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1. INTRODUCTION

On the program it says this is a keynotc specech—and I don’t know
what a keynote speech is. I do not intend in any way to suggest what shouild
be in this meeting as a keynote of the subjects or anything like that. I have
my own things to say and to talk about and there’s no implication that

anybody needs to talk about the same thing or anything like it. So what I Motivated and Sh aped the
want to talk about is what Mike Dertouzos suggested that nohody would

talk about. I want to talk about the problem of simulating physics with ﬁeld Of quantum ComPUting
computers and I mean that in a specific way which I am going to explain.

The reason for doing this is somcthing that I learned about from Ed WhiCh hopes to revolutionize
Fredkin, and my entire interest in the subject has been inspired by hum, It

has to do with learning something about the possibilities of computers, and Computation th rough

also something about possibilities in physics. If we suppose that we know all

the physical laws perfectly, of course we don’t have to pay any attention to eXPIOit atio n Of qu antum
computcers. It’s intercsting anyway to cntertain oneself with the idea that

we've got something to learn about physical laws; and if T take a relaxed meChanical effects

view here (after all I'm here and not at home) I’ll admit that we don't
understand everything.

The first question is, What kind of computer are we going to use to
simulate physics? Computer theory has been developed to a point where it
realizes that it doesn’t make any diffcrence; when you get to a wniversal
computer, it doesn’t matter how it’s manufactured, how it’s actually made.
Therefore my question is, Can physics be simulated by a universal com-
puter? I would like to have the ¢lements of this computer locally intercon-
nected, and therefore sort of think about cellular automata as an example
(but I don’t want to force it). But I do want something involved with the
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5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY
SIMULATED BY A CLASSICAL COMPUTER?

Now the next question that I would like to bring up is, of course, the
interesting one, i.e., Can a quantum system be probabilistically simulated by
a classical (probabilistic, I’d assume) universal computer? In other words, a
computer which will give the same probabilities as the quantum system
does. If you take the computer to be the classical kind I’ve described so far,
(not the quantum kind described in the last section) and there’re no changes
in any laws, and there’s no hocus-pocus, the answer is certainly, No! This<
called the hidden-variable problem: it is impossible to represent the results
of quantum mechanics with a classical universal device. To learn a little bit

about it, I say let us try to put the quantum equations in a form as close as

Feynman concludes:

the great difficulty. The only difference between a probabilistic classical
world and the equations of the quantum world is that somehow or other it
appears as if the probabilities would have to go negative, and that we do not
know, as far as [ know, how to simulate. Okay, that’s the fundamemntal
problem. I don’t know the answer to it, but I wanted to explain that if I try
my best to make the equations look as near as possible to what would be
imutable by a classical probabilistic computer, I get into trouble.

00000000000000000000000000000000000

Motivated the field

of quantum computing

This is all still true today and
is fundamentally linked to
the notion of quantum speed-
up in quantum computing.



WE CAN'T SIMULATE QUANTUM

STATES AND DYNAMICS EXACTLY

USING PROBABILITY, BUT CAN
WE DO IT APPROXIMATELY?




TEXT GENERATION USING NEURAL LANGUAGE MODELS
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In a shocking finding, scientist discovered a herd of unwcorns living i a remete,

previously tnexah valley, in the Andes Mountains. Even more suronsing to the Pr O mp t

rescarchere was the fact that the unicorns spokea perfact English

The scientist named Lhe population, atter their distainciave horn, Ovic's
Unicorn. These four-horred, silver-white unicorns were previously unkrown OUtput
to science.

Mow, after almost two centuries, the mystery of what sparkec¢ this odd
phenomenon is finally sclved.

Dr. Jorge Pérez, @n evoluticnary oiologist from the Universily cf La Paz, and
saveral companions, were explaring the Andes Mountains when they faunc a small
valley, with no other animals ar aumans. Pérez noticed that the valley had
what appeared 1o be a natural fountain, surrounded by two pezks of rock and

silver snow.

Pretty coherent

Parez and the others then ventured further into the valley. “By the time we
reached the top oF one peak, the water looked blue, with some crystals on
top,’

saic Pérez,

over a page of

Pérez and his friends were astonished to see the unicorn herd. These cresaturess

could be seen from The zir without having to move too much tTo see Them — they
were 50 close they could touch their harns. teXt

While examining these bizarre creatures the scientists discovereo that the
creatures also spoke some Tzirly regular English. Pérez stated, “We can see,
tor example, that they have a common ' Language, ' somelhing Llike @ dielect

or dialectac,”

Dr. Pérez believes that the unicorns may have originated in Argerting, where
the animals were belicvec Lo be descendants of a lost rece of people who lived

https://openai.com/blog/better-language-models/
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TEXT GENERATION USING NEURAL LANGUAGE MODELS

https://talktotransformer.com/ Pro mpt

quantum supremacy has been seen in a series of experiments carried out at

the Joint Quantum Institute in Cambridge and at the University of California,

Santa Barbara. There, for instance, the team has shown that quantum

entanglement, a phenomenon that allows information to be transmitted

without the need for a remote link, is a robust, useful feature of the system, OlltpU.t
and that experiments with multiple quantum processors could generate high-

resolution measurements of the quantum states of a single quantum

Processor.

generating samples from a
variety of inputs —>close to
human quality and long-range
coherence over a page or
more of text

Quantum effects are fundamental to modern science and technology,
including quantum teleportation, which allows quantum states of atoms to be
transmitted without the need for inter-atomic distance.

But, as scientists at the National Physical Laboratory in the UK and the Joint
Quantum Institute reported this week, it is possible to exploit that effect from
different quantum processors, which could improve the reliability of the

measurement and the accuracy of the results of the experiments. "Quantum Reproducing correctly strong
entanglement does not happen very often, but it has great implications if you correlations present in
understand and manipulate it correctly,’ says Professor Mark Gassaway, head language (power law)

of the physics department at the NI

These techniques are based on powerful neural probabilistic language models


https://talktotransformer.com/

NEURAL LANGUAGE MODELS

» A neural network language model is a language model based
on neural networks

» Neural networks are powerful universal function
approximators and can in principle compute any function

» It is natural to ask whether these models represent complex
quantum states

Hidden layer
Input layer

P(output text|input text) Outputaye
P(English|Spanish) '




DIMENSIONALITY OF QUANTUM SYSTEMS VS NEURAL MACHINE TRANSLATION

'U)  vector with 2% » Language translation models
live in very high dimensional
spaces too (example from

» Today's best L
4 “Attention is all you need”)

supercomputers can solve
the wave equation exactly
for systems with a
maximum of ~45 spins.

Vocab. SiZeMaX length of sentence

80001%° ~ 2.03 x 1039

Storage of these distributions

N 35 % 1013 requires a computer with a
memory which exceeds in size a
number of universes bigger than
there are atoms in the known
universe.



QUANTUM STATES, NATURAL IMAGES, NATURAL LANGUAGES ARE “PHYSICAL
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QUANTUM STATES, NATURAL IMAGES, NATURAL LANGUAGES ARE “PHYSICAL
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» The amount of information for W) vector with 2

quantum states, language QMC  Low entanglement

: . e MPS and other TN
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» Quantum Monte Carlo and other __= T T T T T T T
numerical methods based on

Tensor Networks exploit this fact. G \
» Both quantum and ML problems Neural
have a lot of (shared) structure networks
and symmetry that we can exploit '
Tensor networks
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CAN WE USE THE POWER OF GENERATIVE
MODELS FOR THE SIMULATION OF QUANTUM
SYSTEMS?

CAN WE BRING QUANTUM THEORY CLOSER T0
MACHINE LEARNING?



IN THIS TALK

» [ will introduce a formulation of quantum theory that
brings quantum mechanics and machine learning close
to each other

» We use generative models, in particular RNNs and
transformers to parametrize quantum states.

» [ will show an example to motivate why this may be a
good idea in the context of quantum state
reconstruction

» [ will show you a heuristic to simulate a quantum
circuits



QUANTUM STATES,
MEASUREMENTS, AND
PROBABILITY DISTRIBUTIONS




HOW IS A QUANTUM STATE TRADITIONALLY DESCRIBED?

» A density matrix describes the statistical state of a system
in quantum mechanics. Everything we can possibly know
about a quantum system is encoded in the density matrix.

» A quantum state is a positive semidefinite, Hermitian
operator of trace 1 acting on the state space.

» The family of quantum states forms a convex set. For one
qubit: Bloch sphere.




HOW TO REPRESENT A
QUANTUM STATE WITH
ONLY PROBABILITY?




MEASUREMENTS: POSITIVE OPERATOR-VALUED MEASURE (POVM)

> POVM elements M = {M@ |a e {1,...,m}}
> Positive semidefinite operators » M@ =1

> Born Rule P (a) =TrpM?

INFORMATIONALLY COMPLETE POVM

*The measurement statistics PP(a)contains all of the
information about the state.

*Relation between p and distribution P(a) can be inverted.

TAKE A SINGLE QUBIT POVM AND MAKE A TENSOR PRODUCT

Y Y



GRAPHICAL NOTATION AND INVERSE

Bornrule P (a)=TrpM?

If the POVM is informationally complete then

= S0,

Insert thlS relation into Born’s rule Z O,( M@ ppte )] = Z O,(a")Tarq
p= ST P

Top=Tr M*MP




REPRESENTATION THE QUANTUM STATE

* Factorization of the state in terms of a
P = (T —1 P)T N probability distribution and a set of tiny
tensors —> Wavefunction positivization

P  All the entanglement and potential
. complexity of the state comes from the
T structure of the P(a)
M * Very efficient to handle numerically for
some tasks

* Sign structure of the state is in the tiny
tensors

Carrasquilla, Torlai, Melko, Aolita. Nature Machine Intelligence 1, 200 (2019)



INSIGHT: PARAMETRIZE STATISTICS OF MEASUREMENTS AND INVERT

P (a) — TI‘ IO M a => Create a neural model of P(a)

Autoregressive models (RNNs and
transformer)

1. Allow for exact sampling

P
model (a) " 2. Tractable density Pmodel (a)

3. Traditionally used in neural machine
translation

Pmodel




REMARK: WAVEFUNCTION POSITIVZATION WITH AD

S
|

Wavefunction positivization via automatic differentiation

Ciacomo Torlai, Juan Carrasquilla, Matthew T. Fishman, Roger C. Melko, Matthew P. A. Fisher
(Submitted on 11 Jun 2019)

We introduce a procedure to systematically search for a local unitary transformation that maps a wavefunction with a non-trivial sign structure into a
positive-real form. The transformation is parametrized as 2 guantum circuit complled into a sat of cne and two qubit gates. We design a cost function
that maximizes the average sign of the output state and remaves its complex phases. The optimization of the gates Is performed through autamatic
differentiation algorithms, widely used in the machine learning community. We provide numerical evidence for significant improvements in the average
sign, for a two - leg triangular Heisenberg ladder with next to nearest neighbour and ring exchange interactions. This model exhibits phases where the
sign structure can be remaoved by simple local one-qubit unitaries, but zalso an exotic Bose-metal phase whose sign structure induces "Bose surfaces" wit!
a fermionic character and a higher entanglement that requires two-qublit gates.

Comments: 9 pages, 5 foures
Subects:  Quantum Physics (guant-ph); Strenoly Correlated Elecirons (cond-mat.str-el)
Cite as: arXiv:1906.04654 [quant-ph]

{or arXiv:1906.04654v1 [quant-ph] for this version)



EXAMPLE: LEARN A
QUANTUM STATE FROM
MEASUREMENTS




NEED TO GO BEYOND STANDARD QUANTUM STATE TOMOGRAPHY
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* Progress in controlling large quantum
systems.

‘

* Availability of arbitrary measurements
performed with great accuracy.

* The bottleneck limiting progress in the
estimation of states: curse of
dimensionality.




SYNTHETIC QUANTUM DEVICES ARE GROWING FAST
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nature.com > nature » articles > article
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Article Fuzlishes: 29 hovemnber 2017

Probing many-body dynamics on a 51-
atom quantum simulator

Hannes Barnien, Sylvain Schwartz, Alexander Kessling, Hary Levine, Abhmed Omra

Sconwen Chel, Alexander S, Zibrov, Manuel Endres, Markus Greiner &, Viadan Yulet <88 & Mikail L.

Lukin =

Noture 551, 579-584 (30 November 2017) Download Citaticn &

nature.com > nature > letters > article

nature

International oumal af science

aiter <t 201R

Observation of topological phenomena in
a programmable lattice of 1,800 qubits

Andrew D. King B8, Juan Carrasquilla, [...] Mohammad H. Amin

Nature 560, 456-460 (2018) Dowrlozd Citation &

1. Hannes Pichler,

mternationad journal of

Lette) Fublished: 29 Kovemoer 2017

Observation of a many-body dynamical
phase transition with a 53-qubit quantum
simulator

J. Zhang B8, G, Pagano, P.'W. Hess, A Kypnanicis, 2 Bucker, H Kaplan, A V. Gorshkov, £.-X Gong & (

Monioe
Moture 551, 601-604 (20 November 20271 Dow

nload Citationd

PHYSICAL REVIEW X

Quezntum Chemistry Calculations on a Trapped-lon Quantum
SimuJlator

@

Lol



NEED TO GO BEYOND STANDARD QUANTUM STATE TOMOGRAPHY
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* Apply a measurement that probes
enough information about the
quantum state

* Repeat and collect the statistics of the
measurement

e Infer a reconstruction of the state p" —
consistent with the measurement
outcomes



LEARNING GROUND STATES OF LOCAL HAMILTONIANS FROM DATA

d

—0.65 1 _;)_ f!ir;?nestlt(:uitf;jstate ,}_[ — J Z’L] f[, J _I_ h Z’L 0-’1,

~0.704 [ 50 - . .
. 9 N=50 spins. P(a) is a
£ —0.75- haa IRC -

deep (3 layer GRU)
~0.80 1 . recurrent neural network
—0.85 _ql? () Rleconstructed state | LI _0.50 40 | | | | language m0d61.
0 20 40 0 10 20 30 40 50
' 1
) Synthetic state - o) Reconstructed state

il

Carrasqullla, Torlai, Melko, Aolita. Nature Machine Intelligence 1, 200 (2019)




RECURRENT NEURAL NETWORK MODEL

Full model stacks three of these
units and adds a softmax dense

Basi unit is a gated recurrent unit .
layer at each “time” step

he—1




BUT QUANTUM THEORY GOES
BEYOND REPRESENTATION.
DYNAMICS (E.G. SCHRODINGER
EQUATION)? MEASUREMENTS?




UNITARY DYNAMICS AND QUANTUM CHANNELS
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Probabilistic gates: Somewhat (or
quasi-) stochastic matrices

Evolution of probability is
somewhat classical :)

If the starting unitaries are k-local,
the swS matrices are also k-local

Somewhat stochastic matrices

(SUDoNITed 0N 3 >ép 2uu/)




UNITARY DYNAMICS AND QUANTUM CHANNELS
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Probabilistic gates: Somewhat (or
quasi-) stochastic matrices

Evolution of probability is
somewhat classical :)

If the starting unitaries are k-local,
the swS matrices are also k-local

Somewhat stochastic matrices

Branko Curgus, Robert 1. Jewett

(SUDoNITed 0N 3 >ép 2uu/)

by a condition on the £, ~distances between columrs.




QUANTUM DYNAMICS

“Solution”

P(t) _ e—z'AtP(O) Agrar =3 Ta—,clt, [Tr ([H,M(a)] M(a"))]



QUANTUM DYNAMICS OF OPEN QUANTUM SYSTEMS

Linblad equation

ZﬂP (a,t) _ ZAa”,a’P (a, 1) Agirg = ZTGT,;’ (Tr ([7.& M(a)] M(a”))

i N
+ 3|51 (L M@ )
k

+ i T (L M@ L))



MEASUREMENTS

» Suppose we want to measure the quantum state. The measurement is
described by some other POVM H(b)

ZP )T, L, Tr [M<a>n<b>} =3 " g(bla) P(a’)

q(bla’) Z T Tr [MW)H(”)]

> can be characterized as a somewhat conditional probability since its
entries can either be positive or negative but its trace over b is the
identity.

> evocative resemblance with the law of total probability—> quantum law
of total probability in quantum Bayesianism.



CIRCUITS AND TENSOR NETWORKS IN OUR LANGUAGE

Quantum circuits and quantum computing

pu =UpUT

Py(a”) =" P(a')Ou ar “
2 Unitary matrices U

Completely positive (CP)
trace preserving map

Owar = Y Tr(UM@UTMENT L,

Tensor networks and quantum circuits

_ =)




QUANTUM CIRCUIT

0) — —
0y —P ——
oo
0) [ 1)

» Start the quantum device in a simple product state

> Apply a sequence of simple unitary matrices acting on the initial state

> To obtain the result, usually measure in the computational basis.

That what a general quantum computation is. The quantum algorithms
(set of unitaries) are designed so that measuring the evolved quantum
state results in the solution of a computational problem

PU — UNUl,O()UlTU;([ “ PU — ON...OgolPQ



QUANTUM CIRCUIT

0) — —
0) 7 ——
0) T P— »—
o) — | | —

» Start the quantum device in a simple product state

> Apply a sequence of simple unitary matrices acting on the initial state

» To obtain the result, usually measure in the computational basis.

Looks similar to Green’s function Monte Carlo, but it has sign problem

Because O are somewhat stochastic

PU — UNUl,O()UlTU]J([ “ PU — ON...0201P0




SIMULATING QUANTUM
CIRCUITS WITH NEURAL
MACHINE TRANSLATION




APPLY ONE GATE




APPLY ONE GATE
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Introduce a model Py(a)

Compute “distance” between model and evolved Py(a)
through sampling

Minimize distance

Dk (Pul|Py) = Z Py (a ((2))

Dy, (Pul|Py) = H(Pu, Py) — H(FPy)

H(Py, Py) = Z Py (a)ln Py (a Z P (a') Opa In Py (a)




SIMULATING QUANTUM CIRCUITS WITH RNN

Minimize cross entropy to search for an approximation to Pu from
samples drawn from P



RESULTS: STATE PREPARATION FOR SIMPLE STATES

CNOT = cX =

c/ =

O = O O
o O O

O O = O

oo o —




TRAINING DYNAMICS OF THE BELL STATE PREPARATION

2.0 m ; 1.00 1.0 4.0
. 35
2154 ¢ ‘ = 0.98 - < 087 =
< ¢ Z s < 307
=101 : Q;; 0.96 - 5 067 = 251
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0.0 T % 0.92 T : 0.2 | | 1.0 T T
0 50 100 150 200 0 50 100 150 200 0 50 100 150 200 0 50 100 150 200
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Ns=10000 M(O) B 1 |O> <O‘ KL (Pyogal| P) = ZP mc(lal)( a)
. AP — o
Batch size=100 3
M(l) _ 1 _|_> <+| Classical — Z \/P m ode l
LSTM model with two stacked 3
. ) (2) ]. F (P, U) o [\/ \/70- ]
layers with hidden states d=10  Msp = 31" ) (r]

followed by a softmax ME) =1 - MO — p® — @




SAMPLE COMPLEXITY ANALYSIS OF THE LEARNING PROBLEM: GRAPH STATE
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Ns is number of samples per gate application

o o O O
S~ S S

20 qubits with Transformer
CF= 0.9767 +/- 0.0001
Ns=10x106



SAMPLE COMPLEXITY ANALYSIS OF THE LEARNING PROBLEM

1O5§
*Zco
1O4§
—— C(lassical Fidelity—top = 0.95
—— KL divergence—t g = 0.25
10 4 % 10° | 6 x 100 | | | 1(')1

Ny

Linear fit gives a slope of ~ 4.0, high complexity but still looks polynomial.



classical fidelity

TRANSFORMER IS MUCH MORE SCALABLE
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THE STANDARD SIMPLEX AND QUANTUM STATES

In probability, the points of the standard n-simplex in (n + 1)-space are
the space of possible parameters (probabilities) of the categorical
distribution on n + 1 possible outcomes.

{x € R o+ a1 4+ ... 42, =1,2,>0,i=0,1, ... k} “All convex bodies behave a bit like Euclidean balls.” Keith Ball


https://en.wikipedia.org/wiki/Categorical_distribution
https://en.wikipedia.org/wiki/Categorical_distribution

POSITIVITY AND VISUALIZING THE TRAINING IN THE Q-PLEX

In this sense probability
theory is too general and

Quantum theory needs
constrains

Introducing the Qplex: A Novel Arena for Quantum Theory. Marcus Appleby, Christopher A. Fuchs, Blake C. Stacey, Huangjun
Zhu. arXiv:1612.03234 [quant-ph]



https://arxiv.org/search/quant-ph?searchtype=author&query=Appleby%2C+M
https://arxiv.org/search/quant-ph?searchtype=author&query=Fuchs%2C+C+A
https://arxiv.org/search/quant-ph?searchtype=author&query=Stacey%2C+B+C
https://arxiv.org/search/quant-ph?searchtype=author&query=Zhu%2C+H
https://arxiv.org/search/quant-ph?searchtype=author&query=Zhu%2C+H
https://arxiv.org/abs/1612.03234

POSITIVITY AND VISUALIZING THE TRAINING IN THE QPLEX

In this sense probability
theory is too general and
Quantum theory needs
constrains

Generative models for
high dimensional
probability live in the
simplex

Quantum states live in
the gplex

Introducing the Qplex: A Novel Arena for Quantum Theory. Marcus Appleby, Christopher A. Fuchs, Blake C. Stacey, Huangjun
Zhu. arXiv:1612.03234 [quant-ph]



https://arxiv.org/search/quant-ph?searchtype=author&query=Appleby%2C+M
https://arxiv.org/search/quant-ph?searchtype=author&query=Fuchs%2C+C+A
https://arxiv.org/search/quant-ph?searchtype=author&query=Stacey%2C+B+C
https://arxiv.org/search/quant-ph?searchtype=author&query=Zhu%2C+H
https://arxiv.org/search/quant-ph?searchtype=author&query=Zhu%2C+H
https://arxiv.org/abs/1612.03234

CLASSICAL FIDELITY IS NOT A STRONG METRIC OF FIDELITY

» Crp < I C(Classical fidelity is overconfident

» Not a bug but a feature (?) since these probabilistic
measurements of distance guarantee only that “most”
measurements are correct.

» Perhaps a better measurement of fidelity for current quantum
devices or approximate quantum computing

The Learnability of Quantum States

Scott Aaronson
(Submirred on 18 Aug 2006 (v 1), last revised 4 Mar 2007 (this version, v3))

Traditional guantum state tomography requires a number of measurements that grows exponentially with the number of qubits n. But using iceas from
computational learming theory, we show that "for most practical purposes” one can learn a state using a number of measurements that grows only linearly
with n. Besides possible implications [or experimental physics, our learning Ltheorem has wo applications o quanturn compulting: first, a new simulation
of guanlum one-way communication protocols, and second, the use of trusted classical advice Lo verily untrusted guantum advice.

Commenls. 30 pages; added discussion of adaplive measurements, moved prools Lo appendix, and corrected various minor errors
Subjects:  Quantum Physics (quant-ph)
DOI: 10.1098/rspa.2007.0113
{lle as: arXiviquanl-ph/0b0E142
(or arXiviquant-ph/0608142v3 for this version)



CAN WE SIMULATE QUANTUM SYSTEMS WITH PROBABILITY?

5. CAN QUANTUM SYSTEMS BE PROBABILISTICALLY
SIMULATED BY A CLASSICAL COMPUTER?

Now the next question that I would like to bring up is, of course, the
interesting one, i.e., Can a quantum system be probabilistically simulated by
a classical (probabilistic, I’d assume) universal computer? In other words, a
computer which will give the same probabilities as the quantum system
does. If you take the computer to be the classical kind I’'ve described so far,
(not the quantum kind described in the last section) and there’re no changes
in any laws, and there’s no hocus-pocus, the answer is certainly, No! This 1s
called the hidden-variable problem: it is impossible to represent the results
of quantum mechanics with a classical universal device. To learn a little bit

about it, I say let us try to put the quantum equations in a form as close as

Answer is still NO (duh), since evolving these distributions
remains a challenge (eg circuits evolution has a sign problem).
However we have introduced a heuristic to do it using RNNs



CONCLUSIONS

» Can quantum systems be probabilistically simulated in a classical computer? No

» But our reformulation of quantum theory + ML can help. A similar formulation
is used in quantum Bayesian theory.

» Heuristic using language translation models to simulate quantum circuits.
» Good: Optimization problem is relatively easy

» But: requires a lot of samples/tricks to improve variance in the gradients
» Parallelize over GPUs

» Would like to find generative models directly living in the gplex

OUTLOOK

» Run other simple quantum algorithms on the transformer

» Real-time dynamics, Linblad equation, etc



NOTATION SLIDE: PENROSE NOTATION
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Matrix Product States (MPS) Matrix Product Operators (MPO)

https://www.math3ma.com/blog/matrices-as-tensor-network-diagrams
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NOTATION SLIDE: DIRAC NOTATION
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Quantum computing for the very curious https://quantum.country/gcvc
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MEASUREMENTS: POSITIVE OPERATOR VALUED MEASURES (POVM)

CONSTRUCTING POVMS: TAKE A SINGLE QUBIT POVM AND MAKE A TENSOR PRODUCT OF MANY

Pauli measurement for one qubit

M paui = {M(O) = p(3) x |0)(0 M = p(3) x [1)(1],
M) = p(1) x [+)(+], M) = p(1) x [=)(~],
M) = p(2) x |r)(r], MY = p(2) x [1){] |3

Experimental realization:
* Choose a random direction (x,y,z) with probability 1/3

* Measure along the chosen direction

* 6 possible outcomes: If x -> + or -;ify->rorl;ifz0or 1



MEASUREMENTS: POSITIVE OPERATOR VALUED MEASURES (POVM)

CONSTRUCTING POVMS: TAKE A SINGLE QUBIT POVM AND MAKE A TENSOR PRODUCT OF MANY

Pauli measurement for one qubit

x [0)(0], M™M= p(3) x [1)(1],
M) = p(1) x |[4+)(+|, M) = p(1) x |=){(—],
< |ry(r|, M® = p(2) x [1){] },

For multiqubit systems  Mpaui Q) Mpaui & Mpauti & Mpawi & Mpaui & Mpaui X

we will consider

M={M“YgM*g. M}y

Experimental realization: pick a random direction with
probability 1/3, then measure in that direction on each qubit
independently

Easy to implement in gate-based QC (Qiskit, Cirq, Rigetti, etc. )



HOW IS THIS USEFUL
FOR QUANTUM
TECHNOLOGY?




MEASUREMENTS

» Suppose we want to measure the quantum state. The measurement is
described by some other POVM H(b)

ZP )T, L, Tr [M<a>n<b>} =3 " g(bla) P(a’)

q(bla’) Z T Tr [MW)H(”)]

> can be characterized as a somewhat conditional probability since its
entries can either be positive or negative but its trace over b is the
identity.

> evocative resemblance with the law of total probability—> quantum law
of total probability in quantum Bayesianism.



QUASIPROBABILITY

PAPER « OPEN ACCESS

Negative quasi-probability as a resource for quantum
computation

Victor Veitch®, Christopher Ferriel, David Gross? and Joseph Emerson

Published 8 November 2012 = |IOP Publishing and Deutsche Physikalische Gesellschaft
New Journal of Physics, Volume 14, November 2012

1

Abstract

A central problem in quantum information is to determine the minimal physical resources that are
required for quantum computational speed-up and, in particular, for fault-tolerant quantum
computation. We establish a remarkable connection between the potential for quantum speed-up and
the onset of negative values in a distinguished quasi-probability representation, a discrete analogue of
the Wigner function for quantum systems of odd dimension. This connection allows us to resolve an
open question on the existence of bound states for magic state distillation: we prove that there exist
mixed states outside the convex hull of stabilizer states that cannot be distilled to non-stabilizer target
states using stabilizer operations. We also provide an efficient simulation protocol for Clifford circuits
that extends to a large class of mixed states, including bound universal states.
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