minimal set of descriptors 
and desired properties

- Yields stable results with small training sets

• Compare equations by evaluating with testing data
- 13 superconductors from literature including A15 phases

- Measure interpolative and extrapolative capacity, i.e., transferability
- Avoid overfitting, i.e., artificially low error in training data 

with high error in testing data

Symbolic Regression Machine-Learning
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• Feature: Quantity that is hypothesized to be relevant for describing target property, Tc

• Primary features: ω
log

, λ, μ*

• Sure Independence Screening – SIS

1. Expand feature space Ф by recursively applying and combining algebraic/functional 

operation

• +, -, ×, ÷, exp, log, √ , -1, 2, 3, (sin, cos not used)

• Respect units with dimensional reduction

2. Rank features by their correlation magnitude (dot product of feature and Tc)

• Sparsifying Operator – SO

- Use ℓ0-norm regularized minimization to find sparse solution of linear equations

- 1D solution is trivially the first-ranked feature

- n-dimensional descriptors are used for classification models

SISSO DefiniSons
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Sure Independence Screening

[Φ0] 

3 ωlog , µ* , λ

{ +, –, , ×, ÷, , exp, log, ,  –1, 2, 3, , √, ∛ }
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Sure Independence Screening

[Φ0] 

3 ωlog , µ* , λ

{ +, –, , ×, ÷, , exp, log, ,  –1, 2, 3, , √, ∛ }

[Φ1] 
34 µ* + λ
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Sure Independence Screening

[Φ0] 

3 ωlog , µ* , λ

{ +, –, , ×, ÷, , exp, log, ,  –1, 2, 3, , √, ∛ }

[Φ1] 
34 µ* + λ , ωlog × λ
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Sure Independence Screening

[Φ0] 

3 ωlog , µ* , λ

{ +, –, , ×, ÷, , exp, log, ,  –1, 2, 3, , √, ∛ }

[Φ1] 
34 µ* + λ , ωlog × λ , exp(µ*)
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Sure Independence Screening

[Φ0] 

3 ωlog , µ* , λ

{ +, –, , ×, ÷, , exp, log, ,  –1, 2, 3, , √, ∛ }

[Φ1] 
34 µ* + λ , ωlog × λ , exp(µ*) , λ3
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Sure Independence Screening

[Φ0] 

3 ωlog , µ* , λ

{ +, –, , ×, ÷, , exp, log, ,  –1, 2, 3, , √, ∛ }

[Φ1] 
34 µ* + λ , ωlog × λ , exp(µ*) , λ3 , , …μ*
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Sure Independence Screening

[Φ0] 

3 ωlog , µ* , λ

{ +, –, , ×, ÷, , exp, log, ,  –1, 2, 3, , √, ∛ }

[Φ1] 
34 µ* + λ , ωlog × λ , exp(µ*) , λ3 , , …

[Φ2] 
1,342 ωlog÷exp(µ*)

μ*
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Sure Independence Screening

[Φ0] 

3 ωlog , µ* , λ

{ +, –, , ×, ÷, , exp, log, ,  –1, 2, 3, , √, ∛ }

[Φ1] 
34 µ* + λ , ωlog × λ , exp(µ*) , λ3 , , …

[Φ2] 
1,342 ωlog÷exp(µ*) , , , λ3×(ωlog × λ) , exp(λ3) , …

μ*

λ3 + μ* 3 μ* + λ
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Sure Independence Screening

[Φ0] 

3 ωlog , µ* , λ

{ +, –, , ×, ÷, , exp, log, ,  –1, 2, 3, , √, ∛ }

[Φ1] 
34 µ* + λ , ωlog × λ , exp(µ*) , λ3 , , …

[Φ2] 
1,342 ωlog÷exp(µ*) , , , λ3×(ωlog × λ) , exp(λ3) , …

[Φ3] 
3,414,094 ,

μ*

λ3 + μ*

exp(λ3 + μ*)

3 μ* + λ
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Sure Independence Screening

[Φ0] 

3 ωlog , µ* , λ

{ +, –, , ×, ÷, , exp, log, ,  –1, 2, 3, , √, ∛ }

[Φ1] 
34 µ* + λ , ωlog × λ , exp(µ*) , λ3 , , …

[Φ2] 
1,342 ωlog÷exp(µ*) , , , λ3×(ωlog × λ) , exp(λ3) , …

[Φ3] 
3,414,094 , µ* + exp(λ3) , , …

μ*

λ3 + μ*

exp(λ3 + μ*)

3 μ* + λ

λ3 × (ωlog × λ)
λ3 + μ*

Results in 3,414,094 analySc equaSons
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Sure Independence Screening

22,552

15,886

10,839

6,021

Sure Independence Screening

Dimensions

λ→0 Limit

Strictly Positive

Finite, Continuous, Real, Monotonic

Lowest Testing Error

342,853

100

[Φ0]  3

[Φ1]  34

[Φ2]  1,342

[Φ3]  3,414,094

Select the equaSons with the highest linear correlaSon to Tc, inner product > 0.5 
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Use Physical Constraints to Reduce Feature Space

22,552

15,886

10,839

6,021

Sure Independence Screening

Dimensions

λ→0 Limit

Strictly Positive

Finite, Continuous, Real, Monotonic

Lowest Testing Error

342,853

100

[Φ0]  3

[Φ1]  34

[Φ2]  1,342

[Φ3]  3,414,094

Tools available at h-ps://github.com/henniggroup/symbolic-regression-u?li?es 
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• Fit multiplicative factor to features, e.g., 

           �  

• Evaluate root-mean square (relative) error 
with leave-one-out cross-validation 

• Figure shows distribution of resulting functions 
for μ* = 0.1 

• Narrow distribution of training and testing data 

• Data for large and small λ would be helpful

y′� = C
λ4ωlog

λ2 + μ*

EvaluaSng Model Performance

6,021 features: , µ* + exp(λ3) , , …exp(λ3 + μ*)
λ3 × (ωlog × λ)

λ3 + μ*

Model 1, Eq. (4)

Models 2 to 100

Modif. McMillan

Testing dataAllen & Dynes

T cpr
ed

ic
t /ω

lo
g

Training Data
Range

0 1 2 3 4
λ

0.0

0.10

0.20

0.30

ωlog from ωD, λ from calc.

ωlog, λ from tunneling
ωlog from ωD, λ from ρ(T)
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Best Model Performance

4

tion. The equation-based machine learning uses the val-
ues of �,!log, and µ⇤ of the 29 materials in Table I of
Allen and Dynes [19], and neglects the average frequency
!̄2 ⌘ h!2i1/2 taken over the g(!) distribution that is also
used in the Allen-Dynes equation. The SISSO method
and subsequent physical constraints lead to the optimal
equation,

Tc
SISSO = 0.09525

�4!log

�3 +
p
µ⇤ . (4)

Importantly, Eq. (4) emerged from our approach with
the smallest RMSE even before any of the physical con-
straints summarized in Fig. 1 were applied. Fig. 2(a)
compares the performance of this equation with the mod-
ified McMillan and Allen-Dynes equations for the mea-
sured Tc’s of the 29 materials that train the model. The
root-mean-square error (RMSE) of this equation evalu-
ated on the training data is 0.25 K, significantly smaller
than the RMSE of 0.92 K for the modified McMillan
equation, and also slightly lower than the RMSE of
0.30 K for the Allen-Dynes equation. This result is im-
pressive given the use of only 3 parameters and a single
numerical coe�cient compared to 3 parameters and 4
coe�cients for the modified McMillan and 4 parameters
and 7 coe�cients for the Allen-Dynes equation.
Figure 2(b) shows the testing of Eq. (4) for a variety

of other superconductors, mostly of higher Tc. Because
µ⇤ data were not available for these materials, we adopt
a constant value of µ⇤ = 0.1. This procedure introduces
some unknown error into the analysis, but despite this,
the fit to the new materials is rather good, with an RMSE
of only 3.2 K (9.1%).

It is important to note that Eq. (4) is not derived
from any physical theory and therefore may contain some
terms that may make no physical sense, e.g., the appear-
ance of the

p
µ⇤ term, which may be a proxy for a con-

stant term due to the small range of data and the paucity
of features at this level of learning. The limit Tc ! 0 as
� ! 0 in Eq. (4) even at nonzero µ⇤ may reflect the
lack of data at small coupling. Also, Eq. (4) increases
monotonically with �, with linear behavior at very high
couplings. This behavior violates the asymptotic limit of
Eliashberg theory, Tc ⇠

p
�, built into the Allen-Dynes

equation [19]. Again, this disagreement with physics is
due to the absence of data points, either in the training
or the testing set, which deviate significantly from the
linear behavior predicted by Eq. (4).
Fig. 3 shows the functional behavior Tc(�) of the 100

highest-scored equations discovered by SISSO; it is clear
that almost all of these equations are equally valid over
the range of � values where data exist. This highlights
the need for measurements to determine the materials
parameters �, !log, and µ⇤ reliably for both very low Tc

materials, as well as for some of the recently discovered
higher-Tc systems.

Fig. 2(b) also shows some dramatic failures of the
learned equation, namely for MgB2 and NbS2. The prob-
able reasons for these failures are both revealing and re-

FIG. 3. � dependence of Tc in the top 100 models, ranked
by testing error assuming µ⇤ = 0.1. Two red curves corre-
spond to the Allen-Dynes equation with the minimum and
maximum values of !̄2/!log in the training set. The mod-
ified McMillan equation systematically predicts smaller Tc’s
and over the range of available � values, the simple machine-
learned model closely matches the more complex Allen-Dynes
equation.

assuring. The point labeled MgB2(1) with a predicted
Tc of 10 K is one where !log, a logarithmic average of
the electron-phonon interaction function ↵2F/!, was de-
termined from a specific heat measurement of the Debye
frequency !D, which depends only on the phonon density
of states F (!). Relating the Debye frequency with !log

neglects the di↵erence between the two distributions [19].
This assumption is particularly poor in MgB2, where
high-frequency phonons couple anomalously strongly. In
addition, � was determined from standard expressions
for the high-temperature resistivity of a 3D metal. It is
well known that MgB2 has strong 2D character, and that
the full momentum and band dependence of the Eliash-
berg function �nk,nk0 must be accounted for to obtain
reasonable values for Tc from first principles [31]. It is
interesting to note that if one uses the higher value of �
obtained from Ref. 31 in Eq. (4), one obtains data point
MgB2(2), with the significantly enhanced predicted Tc

of 20 K, but still far from the measured value of 40 K
and even further from the full Eliashberg calculation of
50 K [31].

These discrepancies indicate, not surprisingly, that a
machine trained on a database of nearly isotropic low-
Tc superconductors cannot capture the physics of highly
anisotropic higher-Tc materials using the simple averaged
descriptors chosen by Allen and Dynes. The same prin-
ciple apparently applies to NbS2, which while having a
low-Tc is quite 2-dimensional. However, Eq. (4) may have
significant predictive power extrapolated to higher-Tc 3D
systems. For example, if we take values of � and !log
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Best Model Performance

4

tion. The equation-based machine learning uses the val-
ues of �,!log, and µ⇤ of the 29 materials in Table I of
Allen and Dynes [19], and neglects the average frequency
!̄2 ⌘ h!2i1/2 taken over the g(!) distribution that is also
used in the Allen-Dynes equation. The SISSO method
and subsequent physical constraints lead to the optimal
equation,

Tc
SISSO = 0.09525

�4!log

�3 +
p
µ⇤ . (4)

Importantly, Eq. (4) emerged from our approach with
the smallest RMSE even before any of the physical con-
straints summarized in Fig. 1 were applied. Fig. 2(a)
compares the performance of this equation with the mod-
ified McMillan and Allen-Dynes equations for the mea-
sured Tc’s of the 29 materials that train the model. The
root-mean-square error (RMSE) of this equation evalu-
ated on the training data is 0.25 K, significantly smaller
than the RMSE of 0.92 K for the modified McMillan
equation, and also slightly lower than the RMSE of
0.30 K for the Allen-Dynes equation. This result is im-
pressive given the use of only 3 parameters and a single
numerical coe�cient compared to 3 parameters and 4
coe�cients for the modified McMillan and 4 parameters
and 7 coe�cients for the Allen-Dynes equation.
Figure 2(b) shows the testing of Eq. (4) for a variety

of other superconductors, mostly of higher Tc. Because
µ⇤ data were not available for these materials, we adopt
a constant value of µ⇤ = 0.1. This procedure introduces
some unknown error into the analysis, but despite this,
the fit to the new materials is rather good, with an RMSE
of only 3.2 K (9.1%).

It is important to note that Eq. (4) is not derived
from any physical theory and therefore may contain some
terms that may make no physical sense, e.g., the appear-
ance of the

p
µ⇤ term, which may be a proxy for a con-

stant term due to the small range of data and the paucity
of features at this level of learning. The limit Tc ! 0 as
� ! 0 in Eq. (4) even at nonzero µ⇤ may reflect the
lack of data at small coupling. Also, Eq. (4) increases
monotonically with �, with linear behavior at very high
couplings. This behavior violates the asymptotic limit of
Eliashberg theory, Tc ⇠

p
�, built into the Allen-Dynes

equation [19]. Again, this disagreement with physics is
due to the absence of data points, either in the training
or the testing set, which deviate significantly from the
linear behavior predicted by Eq. (4).
Fig. 3 shows the functional behavior Tc(�) of the 100

highest-scored equations discovered by SISSO; it is clear
that almost all of these equations are equally valid over
the range of � values where data exist. This highlights
the need for measurements to determine the materials
parameters �, !log, and µ⇤ reliably for both very low Tc

materials, as well as for some of the recently discovered
higher-Tc systems.

Fig. 2(b) also shows some dramatic failures of the
learned equation, namely for MgB2 and NbS2. The prob-
able reasons for these failures are both revealing and re-

FIG. 3. � dependence of Tc in the top 100 models, ranked
by testing error assuming µ⇤ = 0.1. Two red curves corre-
spond to the Allen-Dynes equation with the minimum and
maximum values of !̄2/!log in the training set. The mod-
ified McMillan equation systematically predicts smaller Tc’s
and over the range of available � values, the simple machine-
learned model closely matches the more complex Allen-Dynes
equation.

assuring. The point labeled MgB2(1) with a predicted
Tc of 10 K is one where !log, a logarithmic average of
the electron-phonon interaction function ↵2F/!, was de-
termined from a specific heat measurement of the Debye
frequency !D, which depends only on the phonon density
of states F (!). Relating the Debye frequency with !log

neglects the di↵erence between the two distributions [19].
This assumption is particularly poor in MgB2, where
high-frequency phonons couple anomalously strongly. In
addition, � was determined from standard expressions
for the high-temperature resistivity of a 3D metal. It is
well known that MgB2 has strong 2D character, and that
the full momentum and band dependence of the Eliash-
berg function �nk,nk0 must be accounted for to obtain
reasonable values for Tc from first principles [31]. It is
interesting to note that if one uses the higher value of �
obtained from Ref. 31 in Eq. (4), one obtains data point
MgB2(2), with the significantly enhanced predicted Tc

of 20 K, but still far from the measured value of 40 K
and even further from the full Eliashberg calculation of
50 K [31].

These discrepancies indicate, not surprisingly, that a
machine trained on a database of nearly isotropic low-
Tc superconductors cannot capture the physics of highly
anisotropic higher-Tc materials using the simple averaged
descriptors chosen by Allen and Dynes. The same prin-
ciple apparently applies to NbS2, which while having a
low-Tc is quite 2-dimensional. However, Eq. (4) may have
significant predictive power extrapolated to higher-Tc 3D
systems. For example, if we take values of � and !log
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Machine-learning predicts isotropic electron-phonon superconductors 
Outliers (MgB2, NbS2) indicate importance of anisotropic electron-phonon coupling.
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Dimensionality and Complexity

Model
CV-RMSE (K) 

Training
RMSE (K) 
TesSng

Materials 
Parameters

Numerical 
Coefficients

SISSO 0.25 3.2 3 1

mod. 
McMillan

0.92 – 3 4

Allen-Dynes 0.30 – 4 7

Machine-learned model has small RMSE and low computaSonal complexity.

mailto:rhennig@ufl.edu?subject=
http://hennig.mse.ufl.edu


rhennig@ufl.edu 

h-p://hennig.mse.ufl.edu

Powered by
MPInterfaces & materialsweb

 IPAM MLP Workshop I  
September 23-27, 2019 • UCLA

Dimensionality and Complexity

Can the machine-learning identify relevant materials parameters? 

• Fit models with up to 7 materials parameters for 29 materials 

• Best model: 

       

CV-RMSE = 0.25 K

 

• Second best model: 

�      CV-RMSE = 0.27K 

• Adding parameters beyond ωlog, λ, μ* does not improve description

4

tion. The equation-based machine learning uses the val-
ues of �,!log, and µ⇤ of the 29 materials in Table I of
Allen and Dynes [19], and neglects the average frequency
!̄2 ⌘ h!2i1/2 taken over the g(!) distribution that is also
used in the Allen-Dynes equation. The SISSO method
and subsequent physical constraints lead to the optimal
equation,

Tc
SISSO = 0.09525

�4!log

�3 +
p
µ⇤ . (4)

Importantly, Eq. (4) emerged from our approach with
the smallest RMSE even before any of the physical con-
straints summarized in Fig. 1 were applied. Fig. 2(a)
compares the performance of this equation with the mod-
ified McMillan and Allen-Dynes equations for the mea-
sured Tc’s of the 29 materials that train the model. The
root-mean-square error (RMSE) of this equation evalu-
ated on the training data is 0.25 K, significantly smaller
than the RMSE of 0.92 K for the modified McMillan
equation, and also slightly lower than the RMSE of
0.30 K for the Allen-Dynes equation. This result is im-
pressive given the use of only 3 parameters and a single
numerical coe�cient compared to 3 parameters and 4
coe�cients for the modified McMillan and 4 parameters
and 7 coe�cients for the Allen-Dynes equation.
Figure 2(b) shows the testing of Eq. (4) for a variety

of other superconductors, mostly of higher Tc. Because
µ⇤ data were not available for these materials, we adopt
a constant value of µ⇤ = 0.1. This procedure introduces
some unknown error into the analysis, but despite this,
the fit to the new materials is rather good, with an RMSE
of only 3.2 K (9.1%).
It is important to note that Eq. (4) is not derived

from any physical theory and therefore may contain some
terms that may make no physical sense, e.g., the appear-
ance of the

p
µ⇤ term, which may be a proxy for a con-

stant term due to the small range of data and the paucity
of features at this level of learning. The limit Tc ! 0 as
� ! 0 in Eq. (4) even at nonzero µ⇤ may reflect the
lack of data at small coupling. Also, Eq. (4) increases
monotonically with �, with linear behavior at very high
couplings. This behavior violates the asymptotic limit of
Eliashberg theory, Tc ⇠

p
�, built into the Allen-Dynes

equation [19]. Again, this disagreement with physics is
due to the absence of data points, either in the training
or the testing set, which deviate significantly from the
linear behavior predicted by Eq. (4).
Fig. 3 shows the functional behavior Tc(�) of the 100

highest-scored equations discovered by SISSO; it is clear
that almost all of these equations are equally valid over
the range of � values where data exist. This highlights
the need for measurements to determine the materials
parameters �, !log, and µ⇤ reliably for both very low Tc

materials, as well as for some of the recently discovered
higher-Tc systems.

Fig. 2(b) also shows some dramatic failures of the
learned equation, namely for MgB2 and NbS2. The prob-
able reasons for these failures are both revealing and re-

FIG. 3. � dependence of Tc in the top 100 models, ranked
by testing error assuming µ⇤ = 0.1. Two red curves corre-
spond to the Allen-Dynes equation with the minimum and
maximum values of !̄2/!log in the training set. The mod-
ified McMillan equation systematically predicts smaller Tc’s
and over the range of available � values, the simple machine-
learned model closely matches the more complex Allen-Dynes
equation.

assuring. The point labeled MgB2(1) with a predicted
Tc of 10 K is one where !log, a logarithmic average of
the electron-phonon interaction function ↵2F/!, was de-
termined from a specific heat measurement of the Debye
frequency !D, which depends only on the phonon density
of states F (!). Relating the Debye frequency with !log

neglects the di↵erence between the two distributions [19].
This assumption is particularly poor in MgB2, where
high-frequency phonons couple anomalously strongly. In
addition, � was determined from standard expressions
for the high-temperature resistivity of a 3D metal. It is
well known that MgB2 has strong 2D character, and that
the full momentum and band dependence of the Eliash-
berg function �nk,nk0 must be accounted for to obtain
reasonable values for Tc from first principles [31]. It is
interesting to note that if one uses the higher value of �
obtained from Ref. 31 in Eq. (4), one obtains data point
MgB2(2), with the significantly enhanced predicted Tc

of 20 K, but still far from the measured value of 40 K
and even further from the full Eliashberg calculation of
50 K [31].
These discrepancies indicate, not surprisingly, that a

machine trained on a database of nearly isotropic low-
Tc superconductors cannot capture the physics of highly
anisotropic higher-Tc materials using the simple averaged
descriptors chosen by Allen and Dynes. The same prin-
ciple apparently applies to NbS2, which while having a
low-Tc is quite 2-dimensional. However, Eq. (4) may have
significant predictive power extrapolated to higher-Tc 3D
systems. For example, if we take values of � and !log

Tc = − 0.059 (ω2 − ω1 − ω2
λ ) λ3

3 λ

TRANSITION TEMPERATURE OF STRONG-COUPI ED. . .
TABLE I. Parameters of superconductors derived from tunneling measurements. The value of

p* is renormalized from previously reported values as described in the text.

Material (,) q (K) (~g (K) (,)2 (K) &~,„(K) P*((.~ph) r, (K) q (eV/A')

Pb
In
Sn
Hg
Tl
Ta
a-Ga
P-Ga
Tlp 9Bip
Pbp. 4T1p. 6

Pbp 6Tlp 4

Pbp 8Tlp 2

Pbp 6Tlp 2Bip 2

Pbp ~Bip g

Pbp 8Bip p

Pbp vBip 3
Pbp 65Blp
»p. pTlp. ~
Inp v3Tlp 2v

Inp. 6vT lp. 33
Inp 5vTlp 43

In() 5Tlp (
Inp „Tlp
Inp. i vTlp, 83
I p pv p p3
In2Bx
Sb2Tlv
Bi,Tl
-Pbp 45Bip 55

56
68
99
29
52
132
55
8V
48
48

50
50
48
50
46
47
45
63
55
57

53
53
42
45
49
46
37
47
29

60
79
110
38
58
140
77
108
55
56

57
56
53
56
52
52
50
75
67
68

64
64
53
55
56
57
48
53
38

65
89
121
49

148
101
129
62
62

62
61
58
60
57
57
55
86
77
79

74
73
63
63
63
67
58
59
47

l.55
0.805
0.72
1.6
0.795
0.69
1.62
0.97
0.78
1.15
1.38
1.53l. 81
1.66
l. 88
2. 01
2. 13
0.85
0.93
0.90
0.85
0.83
l.09
0.98
0.89
1.40
1.43
1.63
2.59

110
179
209
162
127
228
291
285
120
121

119
116
112
108
109
110
110
176
166
167

165
163
151
144
131
174
134
120
128

0.105
0.097
0.092
0.098
0.111
0.093
0.095
0.092
0.099
0.094
0. 103
0. 101
0.111
0.081
0. 093
0. 092
0. 093
0. 103
0.110
0.110
0.117
0.110
0.094
0. 101
0.107
0.096
0.102
0.101
0.116

7.2
3.40
3.75
4.19
2.36
4.48
8.56
5.90
2.30
4. 60
5.90
6.80
V. 26
V. 65
7.95
8.45
8.95
3.28
3.36
3.26
2.60
2, 52
3.64
3.19
2.77
5.6
5.2
6.4
7.0

2.4
1.3
2.2
1.4
1.2
4 ~ 9
2. 1
2.0
1.1
1.6
2. 0
2. 1
2.3
2.2
2~ 3
2. 4
2. 4
1.4
1.4
1.4
1.3
1~ 3
1.4
1.3
1.3
1.6
1.6
2. 1
2. 1

'Tabulation of the data used to derive these parameters is available in J. M. Howell, W. L. McMillan,
and R. C. Dynes, J. Phys. Chem. Ref. Data (to be published).

IV. TUNNELING DATA

The data with which we compare our calculations '

is that obtained from superconducting tunneling
measurements. Via quasiparticle tunneling through
thin insulating barriers in the configuration nor-
mal-metal-insulator-superconductor, and nor-
malizing this with measurements when the super-
conductor is in the normal state, direct informa-
tion about the density of quasiparticle excitations
and hence the function nsF((d) can be obtained.
From the ratio of conductances in the supercon-
ducting, o's((d), and normal o'„(e) states, one ob-
tains

Here N8 &» is the density of excitations in the super-
conducting (normal) state and b, (&u) is the complex
energy-dependent energy-gap parameter which re-
flects the strong electron-phonon coupling in its
detailed structure. Using an iterative unfolding
procedure the gap parameter b, ((d) and the spectral

function nsF(v) are extracted from the conductance
data by inversion of the zero-temperature Eliash-
berg gap equations.
The zero-frequency energy gap ~, is also direct-

ly measured in a tunneling experiment. This pa-
rameter is a direct measure of the net attractive
interaction a pair experiences, i.e. , the sum of
the attractive part [as represented by n F(e), or
more properly &] and the Coulomb repulsion —p,*,
Hence we have, in addition to c(sF((d), a, measure
of p,*. We saw in the preceding sections that this
term depends on one's choice of cutoff energies
for the electrons and phonons of the system. In
practice, in the solution of the Eliashberg gap
equations to extract c(sF(&u), the integrations are
performed to a cutoff frequency &, which is =10
~», where &» is the cutoff energy of the phonon
spectrum. Beyond 10(d», 6((d) is structureless
and hence further integration is unnecessary. The
actual value of p.* used in the inversion process to
fit ho is scaled to this (arbitrarily chosen) frequen-
cy v„. It has been the usual practice to publish

Machine-learning idenSfies most relevant materials parameters 
in agreement with McMillan and Allen & Dynes

mailto:rhennig@ufl.edu?subject=
http://hennig.mse.ufl.edu


rhennig@ufl.edu 

h-p://hennig.mse.ufl.edu

Powered by
MPInterfaces & materialsweb

 IPAM MLP Workshop I  
September 23-27, 2019 • UCLA

Dimensionality and Complexity

Can increasing the number of numerical coefficients improve description 

• Include multiplicative and additive numerical coefficient to every materials parameter 

• Best model: 

�  

CV-RMSE = 0.19 K 

• Significant improvement from 0.25 to 0.19 K, however,  
at cost of significant more complexity (increase from 1 to 11 numerical coefficients) 
and reduced physical interpretability (high power of λ)

Tc = ωlog ( 0.233 − 0.0170λ
1.28μ* + 0.00784 + (0.791λ − 1.408)3) (0.0655λ + 0.00530 − 0.000780

1.206μ* − 0.0725 )
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Conclusions

• Machine-learning of analytic equation with fewer parameters 

• Identification of relevant physical parameters 

• Use of analytic expressions and physical constraints 
can help overcome small-data problem 

• Predict known superconductors of 
same type as the original Allen-Dynes dataset 

• Anomalous outliers suggests need for new descriptors 
anisotropy of the electron-phonon interaction
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tion. The equation-based machine learning uses the val-
ues of �,!log, and µ⇤ of the 29 materials in Table I of
Allen and Dynes [19], and neglects the average frequency
!̄2 ⌘ h!2i1/2 taken over the g(!) distribution that is also
used in the Allen-Dynes equation. The SISSO method
and subsequent physical constraints lead to the optimal
equation,

Tc
SISSO = 0.09525

�4!log

�3 +
p
µ⇤ . (4)

Importantly, Eq. (4) emerged from our approach with
the smallest RMSE even before any of the physical con-
straints summarized in Fig. 1 were applied. Fig. 2(a)
compares the performance of this equation with the mod-
ified McMillan and Allen-Dynes equations for the mea-
sured Tc’s of the 29 materials that train the model. The
root-mean-square error (RMSE) of this equation evalu-
ated on the training data is 0.25 K, significantly smaller
than the RMSE of 0.92 K for the modified McMillan
equation, and also slightly lower than the RMSE of
0.30 K for the Allen-Dynes equation. This result is im-
pressive given the use of only 3 parameters and a single
numerical coe�cient compared to 3 parameters and 4
coe�cients for the modified McMillan and 4 parameters
and 7 coe�cients for the Allen-Dynes equation.
Figure 2(b) shows the testing of Eq. (4) for a variety

of other superconductors, mostly of higher Tc. Because
µ⇤ data were not available for these materials, we adopt
a constant value of µ⇤ = 0.1. This procedure introduces
some unknown error into the analysis, but despite this,
the fit to the new materials is rather good, with an RMSE
of only 3.2 K (9.1%).
It is important to note that Eq. (4) is not derived

from any physical theory and therefore may contain some
terms that may make no physical sense, e.g., the appear-
ance of the

p
µ⇤ term, which may be a proxy for a con-

stant term due to the small range of data and the paucity
of features at this level of learning. The limit Tc ! 0 as
� ! 0 in Eq. (4) even at nonzero µ⇤ may reflect the
lack of data at small coupling. Also, Eq. (4) increases
monotonically with �, with linear behavior at very high
couplings. This behavior violates the asymptotic limit of
Eliashberg theory, Tc ⇠

p
�, built into the Allen-Dynes

equation [19]. Again, this disagreement with physics is
due to the absence of data points, either in the training
or the testing set, which deviate significantly from the
linear behavior predicted by Eq. (4).
Fig. 3 shows the functional behavior Tc(�) of the 100

highest-scored equations discovered by SISSO; it is clear
that almost all of these equations are equally valid over
the range of � values where data exist. This highlights
the need for measurements to determine the materials
parameters �, !log, and µ⇤ reliably for both very low Tc

materials, as well as for some of the recently discovered
higher-Tc systems.

Fig. 2(b) also shows some dramatic failures of the
learned equation, namely for MgB2 and NbS2. The prob-
able reasons for these failures are both revealing and re-

FIG. 3. � dependence of Tc in the top 100 models, ranked
by testing error assuming µ⇤ = 0.1. Two red curves corre-
spond to the Allen-Dynes equation with the minimum and
maximum values of !̄2/!log in the training set. The mod-
ified McMillan equation systematically predicts smaller Tc’s
and over the range of available � values, the simple machine-
learned model closely matches the more complex Allen-Dynes
equation.

assuring. The point labeled MgB2(1) with a predicted
Tc of 10 K is one where !log, a logarithmic average of
the electron-phonon interaction function ↵2F/!, was de-
termined from a specific heat measurement of the Debye
frequency !D, which depends only on the phonon density
of states F (!). Relating the Debye frequency with !log

neglects the di↵erence between the two distributions [19].
This assumption is particularly poor in MgB2, where
high-frequency phonons couple anomalously strongly. In
addition, � was determined from standard expressions
for the high-temperature resistivity of a 3D metal. It is
well known that MgB2 has strong 2D character, and that
the full momentum and band dependence of the Eliash-
berg function �nk,nk0 must be accounted for to obtain
reasonable values for Tc from first principles [31]. It is
interesting to note that if one uses the higher value of �
obtained from Ref. 31 in Eq. (4), one obtains data point
MgB2(2), with the significantly enhanced predicted Tc

of 20 K, but still far from the measured value of 40 K
and even further from the full Eliashberg calculation of
50 K [31].

These discrepancies indicate, not surprisingly, that a
machine trained on a database of nearly isotropic low-
Tc superconductors cannot capture the physics of highly
anisotropic higher-Tc materials using the simple averaged
descriptors chosen by Allen and Dynes. The same prin-
ciple apparently applies to NbS2, which while having a
low-Tc is quite 2-dimensional. However, Eq. (4) may have
significant predictive power extrapolated to higher-Tc 3D
systems. For example, if we take values of � and !log
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Open source available at h-ps://github.com/henniggroup

Data available at h-p://materialsweb.org 

Search for materials 
• Structure predic?on by gene?c algorithms 

• Machine learning of energy landscapes 
using distribu?on func?ons 

• Learning of Allen-Dynes equa?on for Tc 

• Use of analy?c equa?ons and physical constraints 
to overcome small data problem
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Machine-learning for materials and physics discovery 
through symbolic regression and kernel methods
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