Machine Learning
for Lattice Field Theory
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The structure of matter

Nuclear physics from the
Standard Model of fundamental particles

MATTER ATOM NUCLEUS NUCLEON

PROTONS,
ELECTRON NUCLEUS NEUTRONS QUARK

GLUONS



The search for new physics

Precise experiments seek new physics
at the “Intensity Frontier”

© Sensitivity to probe the rarest Standard Model
interactions

~ Search for beyond—Standard-Model effects

Dark matter direct detection  *°v? k gl

Neutrino physics

Charged lepton flavour violation, BB-decay,
proton decay, neutron-antineutron oscillations...

CHALLENGE: understand the physics of nuclei used as targets



Strong interactions

Study nuclear structure from the strong interactions

Quantum Chromodynamics (QCD)

Strongest of the four forces In nature

Forms other types
of exotic matter
e.g., quark-gluon
plasma

Binds quarks and
gluons Into

protons, neutrons, Binds protons and
pions etc. neutrons into nuclel




Lattice QCD

Numerical first-principles approach to
non-perturbative QCD

Discretise QCD onto 4D space-time lattice

QCD equations <@ integrals over the values of quark and
gluon fields on each site/link (QCD path integral)

~ 012 variables (for state-of-the-art) - Evaluate by importance
sampling

o Paths near classical action

x*/\,_* dominate
X
o Calculate physics on a set

(ensemble) of samples of

the quark and gluon fields
tot) t2 th t



Lattice QCD

Workflow of a lattice QCD calculation

@ Generate field configurations
via Hybrid Monte Carlo

Leadership-class computing
~ 00K cores or |000GPUs, |0's of TF-years
O(100-1000) configurations, each ~10-100GB

@ Compute propagators Contractinto
correlation functions

~few GPUs
O(100k-1M) copies

Large sparse matrix inversion
~few 100s GPUs

| Ox field config in size, many per config

Computational cost grows exponentially with size of nuclear system
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Lattice QCD

Generate field configurations ¢(x) with probability
Plp(x)] ~ e So(2)]

o Gauge field configurations represented by
~1010 links U, (x) encoded as SU(3) matrices
(3x3 complex matrix M with det[M] =1 , M~ =M™
.e., ~ 102 double precision numbers

~ Configurations sample probability distribution
corresponding to LQCD action S[¢]
(function that defines the quark and gluon dynamics)

Weighted averages over configurations determine

physical observables of interest

© Calculations use ~ 103 configurations



Generate QCD gauge fields

Generate field configurations ¢(z) with probability
Plé(x)] ~ e Slo(a)]

Molecular dynamics

Classical motion with
conjugate

1= o)

© Reversible
© Volume-preserving
BUT

© Energy non-conservation for
numerical integrators

Markov Chain Monte Carlo

Propose update using integrated
molecular dynamics trajectory

Accept/ reject with probabillity
o = min(1, eS¢’ @] +S[8(@)))

~ Numerical error corrected by
accept/reject
BUT
© Short trajectories for high
acceptance



Generate QCD gauge fields

Generate field configurations ¢(z) with probability
Plé(x)] ~ e Slo(a)]

Hamiltonian/Hybrid Monte Carlo

correlated
A
( \
B e S P R Y i
“ Y,
Y
burn-in (discard) sample every nth: ~p(¢)

Burn-in time and correlation length dictated by Markov chain
‘autocorrelation time’: shorter autocorrelation time implies less
computational cost



Accelerating Lattice QCD

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

Updates diffusive

Lattice spacing * 0

Number of
updates to change
fixed physical
length scale

- o

“Ceritical slowing-down”
of generation of uncorrelated samples



Accelerating Lattice QCD

QCD gauge field configurations sampled via

Hamiltonian dynamics + Markov Chain Monte Carlo

“Ciritical slowing-down”

of generation of uncorrelated samples

Autocorrelation measure

. 1 Tmax
Ty = 5 + lim BO(T)

gt L@/ Critical
To — Qo exponent

Correlation of observable (D on
configurations separated by 7 Markov
Chain steps

topological
charge

[Schaefer et al. / ALPHA C%)ration 1009.5228]
10000 .

k a'5

- ==

(0.37 fm/a)
k2 e

(19nt 100
b O
10}
5 fm, 0.5 fm) SN
~
1 - . . ‘
mean flux 0-047 0.07  0.093 0.14
a[fm]

critical [Imit



Machine learning QCD

Accelerate gauge-field generation via ML

Multi-scale algorithmes:

barallels with image recognition
Shanahan et al.,, PRD 97,094506 (2018)

Generative models to replace
Hybrid Monte-Carlo

barallels with image generation
Albergo et al., arXiv:1904.12072 (2019)

‘¥= 21 Michael Albergo
L (NYU)

Gurtej Kanwar
= (MIT)

Consider only approaches which rigorously
preserve quantum field theory in applicable limits
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Generative models to replace
Hybrid Monte-Carlo
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Multi-scale HMC updates

Given coarsening and refinement procedures...

-

@ coarsen refine

Endres et al.,, PRD 92, 114516 (2015)



Multi-scale HMC updates

Perform HMC updates at coarse level
Fine ensemble
rethermalise

\ I with fine action

coarsen HMC* to make exact

Multiple layers of
coarsening

\ 4

Significantly cheaper
approach to
continuum limrt

Endres et al.,, PRD 92, 114516 (2015)




Multi-scale HMC updates

Perform HMC updates at coarse level

encode same

4= long-distance =P

pDhysICS

Map a subset of physics parameters

MUST KNOW in the coarse space and match to
parameters of coarse coarsened ensemble
QCD action that OR

reDr ALL physi
cp oduce PSS Solve regression problem directly:

paramders’. of fine “Given a coarse ensemble, what
simulation parameters generated it!"



Multi-scale HMC updates

Perform HMC updates at coarse level

Match action

<+ parameters at -

different scales

. S Label
Image § == "% el “Colliding black

Zonetwork: s y
A VRe holes




Multi-scale HMC updates

Perform HMC updates at coarse level

Match action

= parameters at >

different scales

Label

& Neural -
m—.vi m-} Parameters
Zonetwork: s .
N AT of action

Coarsened |
ensemble of lattice

QCD gauge field
configurations




Parameter matching via NN

Match action

<+ parameters at - 4

different scales

© Parameter matching can be done on smaller (cheaper) ensembles than
state-of-the-art target ensembles

© Regression does not need to be exact — corrected by rethermalisation
(also, cannot be exact; a given gauge field could, with some probabillity, have

been generated from a different action)

~ All of the work Is at the coarse scale
TASK: given a coarse configuration, find the corresponding action parameters

»Training (and training data) needed in coarse space only



Machine learning LQCD

Ensemble of lattice QCD

ool Physics Is invariant under
gauge fields

specific field transformations

643 x128 x4 x N2 x 2

= | 0” numbers Rotation, translation (4D),
with boundary conditions

~ 1000 samples

Gauge field Transformed
configuration gauge field configuration

Ensemble of gauge fields has
meaning

' & |
L] S S -
# e

Long-distance correlations
are Important

...................................

Gauge and translation- G &=

invariant with periodic
boundaries Encode same physics




Machine learning LQCD

Ensemble of lattice QCD Physics is invariant under
gauge fields specific field transformations

643 x128 x4 x N2 x 2

= (08 Furlsee Gauge transformation

i Uu(a) = Q@)U (@) (2 + )
Uy () ) for all Q(x) € SU(3)

~ 1000 samples

Ensemble of gauge fields has

meaning Gauge field Transformed

- - configuration auge field configuration
L ong-distance correlations TN

. ol ot ot w? i ~,f§;z§ ﬁ

! : : @ R TR TR e
are important < R

: X g : $

"""E"‘;g.,é:%f"'E'!u:‘b?i%"é's:‘b:’g%"'i """"

: g I -

Gauge and translation- - g
'-;Ui% et ‘Hi%‘ -------

invariant with periodic G R 20 e

boundaries Encode same physics



Naive neural network

Simplest approach @ lgnore physics symmetries

Gauge

Train simple neural network T (state-of the-art ~07)
on regression task

Hidden Hidden

Gauge Field Cop#rGuration units units
96 96

Fully-connected structure = e
—— 5 gutputs
Far more degrees of -
freedom than number of N —
\ \ \ 0.4
training samples avallable AN
Dropout
0.3
“Inverted data Recipe for

hierarchy” overfitting!



Naive neural network

Training and validation
datasets

-0.7r

= 09"

-1.01

Quark mass parameter
mo
*

_11 T T S T [N S TR T
1.75 1.80 1.85 1.90

8
Parameter related
to lattice spacing

* * * ‘”7 validation datasets
-0.8

sk Parameters of training and

O(10,000){ndependend

configurations
generated at gach point

Validation
configurdtions
randoly selected from
genefated streams

Spacing in evolution stream >>
correlation time of physics

observables




Naive neural network

Neural net predictions

on validation data sets SUCCESS?

CT) —0.75 7
GEJ o o ® | No sign of overfitting
© 0.8/ : Training and validation loss equal
®© , .
Q % * * Accurate predictions for
@A E g i validation data
2 | f
- f % % % |
x 1ol ; BUT fails to generalise to
%5 . . Ensembles at other parameters
o P New streams at same
1.75 1.80 1.85 1.90

parameters

Parameter related to lattice spacing
NOT POSSIBLE IF CONFIGS

* True parameter values ARE UNCORRELATED

Confidence interval from ensemble of gauge fields



Naive neural network

Stream of generated gauge fields at given parameters

- - -

\Training/validation data selected from configurations /
spaced to be decorrelated (by physics observables)

Network succeeds for validation configs Network has identified
from same stream as training configs feature with a longer
Network fails for configs from new correlation length than any

stream at same parameters known physics observable



Naive neural network

Naive neural network that does not respect symmetries falls at
parameter regression task

BUT

|dentifies unknown feature of gauge fields with a longer correlation
length than any known physics observable

Network feature autocorrelation 2 mmax—00 p(0) £
spo——————————————————————
1.0 Autocorrelation in evolution | Network-ldgntlﬁgd feature
: L : : | , autocorrelation time
0.8 time using identification of 30/
parameters of configurations
0.6/ at the end of a training stream .
| = 20
0.4/ | . ,
: Max physics observable
0.2 10/ autocorrelation time
0.0 |




Symmetry-preserving network

Network based on symmetry-invariant features

Closed Wilson loops
(gauge-invariant) Loops
___________________ TN N Correlated products
] wew | of loops at various
length scales

........................

Zounnn s v Volume-averaged and
""" D £y i s S S i ,
| rotation-averaged



Symmetry-preserving network

Network based on symmetry-invariant features

Symmeterized

Loop Products )
4212 Hidden

units

Gauge Field Configuration

Fully-connected
network structure

First layer samples
from set of
possible
Ssymmetry-
invariant features

Dropout
0.8

Number of degrees of freedom of network
comparable to size of training dataset



Gauge field parameter regression

Neural net predictions Predictions on
on validation data sets new datasets
_ Los T j Los-
e | ﬁ ,
O oo ® %] 100" 4 3
T 0.95 : 0.95" %
3 | | f
0 |§ 0.90" x % % %] |§ 0.90 - %
@ , ] ,
g 0.85 0.85
E 0.80; sk %k %k sk ” 0.80;
D [ A I
d 075 ] 0750
175 180 185 190 195 200 175 180 185 190 195 2.0
B B
Parameter related *  True parameter values

to lattice spacing Confidence interval from

ensemble of gauge fields



Gauge field parameter regression

Neural net predictions Predictions on
on validation data sets new datasets
1.05- ] 1.057*“””‘”H“HWHH‘HHM
1.00; % sk 100" 4 %k
0.95?

- SUCCESS!

Accurate parameter regression

0.85"

Quark mass parameter

080; and successful generalisation
N ] 0750
1.75 1.80 1.85 1.90 1.95 2.00 1.75 1.80 1.85 1.90 1.95 2.00
B g
Parameter related *  True parameter values

to lattice spacing Confidence interval from

ensemble of gauge fields



Tests of network success

How does neural network regression perform compared
with other approaches?

Consider very closely-spaced validation ensembles at new
parameters

|||||||||||||||||

_os Sets along lines of constant
I x| Wilson loop (most

:/ |
g precise feature allowed by
5 network)

Much closer spacing
than separation of
training ensembles

lllllllllllllllll




Tests of network success

How does neural network regression perform compared
with other approaches?

Consider very closely-spaced validation ensembles at new

parameters: not distinguishable to principal component analysis
in loop space

Figenvalues H|stograrrls of dominant ege@gnvectors
150 | | ‘ | 150F ‘ ‘ ‘
37—
: 100/ Set A SetB 100
2l o
Q): Oooo
g 1 o, o
~ : OO : o0 00
0 voo 1007 ] 1007
_17 wwwwwwwwwwwww
0 5% 10 15

1.18 1.20 1.22 124 1.26 0.10 0.11 0.12 0.13 0.14



Tests of network success

How does neural network regression perform compared
with other approaches?

Consider very closely-spaced validation ensembles at new
parameters: distinguishable to trained neural network

050 7 Correct ordering of
* central values

Accurate regression
differences even at very
fine resolution




Gauge field parameter regression

PROOF OF PRINCIPLE

Step towards fine lattice generation
at reduced cost

niM

%W!\)—

Guarantees
correctness

-INnd Matc

C upc

Refine and

3

retherma

. Generate one fine configuration
ning coarse action
'es In coa

"SC€ SPACC

I5C Accurate matching
minimises cost of

updates in fine space

Shanahan, Trewartha, Detmold, PRD (2018) [1801.05784]



Machine learning QCD

Accelerate gauge-field generation via ML

Multi-scale algorithmes:

barallels with image recognition
Shanahan et al.,, PRD 97,094506 (2018)

Generative models to replace
Hybrid Monte-Carlo

barallels with image generation
Albergo et al., arXiv:1904.12072 (2019)

Gurtej Kanwar

iy '= -1 | Michael Albergo
= (MIT) 5

(NYU)

Consider only approaches which rigorously
preserve quantum field theory in applicable limits



Sampling gauge field configs

Generate field configurations ¢(z) with probability
Po(x)] ~ e~ 5140)

y =2
e
unlikely =1 |;|:!i_i
(log prob = -6107) i

00} .
o 0
'# B -60 -40 -20 O 20 40 60 80
. . log p




ampling gauge field configs

Generate field configurations ¢(z) with probability
Po(x)] ~ e~ 5140)

Parallels with image generation problem

‘ ) A N |

h ' | - ;I

likely e ®80 o8
(log prob = 22) l

unlikely
(log prob =-6107)|

oo

likely

likely
(log prob =35) &




Sampling gauge field configs

Probability density can be computed for a given sample

up to normalization
P ) p(.)=e )z

Physics distributions have precise symmetries
o Lattice symmetries (translation, rotation, reflection)

© Internal symmetries (gauge symmetries mixing field components)

Data hierarchies are challenging
© 107 to 1012 variables per configuration

© O(1000), samples available (fewer than # degrees of freedom per config)

Hard to use training paradigms that rely on existing samples from
distribution



Generative flow models

Flow-based models learn a change-of-variables that transforms

a known distribution to the desired distribution
[Rezende & Mohamed 1505.05770]

Invertible -
i of 1
& | aste)= | 2B gy
Tractable < |
Jacobian)
_1 —
[ @
Z ¢
I"(Z) A ﬁf(gb)*

Approximates

Easily sampled _ :
desired dist.



Generative flow models

Flow-based models learn a change-of-variables that transforms

a known distribution to the desired distribution
[Rezende & Mohamed 1505.05770]

Invertible -
N of 1
& | aste)= | 2B gy
Tractable < |
Jacobian)
_1 —
/@
Z ¢
r(z) ﬁf(¢)
-~ g g S 2’ -
=
\ )

Many simple layers
composed to produce f

Approximates

Easily sampled _ :
desired dist.



Generative flow models

Choose real non-volume preserving flows:

[Dinh et al. 1605.08803) f Application of g-

Affine transformation of half of the variables:

© scaling by exp(s)
© translation by t

© sand t arbitrary neural networks depending on
untransformed variables only

Simple inverse and Jacobian

\ f”\\\
LT ba l.\¢b/}
’ Z & N " ! - \\ )./‘/ V\'ﬁx;_,‘; /
L2 .
\\s ,', “‘ ,'l _1
r(z) M\
& gl_] > - -



Generative flow models

Choose real non-volume preserving flows:
[Dinh et al. 1605.08803]

Density can be
squished/stretched by

Affine transformation of half of the variables: change-of-variables

© scaling by exp(s) split \z;/ izlb_
© translation by t t,
© sand t arbrtrary neural networks depending on Ai

untransformed variables only - )
Can use physically-motivated
choices of variable splits
e.g. checkerboard building
correlations between nearest

Simple inverse and Jacobian

neighbours
A A —
L g (2
r(z Pr(P)
@) M\ o o P N
1 n



Training the model

Target distribution 1s known up to normalisation

p(¢) =e>9)Z

Train to minimise shifted KL divergence: izang, g wang 1809.10188]

shift removes unknown

L(py) := Dgr(psllp) normalisation /

_ / [[d6;57(6) (08 ps(6) + 5(0))

\

allows self-training: sampling with respect to

model distribution p¢(¢)to estimate loss




Exactness via Markov chain

Guarantee exactness of generated distribution by forming a
Markov chain: accept/reject with Metropolis-Hastings step

Acceptance
probability

s T p—— (1 p(a" ) P(Qb'))

p(et) B(¢)

proposal independent
of previous sample

Markov
Chain

model
proposals




Exactness via Markov chain

Guarantee exactness of generated distribution by forming a
Markov chain: accept/reject with Metropolis-Hastings step

Acceptance
probability

p(0=1)|p(9) > True dist

o -
A(¢""",¢") = min (1 p(¢=D)B(¢)]) Model dist

-~

proposal independent
of previous sample

Markov
Chain

model
proposals




Fields via flow models

| »
i
»

_r - i ’ -1 ‘; B ’ 5‘._‘_‘ ’
Cd H B éb

generating samples is
"embarrassingly parallel”

Parameterize flow using Real
NVP coupling layers

Each layer contains

!

Training step

‘ Draw samples from model ‘
|

‘ Compute loss function ‘
|

‘ Gradient descent ‘

A\

arbitrary neural nets
sandt

Desired accuracy?

Markov chain using
samples from model

3

Save trained
model

_J

Summary chart: Tej Kanwar



Application: scalar field theory

First application: scalar lattice field theory

One real number ¢(x) € (—o0, 00) per lattice site x (2D lattice)

Action: kinetic terms and quartic coupling

> |
xZr

S(é) =3 (X 6(@)0(z, y)é(y) + smH(x)* + A¢<x>4>

> lattice sizes: L2 = {62, 82, 104, 122, |44} with parameters tuned for
analysis of critical slowing down

E1l E2 E3 E4 E5
B 6 8 10 12 14
m? —4 —4 —4 Y | —4
A 6.975 6.008 5.550 5.276 5.113
mpyL| 3.96(3)  3.97(5)  4.00(4) 3.96(5)  4.03(6)




Application: scalar field theory

First application: scalar lattice field theory

Prior distribution chosen to be uncorrelated

Gaussian: qb(:l:) N N(O, 1)

Real non-volume-preserving (NVP) couplings

* 8-12 Real NVP coupling layers

* Alternating checkerboard pattern for variable split

* NNs with 2-6 fully connected layers with [00-1024

hidden units
Train using shifted KL loss with Adam optimizer R L
i
* Stopping criterion: fixed acceptance rate in Metropolis- L5 -':h

Hastings MCMC L



Application: scalar field theory

First application: scalar lattice field theory

Compare with standard updating algorithms:‘local’, " HMC

; ¥ o
T Y
. E."-'I": ELL o T

¥ !
ori
I : - I I . _. -l. n

. I = B he T i = 5 .\ A

[ " Pl L . : a e

e
i S y TLE ,_'.-i' i B B boch o

s R T <._-J§ﬂ§ % " e =

. _“:.- | i L E ﬁ‘fh‘a

ML model produces varied samples and correlations at the right scale

=




Application: scalar field theory

First application: scalar lattice field theory

Compare with standard updating algorithms:‘local’, " HMC

Count
104+ | B 62 ML
1(1)88 w B 62 HMC
107 _I_l—._l—'—-
1 L
104+ | B 102 ML
o0 B 102 HMC
19 —
104} I 142 ML
1000 B 142 HMC
100 ¢ —1_
10+
1 L I
0 20 40 60 30

Run length

Rejection runs In the
Metropolis-Hastings
accept/reject step are
comparable to those in
Hamiltonian Monte-Carlo
tuned to same acceptance



Application: scalar field theory

First application: scalar lattice field theory
Compare with standard updating algorithms:‘local’, " HMC

Physical observables match
computed on ensembles
generated from ML model
and from standard methods

62 82 102 192 12 V

Two-point susceptibility Yo = Z Galz)
T

e 1 R
Ising limit energy E:E Z G.(f1)

0.05E. \ | | |
62 82 102 192 142 V



Application: scalar field theory

First application: scalar lattice field theory

Compare with standard updating algorithms:‘local’, " HMC
v/ Var(x2)

0.06: &
0.00f #
0.04¢

Uncertainties in physical
observables follow
statistical scaling as the
number of samples Is
Increased

0.03 |

0.02

1000 2000 5000 10000 4V

Var(F)
2.5x10-4[
2.0x1074 4

red dashed curve;

x 1/vVN

1.5x1074}

1.0x1074 |

1000 2000 2000 10000 N



Application: scalar field theory

First application: scalar lattice field theory

Success: Critical slowing down Is eliminated

Cost:
51 O X2
| o G(0)
2 L
71:44(3)
1t 2
L -~
; [/().61(2),,’6 _ =
- ® F==F--
0.5 7,0:31(2)
§ 8 10 12 14

(a) HMC ensembles

Tint ' oFE L1‘94(5)/’®
ﬁ g
5l HX2 R
&
| o G.(0) JA37(5) 4
,E"
® P
ot -
T d
2 =] ,/6
® e 7,146(5)
B &
Ly
e
0.5}
§ 8 10 12 14

(b) Local Metropolis ensembles

Up-front training of the model

Tint | OFE o G.0)
5: o xe A Acc
| i 50% ML models
A Q @.___ﬁ__.g
9! 7,-0.06(5)
'''''''''''''''' L_—E).T)I(T)'
L I T
I 70% ML models
0.51

6 s 10 12 u L
(c) Flow-based MCMC ensembles
Dynamical critical exponents
consistent with zero



Next steps

Target application: lattice quantum chromodynamics
for particle and nuclear physics

* 4 dimensions, typical lattice size 483 x 96

* Gauge theory 1e., fields take matrix values at each site, with
physics invariant under symmetry transformations

|, Scale number of dimensions
2. Scale number of degrees of freedom
3. Methods for gauge theories



Next steps

| Scale number of dimensions

Costs scale up, but no theoretical obstacle
Successful tests for scalar field theory

30% acc, no hyperparameter tuning required

Samples generated for ¢* theory with V=83 m?=-6.0, A=14.590
mL ~ 4, matching CSD investigation of [Vierhaus, Thesis, doi:10.18452/14138]



Next steps

2. Scale number of degrees of freedom

Instead of fully-connected neural networks, consider convolutions and
hierarchical structure

* Explicitly preserves translational invariance

* Makes scaling physical volume easy

Transfer trained net +
10 mins retraining

gy

o

3.5 days training



Next steps

3. Methods for gauge theories

Stereographic projection coupled with standard
methOdS [Gemici, Rezende, Mohammed 1611:02304]

Other approaches!



Machine learning for LQFT

Accelerate gauge-field generation

Multi-scale matching PROOF OF
PRINCIPLE

Generative models to replace

expensive HMC  PROOF OF
PRINCIPLE

L earn parameters of a
complicated pure-gauge action
(cheap) to reproduce action
with dynamical fermions
(expensive)




Machine learning for LQFT

Optimise extraction of physics from gauge fields

Optimise source operator P
construction e
== beat down excited _ ,
+ OF
states SN »
= 2.5f |
New analysis approaches S . Et><<t:|ted Signal Noise | | |
A ' - o states ¢ -
to maximise signal-to-noise - l OT ‘ ‘ ‘ P17
*beatdovvnnmse e R

Accelerated algorithms have huge potential to enable
first-principles nuclear physics studies



