. From Passive to Active: Generative and
EUCI Idean Neu ral Netwo rks' "= Reinforcement Learning with Physics
, _ Machine Learning for Physics at IPAM
rotation-, translation-, and 2019.09.27

permutation-equivariant
convolutional neural networks
for 3D point clouds

...for emulating ab initio calculations and
generating atomic geometries.

Tess Smidt

e A
fFrrrnearnr III‘
2018 Alvarez Postdoctoral Fellow in

Computing Sciences BERKELEY LAB c Research at Go g|€




What a computational materials physicist does:

Given an atomic structure, ...use quantum theory and
supercomputers to determine...

H |[¢) = E |)
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...where the electrons are... ...and what the electrons are doing.
IR N
> Y

~—~ Iy
X
> 1
3 X4 | A
> N
(@]
)
c —<
L

A X UK X r

Momentum




We want to use deep learning to speed up these calculations, hypothesize new structures,
perform inverse design, and organize these relations.

Zooooom!

Quantum Theory + Supercomputers ]
Structure ———eeeeeeep»  Properties

Inverse Design

—
Hypothesize SR




We want to use deep learning to speed up these calculations, hypothesize new structures,
perform inverse design, and organize these relations.

Zooooom!

Quantum Theory + Supercomputers ]
Structure ———eeeeeeep»  Properties

Inverse Design

—

Hypothesize SR
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S

What types of neural networks are best suited for these tasks?



Neural networks are specially designed for different data types.
Assumptions about the data type are built into how the network operates.
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Neural networks are specially designed for different data types.

Assumptions about the data type are built into how the network operates.

Vectors » Dense NN 2D images » Convolutional NN

Components are independent. The same features can be found
anywhere in an image. Locality.
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input/output that has come
before.



Neural networks are specially designed for different data types. . .
Assumptions about the data type are built into how the network operates.

Vectors » Dense NN 2D images » Convolutional NN Text » Recurrent NN

Components are independent. The same features can be found Sequential data. Next
anywhere in an image. Locality. input/output depends on
input/output that has come
before.

What are our data types in materials physics?
How do we build neural networks for these data types?



What assumptions do we want “built in” to our neural networks (for materials data)?

Atomic systems form geometric motifs that can The properties of physical systems transform
appear at multiple locations and orientations. predictably under rotation.

Two point masses with velocity and

Rb Mn Cls

RO

Same system, with rotated coordinates.

|

Octahedral ‘Lb
coordination




What assumptions do we want “built in” to our neural networks (for materials data)?

Atomic systems form geometric motifs that can The properties of physical systems transform
appear at multiple locations and orientations. predictably under rotation.

Two point masses with velocity and

RO

Same system, with rotated coordinates.

| f
Octahedral
coordination

Our data types are geometry and geometric tensors.
These data types assume Euclidean symmetry (3D translations, 3D rotations, and inversion),




Space has Euclidean symmetry, E(3). Objects break that symmetry.
The broken symmetry is a subgroup of E(3).

@ A G W
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Space has Euclidean symmetry, E(3). Objects break that symmetry.
The broken symmetry is a subgroup of E(3).

3D rotations and
inversions

@ A G W

0(3)
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Space has Euclidean symmetry, E(3). Objects break that symmetry.
The broken symmetry is a subgroup of E(3).

@ A

O(3) SO(2) +
mirrors
(C..)
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Space has Euclidean symmetry, E(3). Objects break that symmetry.
The broken symmetry is a subgroup of E(3).
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Space has Euclidean symmetry, E(3). Objects break that symmetry.
The broken symmetry is a subgroup of E(3).

@ A

O(3) SO(2) + o,
mirrors
(C..) AN
Y

Pm-3m
(221)
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Properties of a system must be compatible with symmetry.

Which of these situations (

<
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) are symmetrically allowed / forbidden?
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Properties of a system must be compatible with symmetry.

Which of these situations (
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) are symmetrically allowed / forbidden?
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Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

a©—><—© V4
o o X @«

e 9
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Properties of a system must be compatible with symmetry.
Which of these situations (inputs / outputs) are symmetrically allowed / forbidden?

@ @ 7
@ <@ X @
1

e 9
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We build neural networks with Euclidean symmetry, E(3) and SE(3).

e What neural networks with Euclidean symmetry can do.

21



Trained on 3D Tetris shapes in one orientation,
these network can perfectly identify these shapes in any orientation.

Chiral

TRAIN

TEST




Given a molecule and a rotated copy,
the predicted forces are the same up to rotation.
(Predicted forces are equivariant to rotation.)

23



To these networks, primitive unit cells, conventional unit cells, and supercells of
the same crystal will produce the same output (assuming periodic boundary conditions).

24



We build neural networks with Euclidean symmetry, E(3) and SE(3).

e How Euclidean Neural Networks work.
o Overview

Input to network

Network operations

Visualizing kernels

Interpreting input / output

O O O O



We use points. Images of atomic systems are sparse and imprecise.

VS.




We use points. Images of atomic systems are sparse and imprecise.

VS.

We use continuous convolutions
with atoms as convolution
centers.

Other
atoms 7,_:’

Convolution
center

K. T. Schiitt et al, NIPS 30 (2017).
(arXiv: 1706.08566)



We use points. Images of atomic systems are sparse and imprecise. We use continuous convolutions
with atoms as convolution

centers.

Other
atoms 77

Convolution
center

K. T. Schiitt et al, NIPS 30 (2017).
(arXiv: 1706.08566)

We encode the symmetries of 3D Euclidean space (3D translation- and 3D rotation-equivariance).




Translation equivariance

Rotation equivariance

29



Translation equivariance
Convolutional neural

network v/

Rotation equivariance?

30



Translation equivariance
Convolutional neural

network v/

Rotation equivariance
Dataaugmentation
Radiakfonet

Want a network that both
preserves geometry and

exploits symmetry.
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Several groups converged on similar ideas around the same time.

Tensor field networks: Rotation- and translation-equivariant neural networks for 3D point clouds

(arXiv:1802.08219)

Tess Smidt*, Nathaniel Thomas*, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, Patrick Riley
Points, nonlinearity on norm of tensors

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network
(arXiv:1806.09231)
Risi Kondor, Zhen Lin, Shubhendu Trivedi

Only use tensor product as nonlineatrity, no radial function

3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
(arXiv:1807.02547)
Mario Geiger*, Maurice Weiler*, Max Welling, Wouter Boomsma, Taco Cohen

Efficient framework for voxels, gated nonlinearity

*denotes equal contribution

32



Several groups converged on simijg

Pull requests Issues Marketplace Explore

L mariogeiger / se3cnn ® Unwatch~ 9 % Unstar 70  Y¥Fork 18

Tensor field networks: Rotation- and trans

(arXiv:1802.08219) cee et et Tensor field networks + 3D steerable CNNs
TeSS Smldt*, Nathanlel Thomas*, Steven Ke Euclidean Networks = Euc’idean neural networks

Points, nonlinearity on norm of tensors neural-network

® 675 commits ¥ 5 branches © 2 releases 42 7 contributors sfs MIT
Clebsch-Gordan Nets: a Fully Fourier Spag
. Branch: point » New pull request Create new file  Upload files = Find File
(arXiv:1806.09231)
.. . . . N mariogeiger reduce_tensor_product parity Latest commit 3b@960e 4 hours ago
RISI Kondor’ Zhen Lln’ ShUbhendu Trlvedl 8 examples put channel last in features 4 days ago
On/y use tensor prOdUCt aS nonlinearlty 8 se3cnn reduce_tensor_product parity 4 hours ago
i tests GatedBlock parity 3 days ago
3D Steerable CNNS: Learning Rotationa"y j:\ .gitignore change directories structure 26 days ago
. [E) LICENSE Create LICENSE 20 days ago
(arXIV.. 1 80 7. 0254 7) [E) README.md rename classes 20 days ago
Mario Geiger*, Maurice Weiler*, Max Welling] = @ seweer setup 20 days ago

Efficient framework for voxels, gated nq  =reaomema

SE3CNN

The group SE(3) is the group of 3 dimensional rotations and translations. This library aims to create SE(3)
equivariant convolutional neural networks.

@Cce ¢o6C @G0

*denotes equal contribution




To be rotation-equivariant means that we can rotate our inputs
OR rotate our outputs and we get the same answer.

34



The input to our network is geometry and features on that geometry.

IO

mOl],[[ml]]],
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The input to our network is geometry and features on that geometry.
We categorize our features by how they transform under rotation.

Features have “angular frequency” L

_ S Frequency
where L is a positive integer.

- Doesn’t change
Scalars l - O with rotation

Changes with
Vectors l — 1 same frequency
as rotation

[=0D1D2

{0: [[[mO]],[[ml]]1],
1: [[[vOx, vOy, vOz], [ 11,

[[vlix, vly, vl1z], [ 111}
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The convolutional kernels are built from functions with “angular frequency” L
> Spherical harmonics.

Learned Parameters

with no symmetry:
with SO(3) symmetry:

R(r)Y," (7)

Other atoms
—_

z

Convolution
center
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Spherical harmonics

-

angular portion of
hydrogenic wavefunctions

basis functions for (2/ + 1)
dimensional irreducible
representations of SO(3)

basis functions for signals
on a sphere



Spherical harmonics of a given L transform together under rotation.

D is the Wigner-D matrix.
Let g be a 3d
rotation matrix. . — — = — = lthas shape [(21 - 17 20 + 1]

I and is a function of g.

v

-
., ® T8, @ T

., @ +b, & +b,0@
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Features and kernels are not simply scalars.
We use tensor products with Clebsch-Gordan coefficients to combine.
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Examples of tensor product: How to combine a scalar and a vector? Easy!

Q
X
Sl
|
QY

41



Examples of tensor product: How to combine two vectors? Many ways.

bi
Dot —
product (a”i a; ak) bj = C
bi,
T 7k
Cross — " -
product @ X b= a; a; ag|l ==¢c
b b by
Outer A; aibz
product a; (bz bj bk;) = ajbz
ar arb;

a; bj
ajb;

akbj

aibk
G,jbk
ay by

0D 1D 2



Features and kernels are not simply scalars.
We use tensor products and Clebsch-Gordan coefficients to combine.

Scalar
convolution Scalar

Z\,\“‘f(a\ti[ b'\: qu

“i” and “j” are scalar channels S
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Features and kernels are not simply scalars.
We use tensor products and Clebsch-Gordan coefficients to combine.

Tensor Tensor product +
Scalar convolution Clebsch-Gordan:
convolution Scalar Takes ij -> k
multlply

2\““ e\) ——be 5« Z\f\[ cV\gI oA Gqé

i oo ® “channel” includes
and “j” are scalar channels S specific spherical harmonic L

Co

O
Qa 44



For L=1 » L=1, the filters will be a learned, radially-dependent linear
combinations of the L =0, 1, and 2 spherical harmonics.

L=0 L=1 L=2
w $ © S oo
Ro(r) @ +Ri(r)ee ® +Ry(r) s &%
- S0 oo Xejo

>
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For L=1 = L=1, the filters will be a learned, radially-dependent linear
combinations of the L =0, 1, and 2 spherical harmonics.




We can interpret our outputs as numerical features...

Scalars
e Energy
e Mass

e Isotropic *

<

Vectors
e Force
e Velocity
e Acceleration
e Polarization

F

Matrices, Tensors, ...

e Moment of Inertia
e Polarizability

e Interaction of multipoles

47



We can interpret our outputs as numerical features or geometry.

1.5

~<0.5
<

|
e
w0

Output (0 = L< 6 coefficients) of randomly initialized network
applied to a tetrahedron with a center.
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We can interpret our outputs as numerical features or geometry.

1.5

~<0.5
<

|
e
0

Output (0 = L< 6 coefficients) of randomly initialized network
applied to a tetrahedron with a center.

Can generate point sets from signal peaks as output!
Sets == permutation invariant 49



We build neural networks with Euclidean symmetry, E(3) and SE(3).

e Applications of Euclidean Neural Networks.

50



Applications: Predicting ab initio forces for molecular dynamlcs

Simon Batzner (MIT/Harvard) and Boris Kozinsky (Harvard)
Presented at APS March Meeting 2019

Direct prediction
of forces rather
than gradient of
scalar energy.

Dataset: MD17
ab initio molecular dynamics trajectories of...

Ao AL

HO  _O -
O 0
HO 0O , q‘\;ulx“
I L
‘l

ﬂlé L
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Applications: Predicting molecular Hamiltonians with atom-centered basis sets

K. T. Schitt, M. Gastegger, W o QM
A. Tkatchenko, K.-R. Muller,
R. J. Maurer. trainl interfaceﬁ ﬁ
arXiv:1906.10033 (2019)
MLY% \\ ) Ceref Is 2s 2p. 2p; 2p; 1s s
E L= -
2s
Predict Hamiltonian 2px H 11 HioH13
matrix and get 2py

eigenvectors
(wavefunctions) and
eigenvalues (energies). 1s Hy, Has|H»3

ST Hs; Hsz|Hs3




Applications: Predicting molecular Hamiltonians with atom-centered basis sets

K. T. Schiitt, M. Gastegger, W o QM
A. Tkatchenko, K.-R. Muller,
R. J. Maurer. trainl interfaceﬁ ﬁ
arXiv:1906.10033 (2019)
MLY |\ Cref ls 25 2p. 2p, 2p: 1s s
E L= -
2s
Predict Hamiltonian 2px H 11 HiolH 14
matrix and get 2py
eigenvectors 5
(wavefunctions) and =
eigenvalues (energies). 1s Hy, Has|H»3
ST Hs; Hsz|Hs3

Problem! Hamiltonian depends on coordinate system
-- traditionally requires augmenting data.




Applications: Predicting molecular Hamiltonians with atom-centered basis sets

With Euclidean neural networks -- only need one example.
Output is guaranteed to be equivariant!

RHR"

O 1s2s2s2p 2p 3d H1s2s2p H1s2s2p

0.2

0.15

0.1

0.05



Applications: W. Wang, R. Gémez-Bombarelli. arXiv:1812.02706 (revised 2019)
Coarse-grained geometries ! ; . y

and recover all atoms picture

original molecule coarse grained molecule decoded molecule




Applications: W. Wang, R. Gomez-Bombarelli. arXiv:1812.02706 (revised 2019)
Coarse-grained geometries . : . ) . :

and recover all atoms picture

original molecule coarse grained molecule decoded molecule
Test problem
Predict using
| J‘ ‘ spherical harmonic
' "’ 50 signal
Centers of a Tetrahedral chain.

tetrahedral chain.




Peaks == point locations

Applications: | _ _
Coarse-grained geometries "’Jg Symmetric configurations

i == ner
and recover all atoms picture degeneracy

Without symmetry breaking



Peaks == point locations

Applications: | _ _
Coarse-grained geometries 0-0'{:? Symmetric configurations

and recover all atoms picture == degeneracy

Use second input
to break symmetry

Without symmetry breaking With symmetry breaking



Applications: Creating an autoencoder for discrete geometry

Reduce ]\ / Create
geometry to R geometry from
single point. single point.

Discrete geometry Continuous
Latent Representation
(N dimensional vector)

—Pp @ —P

Discrete geometry
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Applications: Creating an autoencoder for discrete geometry

Reduce Create
geometry to RN geometry from
single point. single point.
Discrete geometry Continuous Discrete geometry

Latent Representation
(N dimensional vector)

Atomic structures are hierarchical Encode geometry v

+

and can be constructed from + Encode hierarchy ?

geometric motifs. + Decode geometry ?
+

Decode hierarchy ?
(Need to do this in a recursive manner)
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How to encode: Recursively convert geometry to a vector

Geometry

>

knpwoe® NN

*Edges are shown for visualization. May not be included.
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How to decode: Recursively convert a vector to geometry

Geometry

<>

Cluster
(Merge duplicate points)

knowo2® MON

*Edges are shown for visualization. May not be included.
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Euclidean neural networks operate on points/voxels and have symmetries of E(3).
Inputs to the network lower this symmetry to a subgroup of E(3).

Symmetry of outputs are constrained to the symmetry of the inputs.

The inputs and outputs of our network are geometry and geometric tensors.
Convolutional filters are built from spherical harmonics with a learned radial function.

Applications: Molecular dynamics, predicting Hamiltonians, coarse-graining, autoencoders...

We expect these networks to be generally useful for physics, chemistry, and geometry.
Reach out to me if you are interested and/or have any questions!

se3cnn Code (PyTorch):
https://qgithub.com/mariogeiger/se3cnn

Tensor Field Networks (arXiv:1802.08219)

3D Steerable CNNs (arXiv:1807.02547) Tess Smidt
tsmidt@Ibl.gov
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https://github.com/mariogeiger/se3cnn

Calling in backup (slides)!

65



Features and kernels are not simply scalars.

We use tensor products and Clebsch-Gordan coefficients to combine.

C\{.\oSc\\ (ordan.
[ ot

3,08, -Ciuds= Se
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Features and kernels are not simply scalars

We use tensor products and Clebsch-Gordan coefficients to combine

‘/;" Se}c\, Ci’ms)mks 2 'h ‘Sgit\. ds-u\ s\aln.i
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Features and kernels are not simply scalars.
We use tensor products and Clebsch-Gordan coefficients to combine.
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