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The drug design processes

Which problem do we want to solve?

Drug design is the process of finding new drugs
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The first step is Drug Discovery
screening large compound libraries
designing of new unknown molecules (de novo)
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Our contributions

How others proposed to study the problem?

Generating SMILES representations [Gómez-Bombarelli et al., 2016]

Generating labeled graphs [Simonovsky and Komodakis, 2018]

How do we study the problem?

Using labeled graphs

Likelihood-based vs. likelihood-free methods (VAE vs. GAN)

Biasing the process using reinforcement learning
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Background

Nicola De Cao (nicola-decao.github.com) Deep Generative Models for Graphs September 24, 2019 4 / 36



Variational Auto-Encoders

Likelihood-based generative process [Kingma and Welling, 2013]

Image credit [Hafner, 2018]
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Training VAEs I

X

Z θ

N

Figure: Graphical model of a simple VAE.

Trained to maximize the log-evidence:

log pθ(x(i)) = log

∫
pθ(x(i), z) dz
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Training VAEs II

X

Z θφ

N

Figure: Graphical model of a simple VAE.

Evidence Lower Bound (ELBO)

Optimizing a lower bound of the loss makes the problem feasible:

log pθ(x(i)) ≥ Eqφ(z|x(i))

[
log pθ(x(i)|z)

]
− DKL

[
qφ(z|x(i)) ‖ pθ(z)

]
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Generative Adversarial Networks

Likelihood-free generative process [Goodfellow et al., 2014]

z ∼ pz(z)

x ∼ pdata(x)

Gθ x̃

Dφ [0, 1]

Figure: Schema of GAN architecture.
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Training GANs

Originally proposed loss:

min
θ

max
φ

Ex∼pdata(x) [logDφ(x)] + Ez∼pz(z) [log(1− Dφ(Gθ(z))]

but there are better alternatives:

f-GAN [Nowozin et al., 2016];

WGAN [Arjovsky et al., 2017];

WGAN-GP [Gulrajani et al., 2017] (used in this work).
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Reinforcement Learning

Can we train a non-differentiable generative process?

Agent

Environment

state reward

update

action

Figure: Reinforcement Learning loop schema.
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Deep Deterministic Policy Gradient (DDPG) I

How to learn a RL policy?

Deep deterministic policy gradient [Lillicrap et al., 2016]

s ∼ ρ µθ a

Qφ R
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Deep Deterministic Policy Gradient (DDPG) II

Off-policy deterministic policy gradient

Update θ according to [Silver et al., 2014]:

L(µθ) = Es∼ρ,a=µθ(s) [Qφ(s, a)]

∇θL(µθ) = Es∼ρ,a=µθ(s) [∇aQφ(s, a) ∇θµθ(s)]

and φ with:

L(Qφ) = Es∼ρ,a=µθ(s)
[
‖Qφ(s, a)− r(s, a)‖2

]
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Models
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Vectorial representation of graphs I

(a) (b) (c)

A

X

Figure: The molecule (a) is represented as an labeled graph (b) which can be
encoded into an adjacency tensor A and an annotation matrix X.
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Vectorial representation of graphs II
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Vectorial representation of graphs III
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Graph Convolutional Networks I

Technically:

(f ∗ g)(t) =

∫
Rn

f (τ)g(t − τ)dτ

but in practice we do discrete convolutions:

(f ∗ g)[n] =
∑
m∈S

f (m)g(n −m)
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Graph Convolutional Networks II

Figure: Graph convolution on an image.

Nicola De Cao (nicola-decao.github.com) Deep Generative Models for Graphs September 24, 2019 18 / 36



Graph Convolutional Networks III

On images the topology is regular and neighbours are pixels

On graphs the topology is arbitrary and neighbours are nodes
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Graph Convolutional Networks in practice

Edge-type-conditioned convolutions based on Relational-GCN
[Schlichtkrull et al., 2018]:
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Molecular graph VAE

eϕ dθ

A

X

zμ

×

σ

ε

+ A

Xˆ

ˆ

The reconstruction loss is a sum of two categorical cross entropy losses.
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Molecular graph GAN

From generator to discriminator with differentiable sampling
[Jang et al., 2017].
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Molecular graph GAN with RL

Molecular graph
Generator Discriminator

Reward 
network

z ~ p(z)

0/1

0/1

x ~ pdata(x)

Architecture from our previous work MolGAN [De Cao and Kipf, 2018]
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Experiments
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Experiments

Which questions we would like to answer?

likelihood-based vs. likelihood-free (VAEs vs. GANs)

the effect of RL towards chemical objectives

is generating a graph better than a SMILES representation?

Experiments on QM9 [Ramakrishnan et al., 2014].
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VAE advantages and disadvantages

VAEs train an encoder!

VAE objective: reconstruction loss and divergence

RL objective: sampled molecules should maximize a score

There is a mismatch between these two!
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Synthetic accessibility score (SAS) distributions I
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Figure: WGAN matches the data distribution of the synthetic accessibility score
[Ertl and Schuffenhauer, 2009].
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Synthetic accessibility score (SAS) distributions II
pr

ob
ab

ili
ty

d
en

si
ty

score

Figure: WGAN in combination with RL push the distribution of the synthetic
accessibility score (SAS) to be as low as possible.
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Trade-off between WGAN and RL

Method validity uniqueness QED*

λ = 0.0 (full RL) 100.00 3.16 0.61
λ = 0.125 100.00 7.21 0.61
λ = 0.25 99.80 10.16 0.61
λ = 0.375 99.90 11.11 0.60
λ = 0.5 99.40 31.29 0.56
λ = 0.625 97.20 49.69 0.51
λ = 0.75 93.70 64.35 0.51
λ = 0.875 89.40 69.69 0.50
λ = 1.0 (no RL) 90.10 63.91 0.50

Table: WGAN and RL objectives trade-off. *QED is the quantitative estimate of
drug-likeness [Bickerton et al., 2012].
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Evolution of the QED during training

epochs

sc
o
re

Figure: Evolution of the QED during training with different λ values.
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Comparison with VAE based methods

Method validity uniqueness novelty

CharacterVAE 10.3 67.5 90.0
GrammarVAE 60.2 9.3 80.9
GraphVAE 55.7 76.0 61.6
GraphVAE/imp 56.2 42.0 75.8
GraphVAE NoGM 81.0 24.1 61.0

Our VAE 61.5 97.6 69.1
Our VAE with RL 89.1 11.1 92.3
Our WGAN 89.2 26.5 55.7
Our WGAN with RL 99.6 14.5 97.7

Table: Baseline results from [Gómez-Bombarelli et al., 2016, Kusner et al., 2017,
Simonovsky and Komodakis, 2018]
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Comparison with a GAN based method

Method validity SAS time (h)

ORGAN 96.5 0.83 8.7
OR(W)GAN 97.6 0.75 9.6
Naive RL 97.7 0.83 10.6

Our VAE with RL 89.6 0.71 0.09
Our VAE with RL (full QM9) 94.0 0.86 2.2
Our WGAN with RL 100.0 0.70 0.15
Our WGAN with RL (full QM9) 99.8 0.92 3.3

Table: Baseline results from ORGAN [Guimaraes et al., 2017].
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Best QED samples

(a) Best VAE with RL molecules.

(b) Best WGAN with RL molecules.

Figure: Top four molecules with QED scores.
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Conclusion and future work
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Conclusion

Considering experimental, we identify these further contributions:

recurrent SMILES generation is more computational expensive

likelihood-based models are difficult to be optimized with RL

... but keeping in mind and those limitations:

we experimented using compounds of at most 9 atoms

models are susceptible to mode collapse
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Future work

We identify four principal directions for future work:

address mode collapse [Srivastava et al., 2017]

combine variational approaches with adversarial learning to benefit
from both approaches [Mescheder et al., 2017, Rosca et al., 2017]

train our models on ChEMBL [Gaulton et al., 2011]

more realistic reward functions [Li et al., 2018]
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