Graph Convolutional Neural Networks
for Molecule Generation

Xavier Bresson

School of Computer Science and Engineering
Data Science and Al Research Centre
Nanyang Technological University (NTU), Singapore

Joint work with Thomas Laurent (LMU)

IPAM Workshop
From Passive to Active: Generative and

EREEN N ANYANG Reinforcement Learning with Physics

TECHNOLOGICAL d NATIONAL RESEARCH FOUNDATION
UNIVERSITY September 23 2019 PRitE MINISTER's OFricE

SINGAPORE

Xavier Bresson




Xavier Bresson

@ Graph ConvNets

® Molecule Generation

@ Conclusion

Outline




Xavier Bresson

@ Graph ConvNets

Outline




Graph Neural Networksl!!

@ NNs specialized to data on graphs.

@ Minimal inner structures to design GNNs :

@ Invariant by vertex re-indexing (no graph
matching is required)

@ Locality/local reception field (only neighbors are
considered)

@ Weight sharing (convolutional operations)

® Independence w.r.t. graph size

h; = fGNN ({hj 1y — Z}>

® What instantiation of fony 7

[1] Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini, The Graph Neural Network Model, 2009
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Graph Recurrent Neural Networks
° with Multi-Layer Perceptron (MLP)M :

hi =Y Cowmur(®ishj) = Ac(Bo(Uz; + Vhy))

Jj—1 J—1
® Graph GRU3l (Gated Recurrent Unit) :

hi = Cq.cru (@i, Z h;)

Fixed-point iterative scheme needed : ]_”
nto= > nh, w0 =uy
Jj—1
2t = o(U.hl + V.
ritl = o(U.ht +V,hb)
iLE—H = tanh(Uh(hg © TZT_H) + V}jLE)
P = (-2 o+ o R

[1] Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini, The Graph Neural Network Model, 2009
[2] Li, Tarlow, Brockschmidt, Zemel, Gated Graph Sequence Neural Networks, 2015

Xavier Bresson [3] Cho, Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio, Learning Phrase Representations using RNN for Statistical Machine Translation, 2014
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Graph ConvNets

[123] GCNM (with ReLU) and GraphSAGED! (with max)
hf‘i‘l = CG-VCN (hf, Z hﬁ) , hf:O =x;
j—1

= ReLU(U'R{ + VY _hf), hli™" =u,

Jj—1

N
.77h’j

layer ¢ layer £+ 1

[1] Bruna, Zaremba, Szlam, LeCun, Spectral networks and locally connected networks on graphs, 2013

[2] Defferrard, Bresson, Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, 2016
[3] Sukhbaatar, Szlam, Fergus, Learning Multiagent Communication with Backpropagation, 2016

[4] Kipf, Welling, Semi-Supervised Classification with Graph Convolutional Networks, 2017

[5] Hamilton, Ying, Leskovec, Inductive representation learning on large graphs, 2017
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Gated Graph ConvNetsl!

with edge gating mechanism leveraging!?>4, residuality!®l and

batch normalization!l :
W = b 4 ReLU (BN <U£hf +3 04 @ V%ﬁ))

Jj—1
\ edge gates

(anisotropic property)

Nij =0 (Aehf + Behﬁ)

layer ¢ layer £+ 1

[1] Bresson, Laurent, Residual gated graph convnets, 2017

[2] Sukhbaatar, Szlam, Fergus, Learning Multiagent Communication with Backpropagation, 2016

[3] Hamilton, Ying, Leskovec, Inductive representation learning on large graphs, 2017

[4] Marcheggiani, Titov, Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling, 2017

[5] He, Zhang, Ren, Sun, Deep Residual Learning for Image Recognition, 2016

[6] Ioffe, Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, 2015

The idea is to design the
simplest learnable
anisotropic and
multiscale diffusion
operator on graphs
[Perona-Malik’87

inspiration]
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Graph Attention Networks!!

in 1-hop neighborhood :

leey o (Dol whent))

J—
softmaxi_pop(VE*hY)

L,k 0
oV E R

RN
Zj—m’ e’

Self-attention layer £

[1] Velickovic, Cucurull, Casanova, Romero, Lio, Bengio, Graph Attention Networks, 2018

layer ¢+ 1
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Graph RNNs vs Graph ConvNets/AttentionNets

@ Numerical study to compare both graph architectures!') on two basic and representative
graph problems:

® Sub-graph matching?

® Semi-supervised classification

[1] Bresson, Laurent, Residual gated graph convnets, 2017
[2] Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini, The Graph Neural Network Model, 2009
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Numerical Experiments

@ Graph learning problem : 2
. 0
® Pattern matching .
2
P
@ Experimental results:
90 4 144 — Proposed Graph ConvNets //
——— Marcheggiani — Titov g
—— Sukhbaatar et al ,/”
85 124 === Graph LSTM Vil -7
9 === Multilayer Li et al il /,/’
) -7 g
2 80 1 210 o
5 = - -
8 £ T et
<754, b= PP
—— Proposed Graph ConvNets o 8 PRadiPtiae
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70 1 —— Sukhbaatar et al
——- Graph LSTM 6
—-== Multilayer Li et al
65 1 T
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1 2 3 4 5 6 7 8 9 10
L

@ All graph NNs are upgraded with residuality and batch normalization (offers 10% improvement).
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Numerical Experiments

@ Graph learning problem :

® Semi-supervised clustering

@ Experimental results :

161 — Proposed Graph ConvNets 80
——— Marcheggiani — Titov -
141 — sukhbaatar et al 0
=== Graph LSTM
312 M If‘l Lietal - %
A ~ ==~ Multilayer Li et al -
& £ - >
8 2 10 potes - g%
5 £ - - 5
S = g - S 40
< 40 S 8 -7 -7 < e
—— Proposed Graph ConvNets \\ g 30 F e —— Proposed Graph ConvNets
304 —— Marcheggiani — Titov N H '/ Marcheggiani — Titov
—— Sukhbaatar et al 204 / —— Sukhbaatar et al
20 --- Graph LSTM ,j/ —== Graph LSTM
1o = Mutiayer Lietal 10 -~ Multilayer Li et al

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 0 25 50 75 100 125 150 175 200
L L Time (sec)

@ ConvNets architectures that can be deep (by stacking many layers) offer competitive
performances for graphs with variable sizes.
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Anisotropy vs Isotropy

Standard ConvNets produce anisotropic filters because Euclidean grids have
directional structure.

Graph ConvNets compute isotropic filters because there is no notion of
directions on arbitrary graphs.

How to get anisotropy back in GNNs ?

® Fdge gatesl!!/attention mechanism/? information to treat neighbors
differently.

@ Differentiate graph edges’l (e.g. different connections between atoms)

[1] Bresson, Laurent, Residual gated graph convnets, 2017
[2] Velickovic, Cucurull, Casanova, Romero, Lio, Bengio, Graph Attention Networks, 2018
[3] Gilmer, Schoenholz, Riley, Vinyals, Dahl, Neural message passing for quantum chemistry, 2017
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® Molecule Generation
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Molecule Generation

@ Goal is to design a neural network that can

® Auto-encode molecules,

® Generate novel molecules,

® Produce molecules with optimized chemical property.

Paper : https://arxiv.org/pdf/1906.03412.pdf

Xavier Bresson
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https://arxiv.org/pdf/1906.03412.pdf

Graph Auto-Encoder

® Graph-to-Graph Model :

— Encoder — l o } — Decoder —

\

Fncoding molecules with Y
graph-to-vec model

Decoding latent vector with

vec-to-graph model
(Continuous) lah @4&

representation of molecules

Xavier Bresson
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Graph Encoder

Graph NNs has been used to encode molecules into a continuous vectorial space.

® GNNs used for regression s.a. Duvenaud-Goémez-Bombarelli-Aspuru-Guzik-et-allll, Gilmer-
Riley-et.all?l to predict molecular properties (1-2 orders of magnitude faster than solving

Schrodinger equation w/ DFT).
Graph RNNs, Graph ConvNets, Graph Attention Nets

hi — fnode({hj}aj S N(@))

AR ggraph({hi}ai S V) = 7§:§

Reduce function : Sum or Mean

[1] Duvenaud, Maclaurin, Iparraguirre, Bombarell, Hirzel, Aspuru-Guzik, Adams, Convolutional networks on graphs for learning molecular fingerprints, 2015
[2] Gilmer, Schoenholz, Riley, Vinyals, Dahl, Neural message passing for quantum chemistry, 2017
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Decoder & Graph Generation

@ Encoding is easy.
® Two approaches :

@ Auto-regressive models : Sequential generation of
molecules (atom-by-atom).

® Jin-et.al, 20181, You-Leskovec-et.al, 20182,
etc

(a) State — G, Scaffold — €

n n n
/2 = Sample [QINodelD d
= & A S0P [SiNodeld A render 01 Step reward
Qw .® EdgeType pdale Final reward
n n
t
©O— (oJstop

n
©
l L
©) n n n
& 6, e R E o
@) Observe n/ \ n Sample ﬂ Act render \
\ Node,D Slep reward
© ‘® = Q= © R S’D EdgeType pm Flnal reward
_ © [1]stop
- - . (d) Dynamics
(b) GCPN — m(arlG, U C) (C)Action—a,~7g  p(Gess|Gertr) (e)State — G,y (f)Reward —r;

You-Leskovec-et.al, 2018

P(G|G) by graph matching

® One-shot models : Generation of all atoms and
bonds in a single pass.

(@)

l>_

® Simonovsky, Komodakis, 20188, De Cao,
Kipf, 201814, etc

[1] Jin, Barzilay, Jaakkola, Junction Tree Variational Autoencoder for Molecular Graph Generation, 2018

@—
:
E

=

5(2|G)

po(Glz)

]

Simonovsky, Komodakis, 2018

[2] You, Liu, Ying, Pande, Leskovec, Graph convolutional policy network for goal-directed molecular graph generation, 2018

[2] Simonovsky, Komodakis, GraphVAE: Towards generation of small graphs using variational autoencoders, 2018
[4] De Cao, Kipf, MolGAN: An implicit generative model for small molecular graphs, 2018

Xavier Bresson




One-Shot Decoder

@ A challenge with one-shot decoder is to

Xavier Bresson

® It is hard to generate simultaneously :
@ The number of atoms,
@ The atoms,
@ The bond structures between the atoms.

® Authors!"? generated molecules with a fixed size (the size of the largest molecule).

P(G|G) by graph matching

© i@ (4] K

94(2|G)

Po(Gl2)

[1] Simonovsky, Komodakis, GraphVAE: Towards generation of small graphs using variational autoencoders, 2018
[2] De Cao, Kipf, MolGAN: An implicit generative model for small molecular graphs, 2018




Our Decoder

@ We propose to disentangle these 3 problems :

Atom
generation Molecule formula,
EX: OCzF4Li7Cl3SsA].2NeB\
ke l n 1 I | I I i
' O N C F Li C1 S Al Ne B
Latent _ Bag-of-atoms
representation Bond structure _
of the molecule Bond w/ molecule formula Sum of histogram is the number
generation R of atoms in a molecule

Xavier Bresson 19




Atom Decoder

@ We decode the latent representation of the molecule with a Multi-Layer Perceptron (MLP)
to produce the histogram over the atoms in a molecule :

[ —1.2 ]
i1 MLP
0.3
> I
5.9
or | N |
O N C F
Latent
representation of Bag-of-atoms
the molecule
0C;
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Bond Decoder

@ The bag-of-atoms indicates what atoms are in the molecule (IKEA pieces),

@ The atoms are assembled with a graph NN (IKEA assembly instructions).

Graph
Bag-of-atoms Net
0C; |
O C

representation

Latent 1
of the molecule l l

Xavier Bresson

Decoded
molecule




Beam Search

® The one-shot model may produce a chemically molecule.

® Violation of atom valency (maximum number of electrons in the
outer shell of the atom that can participate of a chemical bond).

® We use beam search to produce valid molecules.

Xavier Bresson

®Electron from hydrogen
®Electron from carbon

[\
[\




Beam Search

@ Start with a random edge. @ @
@ Select the next edges that

@ have the largest probability (or Bernouilli sampling), Q Edge probability map

iven by the output of
@ are connected to selected edges, given by Bhe outpit 0

the graph NN.
@ do not violate valency.
@ Repeat for a number of different initializations.
@ Select the molecule that maximizes =
@ The product of edge probabilities or, o
@ The chemical property to be optimized s.a. druglikeness (QED), . o

NONE SINGLE DOUBLE TRIPLE AROMATIC

constrained solubility (logP), etc.

Xavier Bresson 23




Summary

@ Molecule auto-encoder system :

-1.2
4.1
-0.3
2.1

GDraph(i\Tet Edge
ceoder Probability
Matrix

>

5.9
-0.1

Latent representation
of the molecule

Input molecule
MLP

Decoder

O N C F

Bag-of-atoms
0GC;

Xavier Bresson

Beam search

Output molecule




Encoder Description

@ We use graph ConvNet!! :

Graph
representation

-

.

W = h! + ReLU <BN (thf +> i oW, hﬁ)) with  77;; =

jevi

©J

N
z = Z U(AeiLj—l-Bhf—FC’hJL)@Wefj
ij=1

[1] Bresson, Laurent, Residual gated graph convnets, 2017

Xavier Bresson

Input molecule

Graph
@ ConvNet o
© ’@ Encoder 03
—_—

U(efj)

|

Latent representation
z of the molecule

Dense

el = ¢! 4 ReLU <BN (erfj F VIR + VE h§)>

D it J(efj/

)+e

attention




Bond Decoding during Training

@ Given the latent encoding z of the molecule and the bag-of-atoms z,,,, we use a graph ConvNet
to decode the bonds between the atoms :

Z 2.1
0 [INN O C C (]
Latent molecule CGraIIiIht = - N
representation onvive
iz,
o
(@)
@) W
1 2 - J\\ o .
. . Edge Edge probability
B I I boa 1 Probability
O N C F 0 Matrix . i.ﬂ
B&g—Of—&tOHlS » NONE SINGLE = DOUBLE TRIPLE AROMATIC
given by input molecule
N,OC;
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Bond Decoding at Test Time

@ The bag-of-atoms of the input molecule is predicted by a MLP :

o [INN O C C (]
Latent molecule Graph — N
representation ConvNet ;
l MLP O
@)
@) N
1 o~ J\\ " o
2 Edge Edge probability
0 I I Zboa | 3 Probability
0O N C F 0 Matrix . i i a

NONE SINGLE DOUBLE TRIPLE AROMATIC

Bag-of-atoms
predicted by MLP
N,OC;

[\
N |
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Breaking symmetry

@ The bond decoder starts with Be=0 — [ Zato: |

C
@ This is not enough for the graph NN to be able

to differentiate the 3 atoms of Carbon and the 2
atoms of Nitrogen !

@ We break the symmetry by introducing
positional features z,., , which will

differentiate several atoms of the same type.

o We this positional feature with N
the atom type z,, to form the input node
feature of the decoder.

hg:o _ [ Zatoj }

Zpos;

Xavier Bresson




Positional Features

® We need to
® We use the SMILE representation of molecules to order the atoms.

@ A SMILE is a sequence of string characters that encodes atoms and bonds of a molecule.

SMILE ( p\:/\/@ ) =  FC(F)(F)C1=CC=CC(NC2=|[N+](CCC3=CC=CC=C3)...

...C(C3=CC=C(Cl)C=C3)=CS2)=C1

(F,1) (C,1) (F,2) (F,3) (C,2)...

Xavier Bresson 29




@ Finally, we use a

7
(C)
© ’
©
Input molecule g
Graph
ConvNet
Encoder

[1] Kingma, Welling, Auto-encoding variational bayes, 2013

Xavier Bresson

Variational Auto-Encoder

[ to improve molecule generation “by filling the latent space” :

Graph

L ConvNet G

73;:1; Decoder @ @
2o

—0.1

©

Output molecule
(after beam search)

Latent representation
of the molecule

MLP
Decoder

(6] N C F
Bag-of-atoms
0GC; 30




@ No matching process necessary between input and output molecules because the same

Xavier Bresson

Loss

is composed of
@ Cross-entropy loss for edge probability,
@ Cross-entropy loss for bag-of-atoms probability,

@ Kullback-Leibler divergence for the VAE Gaussian distribution.

~ ~ )\vae
L:)\ezpelogpe"‘)\azpalogpa_ 9 Z(l_'_logo-i_:ui_O—I%
e a k

atom ordering is used (with the SMILE representation).

)




e ZINC:

® 250k drug like molecules,

Dataset

@ Up to 38 heavy atoms (excluded Hydrogen).

Xavier Bresson
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Training

@ Mini-batch of 50 molecules
@ Learning rate is decreased by 1.25 after each epoch if training loss does not decrease by 1%.

@ Learning stops when LR is less than 10°.

@ Training takes 28 hours on a single Nvidia 1080Ti GPU.

Xavier Bresson




Numerical Experiments

@ How many molecules are correctly decoded?

® Molecule novelty

@ Beyond memorization — how many molecules sampled from the learned distribution
are not in the training set?

® Molecule optimization

Xavier Bresson

@ How much property improvement can we obtain when optimizing in the latent space?

@ The chemical property is here the constrained solubility of molecules.




Main Baseline Techniques

@ JT-VAE : Jin, Barzilay, Jaakkola, Junction Tree Variational Autoencoder for Molecular
Graph Generation, 2018

© GAN +RL + AR :

Xavier Bresson

@ GCPN : You, Liu, Ying, Pande, Leskovec, Graph convolutional policy network for goal-
directed molecular graph generation, 2018
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Molecule Reconstruction

Method Reconstruction Validity
CVAE [Gomez-Bombarelli et al., 2016] 44.6% 0.7%
GVAE [Kusner et al., 2017] 53.7% 7.2%
SD-VAE [Dai et al, 2018] 76.2% 43.5%
GraphVAE [Simonovsky, Komodakis, 2018| - 13.5%
JT-VAE (SL) [Jin et al, 2018| 76.7% 100.0%
GCPN (GAN+RL) [You et al, 2018] - -
OURS (VAE+SL) 90.5% 100.0%

Table 1: Percentage of successful reconstruction of 250k ZINC molecules.

Xavier Bresson
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Molecule Novelty

Method Novelty Uniqueness
JT-VAE (SL) [Jin et al, 2018] 100.0% 100.0%
GCPN (GAN+RL) [You et al, 2018] - -
OURS (VAE+SL) 100.0% 100.0%

Table 2: Sample 5000 molecules from learned prior distribution.

oo @y u & g D9
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Molecule Optimization #1

@ Molecule optimization :

@ Goal is to

@ Optimization is done by gradient ascent in the latent space of molecules.

@ Following JT-VAE, we report the top 3 optimized molecules :

Method Ist 2nd 3rd Mean

ZINC 452 430 4.23 4.35

CVAE, Gémez-Bombarelli et al. [2018] 198 142 1.19 1.53
GVAE, Kusner et al. [2017] 294 289 280 2.87
SD-VAE, Dai et al. [2018] 404 350 296 3.50
JT-VAE, Jin et al. [2018] 530 493 449 490

OURS (VAE+SL) 524 510 506 5.14

GCPN (GAN+RL), You et al. [2018] 798 785 780 7.88

Xavier Bresson
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Molecule Optimization #1

® Top 3 optimized molecules :

Xavier Bresson

i @\j\’:‘ O O
OO ¥ 7w A
JT-VAE (VAE+SL) A0 ] o 9

NH . \@ Mean is 4.90
iNH HF ©\C|
! © E’r @ 4.49 c 4.93
OURS (VAE+SL) Q , O ) Q | J
U O Q/ ]
) ®
5.24 5.14 5.06 Mean is 5.14
GCPN (GAN+RL) Hj}f(: Mﬂ%q H%»
7.98 7.48 7.12 Mean is 7.52
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Molecule Optimization #2

@ Constrained optimization :

® Goal is to maximize the constrained solubility of the 800 test molecules with the lowest
value.

@ The optimization of the chemical property is constrained by the similarity between the
original molecule and the new generated molecule.

@ Following JT-VAE, we report property improvements w.r.t. molecule similarity & :

JT-VAE [Jin et al, 2018] (SL) GCPN [You et al, 2018] (GAN+RL) OURS (VAE+SL)

0  Improvement Similarity ~ Success Improvement Similarity Success Improvement Similarity Success
0.0 191+204 028+0.15 97.5% 420 +1.28 0.32 +£ 0.12 100.0% 5.24 + 1.55 0.18 £ 0.12 100.0%
0.2 168+185 033+0.13 97.1% 412+ 1.19 0.34 £ 0.11 100.0% 4.29 +£ 1.57 0.31 £0.12 98.6%
0.4 0.84+145 0.51 £0.10 83.6% 249 + 1.30  0.47 £ 0.08 100.0% 3.05 + 1.46 0.51 + 0.10 84.0%
0.6 021+0.71 0.69 + 0.06 46.4% 0.79 £ 0.63  0.68 £ 0.08 100.0% 2.46 + 1.27 0.67 = 0.05 40.1%

Table 7: Molecule optimization results.

Xavier Bresson 40
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Molecule
similarity 0.0

Molecule
similarity 0.2

Molecule
similarity 0.4

Molecule
similarity 0.6

Molecule Optimization #2
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@ Conclusion
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Conclusion

® We propose for atoms and bonds decoding.
@ We report highest VAE accuracy on ZINC dataset for
@ Molecule reconstruction,
@ Molecule optimization of constrained solubility property.
@ Comparing VAE+SL vs GAN+RL :
® GAN+RL generates better molecules (outside the training statistics),
@ VAE+SL generates better optimized molecules similar to original ones,

® GAN+RL generates optimized molecules with 100% success.




Conclusion

@ An alternative to auto-regressive graph NN methods.
@ We have solved the molecule generation task with :
® Single-shot reconstruction + beam search

@ Simple and fast solution (GPU parallelizable)

® Next steps :
@ SL to RL : Learn molecules beyond training statistics.

@ Large molecules by hierarchical representation (represent molecules of N atoms with log(IN)
layers with graph coarsening)

@ (Collaboration with domain experts to solve chemical tasks !

Xavier Bresson
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(Questions
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