Solving Quantum Many-Body Problems with DNN
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Ultracold atomic physics

Precision measurement:
Measurement of physical constants, Testing fundamental theories,...

Practical applications in industry, defense, space ...

Mine-exploration Navigation/GPS Space-based 10-meter drop tower
Atomic clock (Kasevich)



Ultracold atomic physics

Coherent Quantum Phenomena

8
|
High Temperature: Low Temperature:
Random thermal motion Underlying quantum behavior

dominates revealed



Curse of Hilbert Space

Size of the Hilbert Space for a general quantum many-body system
increases exponentially as the number of particles grows.

“Nature isn't classical, and
if you want to make a
simulation of Nature, you'd
better make it quantum
mechanical, and it's a
wonderful problem,
because it doesn't look so
easy.” (Richard Feynman)




Quantum Simulator

The machine would have the capacity to contain an exponentially
large amount of information without using an exponentially large
amount of physical resources, thus making it a natural tool to
perform quantum simulation.

Quantum system
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Quantum Simulator

Physical quantum simulators

Atoms lons Electrons

Iulia Buluta and Franco Nori, Science 326,108 (2009)



Quantum Simulator

Digital quantum simulators --- quantum computers

Classical Bit Qubit

Still a long way from reality ...



Simulating quantum system on classical computer

In principle, fully characterizing a quantum system requires an
exponentially large number of parameters. It would be useful if many-
body states could be represented in such a way that some physical
quantities could be calculated in a more efficient way.

Matrix product states
Projected entangled-pair states Neural networks
Tensor product network states

This new class of algorithms makes it possible to simulate certain
quantum systems which would have not been possible with traditional
numerical methods.

Moreover, these methods can be combined with Monte Carlo techniques.



RBM for quantum many-body physics

Variational Monte Carlo
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Fig. 3. Finding the many-body ground-state energy with neural-network quantum states (NQS).

The error of the NQS ground-state energy relative to the exact value is shown for several test cases. Ising/Heisenberg
Arbitrary precision on the ground-state energy can be obtained upon increasing the hidden-unit density o.

(A) Accuracy for the 1D TFI model, at a few values of the field strength h and for an 80-spin chain with

periodic boundary conditions (PBCs). Points below 1072 are not shown to enhance readability. (B) Accuracy

for the 1D AFH model, for an 80-spin chain with PBCs, compared with the Jastrow ansatz (horizontal

dashed line). (C) Accuracy for the AFH model on a 10-by-10 square lattice with PBCs, compared with the

precision obtained by EPS [upper dashed line (35)] and PEPS [lower dashed line (36)]. For all cases

considered here, the NQS approach reaches MPS-grade accuracies in one dimension and systematically

improves the best known variational states for 2D finite lattice systems.

G. Carleo, M. Troyer,
Solving the Quantum Many-Body Problem with Artificial Neural Networks,
Science 355, 602 (2017)
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From shallow to deep neural network

PHYSICAL REVIEW LETTERS 122, 065301 (2019)

Quantum Entanglement in Deep Learning Architectures

Yoav Levine,"" Or Sharir,"" Nadav Cohen,”* and Amnon Shashua'*
'"The Hebrew University of Jerusalem, 9190401 Israel
2School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540, USA

Modern deep learning has enabled unprecedented achievements in various domains. Nonetheless,
employment of machine learning for wave function representations is focused on more traditional
architectures such as restricted Boltzmann machines (RBMs) and fully connected neural networks. In this
Letter, we establish that contemporary deep learning architectures, in the form of deep convolutional and
recurrent networks, can efficiently represent highly entangled quantum systems. By constructing tensor
network equivalents of these architectures, we identify an inherent reuse of information in the network
operation as a key trait which distinguishes them from standard tensor network-based representations, and
which enhances their entanglement capacity. Our results show that such architectures can support volume-
law entanglement scaling, polynomially more efficiently than presently employed RBMs. Thus, beyond a
quantification of the entanglement capacity of leading deep learning architectures, our analysis formally
motivates a shift of trending neural-network-based wave function representations closer to the state-of-the-
art in machine learning.



1D SU(N) spin chain

Nsite @
H=)¢&,, 1 !
i1 N

One spin at one site.
Each spin can take N possible orientations (values).
N controls the complexity of the system.

An important model for quantum magnetism.
Effective model for a system of 1D strongly interacting particles.

Exact solvable using Bethe Ansatz method [Sutherland, PRB 12, 3795 (1975)].



Convolutional Neural Network
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CNN capable of capturing local features.
Suitable for physical models with short-range interactions.



CNN for guantum many-body physics
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CNN for guantum many-body physics
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CNN for guantum many-body physics

Transform to a new exchange operator :
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Elen B =1218,0) a#p

H = Z Eiit1

All off-diagonal elements becomes negative (Stoquastic Hamiltonian)

Perron—Frobenius theorem guarantees non-negative ground state w.f.



Variational Monte Carlo (VMC)

Variational calculation
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Gradient Optimization

Traditional VMC optimization method
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Gradient Optimization

Traditional VMC optimization method

oOFE
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1. Sample a batch of states (MCMC)
2. Calculate the local energy and local derivative for each states

3. Calculate the derivatives of energy function, and update parameters

Each of these steps can be done rather efficiently if the number of
variational parameters is small.

In traditional VMC, number of variational parameters: 10° ~ 10?

This, however, won’t be the case for DNN.



Importance Sampling Gradient Optimization

Importance Sampling Gradient Optimizer (ISGO)
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Importance Sampling Gradient Optimization
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At each iteration step, network parameters are updated Ny e times.



Importance Sampling Gradient Optimization

CPU vs. GPU, ISGO vs. conventional GO

L=16,F=8,K=3
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over one order of magnitude speed up with ISGO

More dramatic speedup on GPU over CPU for more complicated networks



Results

Energy convergence and correlation function

Nsite =60, F =8, K= 3 non-local spin correlation function
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Yang et al. arXiv:1905.10730



Results

value encoding vs. one-hot encoding
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Yang et al. arXiv:1905.10730



Summary

e We’ve built a fully convolutional DNN to represent QM w.f.
e Tested its performance on a 1D SU(N) spin-chain model

e Developed the Importance Sampling Gradient Optimization method
e Effects of different encoding on the input state

https://github.com/liyang2019/VMC-I1SGO

Yang et al. arXiv:1905.10730



Outlook

Quantum w.f. are in general complex-valued.
How to handle complex wavefunctions?
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Developing efficient
complex-valued
DNN is essential for
quantum physics
applications.



Outlook

Many quantum systems possess distinct symmetry properties.
How to impose symmetries on networks?

Ab-Initio Solution of the Many-Electron Schrodinger Equation with Deep Neural
Networks

David Pfau, James S. Spencer, and Alexander G. de G. Matthews
DeepMind, 6 Pancras Square, London N1C JAG

W. M. C. Foulkes
Department of Physics, Imperial College London, South Kensington Campus, London SW7 2AZ
(Dated: September 6, 2019)

Fermi Net (built-in Fermi statistics)
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Outlook

How can such studies help us better understand the mechanism of deep
learning?

physics ML




