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Nuclear physics from the  
Standard Model of fundamental particles

The structure of matter 
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Dark matter direct detection

Neutrino physics

Charged lepton flavour violation, ββ-decay,  
proton decay, neutron-antineutron oscillations…

Sensitivity to probe the rarest Standard Model 
interactions 
Search for beyond—Standard-Model effects

The search for new physics

Precise experiments seek new physics 
at the “Intensity Frontier”

CHALLENGE: understand the physics of nuclei used as targets



Study nuclear structure from the strong interactions

Quantum Chromodynamics (QCD)

Strongest of the four forces in nature

Strong interactions

Binds quarks and 
gluons into 
protons, neutrons, 
pions etc.

Binds protons and 
neutrons into nuclei

Forms other types 
of exotic matter 
e.g., quark-gluon 
plasma 



Discretise QCD onto 4D space-time lattice

QCD equations           integrals over the values of quark and 
gluon fields on each site/link (QCD path integral)

~1012 variables (for state-of-the-art)

Lattice QCD

Evaluate by importance 
sampling
Paths near classical action  
dominate
Calculate physics on a set 
(ensemble) of samples of 
the quark and gluon fields
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Numerical first-principles approach to  
non-perturbative QCD



Workflow of a lattice QCD calculation

Lattice QCD

Generate field configurations 
via Hybrid Monte Carlo

Leadership-class computing

~100K cores or 1000GPUs, 10’s of  TF-years

O(100-1000) configurations, each ~10-100GB

Compute propagators
Large sparse matrix inversion

~few 100s GPUs

10x field config in size, many per config

Contract into 
correlation functions

~few GPUs

O(100k-1M) copies 
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Computational cost grows exponentially with size of nuclear system 



Workflow of a lattice QCD calculation

Lattice QCD

Generate field configurations 
via Hybrid Monte Carlo

Leadership-class computing

~100K cores or 1000GPUs, 10’s of  TF-years

O(100-1000) configurations, each ~10-100GB

Compute propagators
Large sparse matrix inversion

~few 100s GPUs

10x field config in size, many per config

Contract into 
correlation functions

~few GPUs

O(100k-1M) copies 

1

2 3

Computational cost grows exponentially with size of nuclear system 



Gauge field configurations represented by  
~1010  links             encoded as SU(3) matrices  
(3x3 complex matrix      with                     ,                   )  
i.e., ~1012 double precision numbers

Configurations sample probability distribution 
corresponding to LQCD action   
(function that defines the quark and gluon dynamics)

Weighted averages over configurations determine 
physical observables of interest

Calculations use ~103 configurations
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ABSTRACT

Nuclear and particle physicists seek to understand the structure of matter at the
smallest scales through numerical simulations of lattice Quantum Chromodynam-
ics (LQCD) performed on the largest supercomputers available. Multi-scale tech-
niques have the potential to dramatically reduce the computational cost of such
simulations, if a challenging parameter regression problem matching physics at
different resolution scales can be solved. Simple neural networks applied to this
task fail because of the dramatic inverted data hierarchy that this problem dis-
plays, with orders of magnitude fewer samples typically available than degrees
of freedom per sample. Symmetry-aware networks that respect the complicated
invariances of the underlying physics, however, provide an efficient and practical
solution. Further efforts to incorporate invariances and constraints that are typical
of physics problems into neural networks and other machine learning algorithms
have potential to dramatically impact studies of systems in nuclear, particle, con-
densed matter, and statistical physics.

1 DATA

LQCD is a Markov Chain Monte-Carlo (MCMC) importance sampling method based on the gen-
eration of ensembles of configurations of the underlying physical degrees of freedom (quark and
gluon fields) Rothe (1992). Configurations are represented as sets of links Uµ(x) between sites on
four-dimensional hypercubic space-time lattices (x denotes the spacetime coordinates of the origin
site and µ the direction of the link). Each link can be encoded as an SU(3) matrix (a 3⇥ 3 complex
matrix M with M�1 = M† and det[M ] = 1, where M† = (M⇤)T is the Hermitian conjugate),
and a configuration is encoded by O(107) links, i.e., O(109) floating point or double precision
numbers for a typical state-of-the-art calculation. Since these configurations sample the probability
distribution corresponding to the LQCD action (a function defining the quark and gluon dynamics),
weighted ensemble averages determine physical observables of interest; calculations typically use
ensembles of O(103) configurations.

The parameter regression task studied here is the determination of the LQCD action parameters, �
and m, corresponding to a given ensemble of configurations. Because of the significantly inverted
data hierarchy of LQCD datasets, this is a challenging problem. However, the physics encoded by
an ensemble of configurations is invariant under a number of complex symmetries, namely discrete
space-time translations and rotations on the hypercubic space, as well as ‘gauge transformations’.
The latter are continuous Lie group transformations at each space-time point on the lattice, i.e.,
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Lattice QCD

New simulation strategies 
for lattice gauge theory
Michael G. Endres Lattice 2016

Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Michael G. Endres, Richard C. Brower, William Detmold, Kostas Orginos, Andrew V. Pochinsky

Multigrid  ideas for HMC
Very important and difficult problem
Major focus of US Exascale Software
project
(see Poster by Mike Endres)
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ABSTRACT

Nuclear and particle physicists seek to understand the structure of matter at the
smallest scales through numerical simulations of lattice Quantum Chromodynam-
ics (LQCD) performed on the largest supercomputers available. Multi-scale tech-
niques have the potential to dramatically reduce the computational cost of such
simulations, if a challenging parameter regression problem matching physics at
different resolution scales can be solved. Simple neural networks applied to this
task fail because of the dramatic inverted data hierarchy that this problem dis-
plays, with orders of magnitude fewer samples typically available than degrees
of freedom per sample. Symmetry-aware networks that respect the complicated
invariances of the underlying physics, however, provide an efficient and practical
solution. Further efforts to incorporate invariances and constraints that are typical
of physics problems into neural networks and other machine learning algorithms
have potential to dramatically impact studies of systems in nuclear, particle, con-
densed matter, and statistical physics.

1 DATA

LQCD is a Markov Chain Monte-Carlo (MCMC) importance sampling method based on the gen-
eration of ensembles of configurations of the underlying physical degrees of freedom (quark and
gluon fields) Rothe (1992). Configurations are represented as sets of links Uµ(x) between sites on
four-dimensional hypercubic space-time lattices (x denotes the spacetime coordinates of the origin
site and µ the direction of the link). Each link can be encoded as an SU(3) matrix (a 3⇥ 3 complex
matrix M with M�1 = M† and det[M ] = 1, where M† = (M⇤)T is the Hermitian conjugate),
and a configuration is encoded by O(107) links, i.e., O(109) floating point or double precision
numbers for a typical state-of-the-art calculation. Since these configurations sample the probability
distribution corresponding to the LQCD action (a function defining the quark and gluon dynamics),
weighted ensemble averages determine physical observables of interest; calculations typically use
ensembles of O(103) configurations.

The parameter regression task studied here is the determination of the LQCD action parameters, �
and m, corresponding to a given ensemble of configurations. Because of the significantly inverted
data hierarchy of LQCD datasets, this is a challenging problem. However, the physics encoded by
an ensemble of configurations is invariant under a number of complex symmetries, namely discrete
space-time translations and rotations on the hypercubic space, as well as ‘gauge transformations’.
The latter are continuous Lie group transformations at each space-time point on the lattice, i.e.,
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distribution corresponding to the LQCD action (a function defining the quark and gluon dynamics),
weighted ensemble averages determine physical observables of interest; calculations typically use
ensembles of O(103) configurations.

The parameter regression task studied here is the determination of the LQCD action parameters, �
and m, corresponding to a given ensemble of configurations. Because of the significantly inverted
data hierarchy of LQCD datasets, this is a challenging problem. However, the physics encoded by
an ensemble of configurations is invariant under a number of complex symmetries, namely discrete
space-time translations and rotations on the hypercubic space, as well as ‘gauge transformations’.
The latter are continuous Lie group transformations at each space-time point on the lattice, i.e.,
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Generate QCD gauge fields
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Hamiltonian/Hybrid Monte Carlo

Burn-in time and correlation length dictated by Markov chain 
‘autocorrelation time’: shorter autocorrelation time implies less 
computational cost

Computational approach to lattice theories (2)

● Need to wait for "burn-in period"

● Configurations close to each other on the chain will be correlated, so must 
take many steps before drawing independent samples

● Burn-in and correlations both related to Markov chain "autocorrelation time"
→ smaller autocorrelation time means less computational cost!
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Updates diffusive

QCD gauge field configurations sampled via 

Hamiltonian dynamics + Markov Chain Monte Carlo

Lattice spacing 0

Number of 
updates to change 

fixed physical 
length scale

∞

“Critical slowing-down”  
of generation of uncorrelated samples

Accelerating Lattice QCD



Critical slowing down

● As parameters in the Hamiltonian / action
approach criticality, for Markov chains
using local updates, autocorrelation time
diverges

● Fitting 𝜏int to power law behavior gives dynamical critical exponents

● Smaller critical exponent = cheaper, closer approach to criticality

21

[Schaefer et al. / ALPHA collaboration 1009.5228]

topological
charge

mean flux

QCD gauge field configurations sampled via 

Hamiltonian dynamics + Markov Chain Monte Carlo

“Critical slowing-down”  
of generation of uncorrelated samples

Accelerating Lattice QCD

critical limit

Autocorrelation time

● Well-behaved Markov chains have a "mixing time" determining how many 
updates required to burn in / decorrelate samples

○ Hard to compute directly except for very special chains
○ Dominated by the slowest mixing mode

● Practically useful alternative: integrated autocorrelation time for an observable

20

two-point correlation 
separated by tau 

Markov chain steps

Autocorrelation measure

Critical slowing down

● As parameters in the Hamiltonian / action
approach criticality, for Markov chains
using local updates, autocorrelation time
diverges

● Fitting 𝜏int to power law behavior gives dynamical critical exponents

● Smaller critical exponent = cheaper, closer approach to criticality

21

[Schaefer et al. / ALPHA collaboration 1009.5228]

topological
charge

mean flux

Correlation of observable O on 
configurations separated by tt Markov 
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Parameter matching can be done on smaller (cheaper) ensembles than  
state-of-the-art target ensembles

Regression does not need to be exact — corrected by rethermalisation  
(also, cannot be exact; a given gauge field could, with some probability, have 
been generated from a different action)

All of the work is at the coarse scale
TASK: given a coarse configuration, find the corresponding action parameters

Training (and training data) needed in coarse space only

Parameter matching via NN
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invariant with periodic 
boundaries

Machine learning LQCD

Physics is invariant under 
specific field transformations

Rotation, translation (4D), 
with boundary conditions

Gauge field 
configuration

Transformed  
gauge field configuration

Encode same physics
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3

tion value of an operator O that defines some physical quantity is given by:

hOi =
1

Z

Z
D D ̄DAO[ ,  ̄, A] e�S[ , ̄,A] (1)

=
1

Z

Z
DUÕ[U ] e�S̃[U ]

, (2)

where Z =
R
D D ̄DA e

�S[ , ̄,A], the (anti-)fermion and gluon fields (gauge fields) are denoted
by  ( ̄) and A, and S[ ,  ̄, A] is the discretised QCD action (defined in Appendix B 1). In the
second line, the fermion and anti-fermion fields are integrated out exactly, and the gauge fields are
transformed to link fields U = e

iA, to give an e↵ective action S̃[U ] and operator Õ[U ] depending
only on the gluon link fields. The resulting integral can be approximated as

hOi u 1

Ncfg

NcfgX

i=1

O[Ui], (3)

where the gauge field configurations Ui (i indexes the configurations in a given “ensemble” of

fields) are distributed according to the probability measure e
�S̃[U ]. In practice, this is guaranteed

by sampling the fields from a Markov chain Monte-Carlo stream for which this probability measure
is a fixed point. These representative gauge fields are the input data for the ML approaches to
parametric regression studied here. For additional details of the LQCD approach, see Refs. [2, 3]
and Appendix B 1.

Lattice QCD gauge fields are represented as links between sites on a 4-dimensional lattice
of volume2 V = L

3
⇥ T , with the lattice sites separated by some physical distance a, typically

0.05–0.15 fm. Each link, labelled by Uµ(x), where x denotes the spacetime coordinates of the
origin site and µ the direction of the link, is encoded by an SU(3) matrix (a 3 ⇥ 3 complex
matrix M with M

�1 = M
† and det[M ] = 1)3. Links in opposing directions are related via

U�µ(x) = U
†
µ(x � µ̂), and only links in the positive direction are stored. In this format, a gauge

field used in typical modern lattice QCD calculations, where for example L = 64 and T = 128, is
described by L

3
⇥T ⇥4⇥18 ⇡ O(109) floating point or double precision numbers, where the factor

of 4 arises from the number of positive spacetime directions (labelled by µ). In order to recover
QCD results, calculations must be performed on a number of ensembles of field configurations with
di↵erent lattice spacings a and lattice volumes V , and the continuum (a ! 0) and large-volume
(V ! 1) limits must be taken.

The governing equations of QCD and their lattice counterparts have a variety of symmetries,
some that are highly non-trivial. The symmetries satisfied by ensembles of gauge fields are of par-
ticular interest in the context of the ML approaches studied here, as they place strong restrictions
on numerical operations that can be performed on lattice data to extract physically meaningful
results. In particular, lattice QCD is invariant under a local symmetry of the gauge fields known
as a gauge symmetry; this is an invariance under local multiplications of link variables by SU(3)
matrices

Uµ(x) ! U
0

µ(x) = ⌦(x)Uµ(x)⌦†(x + µ̂) for all ⌦(x) 2 SU(3), (4)

referred to as a gauge transformation (note that the matrix ⌦(x) di↵ers at every spacetime point).
This symmetry is not apparent from the numerical representation of a QCD configuration, but

2 The spatial, L, and temporal, T , extents of the lattice geometry are often distinct.
3 Here, M† = (M⇤)T is the Hermitian conjugate. An SU(3) matrix can be specified by 8 real numbers, but typically
the redundant representation with 18 real numbers is used.
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�S̃[U ]. In practice, this is guaranteed
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and Appendix B 1.

Lattice QCD gauge fields are represented as links between sites on a 4-dimensional lattice
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Train simple neural network 
on regression task

Fully-connected structure

Far more degrees of 
freedom than number of 
training samples available

Naive neural network

Simplest approach                Ignore physics symmetries

Recipe for 
overfitting!

“Inverted data 
hierarchy”

(state-of-the-art ~109)
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No sign of overfitting 
Training and validation loss equal
Accurate predictions for 
validation data

BUT fails to generalise to
Ensembles at other parameters
New streams at same 
parameters

NOT POSSIBLE IF CONFIGS  
ARE UNCORRELATEDTrue parameter values

Confidence interval from ensemble of gauge fields
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Stream of generated gauge fields at given parameters

Training/validation data selected from configurations 
spaced to be decorrelated (by physics observables)

Network succeeds for validation configs 
from same stream as training configs
Network fails for configs from new 
stream at same parameters

Network has identified 
feature with a longer 
correlation length than any 
known physics observable



Naive neural network that does not respect symmetries fails at 
parameter regression task

BUT 
Identifies unknown feature of gauge fields with a longer correlation 
length than any known physics observable

Naive neural network

0 50 100 150 200
0

10

20

30

40

6

Uµ(x)

x

y

W3⇥2(y)

µ̂

⌫̂

x + µ̂

FIG. 2: Diagrammatic representation of the construction of planar Wilson loops Wk⇥l(x), with indices k

and l denoting the dimensions of the loop (with orientation label suppressed), from gauge links Uµ(x).

where ⌧ is the trajectory di↵erence in the autocorrelation. This function decays exponentially as
⇢(⌧) ⇠ exp[�⌧/⌧exp] at large Monte-Carlo times ⌧ . The decay constant ⌧exp defines an autocor-
relation time. Calculations of the autocorrelation time using this definition can su↵er from large
uncertainties, especially when ⌧exp is small. Another definition of the autocorrelation time is [3, 47]

⌧int =
1

2
+ lim

⌧max!1

1

⇢(0)

⌧maxX

⌧=0

⇢(⌧), (6)

which approaches a constant as ⌧max ! 1. The autocorrelation functions and integrated autocor-
relation times ⌧int for the Wilson loops, and those for the zero-momentum projected pion and rho
two point correlation functions, C⇡(⇢) (defined in Appendix B 1), are shown in Fig. 3. In all cases,
the integrated autocorrelation time is / 10 trajectories, validating the choice to take trajectories
spaced by this distance as an uncorrelated set to form an ensemble. Other observables may have
di↵erent autocorrelation times, but the observables considered here are relatively representative4.

B. Ensemble discrimination using principle component analysis

To guide the application of ML methods to parametric regression of gauge fields in the space
defined by the sample ensembles, the di↵erentiability of the ensembles was assessed using a principle
component analysis (PCA) [48–50]. Since Wilson loops are the simplest gauge-invariant objects,
the basis for the PCA was generated by calculating a set of square planar loops of sizes up to
L/2 ⇥ L/2, as well as 1 ⇥ n for n up to L, averaged over all possible planar orientations and
space-time locations. Averaged loops are denoted Wj⇥l =

P
O(j⇥l)

P
x Wj⇥l(x), where the sum

over O(j ⇥ l) is over all hypercubic transformations of the indicated loop. The averaged loop data
are su�ciently small in dimension that it is possible to display them for a representative set of
ensembles. Fig. 4 shows contour plots of ln |Wn⇥m| from evaluations on each ensemble in the two
L/a = 12 grids (Grids A and B). Figs. 20, 22, and 24 (in Appendix B 2) show histograms for a
subset of the loops for each ensemble in each of Grid A, B, and C, respectively. Clearly, some of the
loops are statistically well determined, and subsets of the ensembles can be clearly distinguished.
Ensembles in Grid C have loop distributions that are more sharply defined than those in Grids A
and B as their larger spacetime volume enables more statistical averaging. For large loop sizes, all
ensembles become hard to distinguish.

4 The topological charge of the gauge field typically has a long autocorrelation time, but at the relatively coarse
lattice spacings used here, it will be comparable to that of the observables that are investigated.
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FIG. 12: Autocorrelation function in Monte-Carlo time (left, defined in Eq. (10)) and autocorrelation time
(right, defined in Eq. (6)) of the feature distinguishing two streams at the same set of parameters, trained on
sequences of gauge field configurations. The autocorrelation function was generated by averaging over many
di↵erent results (trained using all di↵erent pairs of the 10 streams, F1,...,10, at the same parameters), and
was found to be robust under changes of the network structure used to generate it. The dashed horizontal
line on the right figure shows the maximum autocorrelation time of various physics observables (see Fig. 3).

spatially-varying physical quantities such as topological charge density and action density. While
the long–correlation-time feature could not be identified in this study, it provides an interesting
topic for further study. In particular, it will be informative to investigate how this scale changes
with parameter range, particularly in regions of parameter space where topological charge freezing
becomes a di�cult problem for simulations.

B. Custom symmetry enforcing network structure

As described in the previous section, experiments with simple fully-connected neural networks
were not successful at parametric regression of lattice QCD gauge fields for the training data sets
used in this study. This is not unexpected; learning the symmetries of gauge field configurations
stochastically is certain to be a challenging task. Symmetries of lattice QCD, however, act to
reduce the e↵ective degrees of freedom of the problem, and can be incorporated into the structure
and training of neural networks in several ways. First, the stochastic learning of symmetries
can be accelerated through data augmentation (i.e., randomly performing a gauge transformation
and/or translation/lattice rotation on a configuration). This is analogous to typical uses of data
augmentation [74] in, for example, image recognition [75, 76], to introduce symmetries such as
rotational symmetry8. In practice, this was found to be untenable for the case studied here as
a result of the large number of symmetries that must be learned, their complex nature, and the
requirement that they be strictly observed. Secondly, custom network layers can be designed
(or equivalently, data can be pre-processed) to only allow gauge invariant and lattice-symmetry
invariant outputs of the network. This approach is found to be successful.

To incorporate the symmetries of lattice QCD gauge fields into neural network structures,
several custom networks were designed, featuring an initial pre-processing layer that forms only
quantities that respect the invariances of the problem, followed by fully-connected layers operating
on these quantities. The possible gauge and translation-invariant degrees of freedom that are
allowed by the first layer are specified by hand; in principle this choice could be part of the

8 The incorporation of symmetries into various neural network structures has been studied in Refs. [77–80].

Max physics observable 
autocorrelation time

Network-identified feature 
autocorrelation time

Autocorrelation in evolution 
time using identification of 
parameters of configurations 
at the end of a training stream

Network feature autocorrelation



Symmetry-preserving network

Network based on symmetry-invariant features

Loops 
Correlated products 
of loops at various 
length scales
Volume-averaged and 
rotation-averaged

Uµ(x)

x

y

W3⇥2(y)

µ̂

⌫̂

x+ µ̂

Closed Wilson loops 
(gauge-invariant)



Fully-connected 
network structure

First layer samples 
from set of 
possible 
symmetry-
invariant features  

Network based on symmetry-invariant features

Number of degrees of freedom of network 
comparable to size of training dataset

Symmetry-preserving network
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How does neural network regression perform compared 
with other approaches?

Consider very closely-spaced validation ensembles at new 
parameters

Tests of network success

Much closer spacing 
than separation of 
training ensembles

Set B

Set A

Sets along lines of constant 
1x1 Wilson loop (most 
precise feature allowed by 
network)



How does neural network regression perform compared 
with other approaches?

Consider very closely-spaced validation ensembles at new 
parameters:   not distinguishable to principal component analysis 
in loop space

Tests of network success
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How does neural network regression perform compared 
with other approaches?

Consider very closely-spaced validation ensembles at new 
parameters:   distinguishable to trained neural network

Correct ordering of 
central values

Accurate regression 
differences even at very 
fine resolution

Tests of network success



PROOF OF PRINCIPLE 
Step towards fine lattice generation  

at reduced cost

Gauge field parameter regression

Generate one fine configuration
Find matching coarse action
HMC updates in coarse space
Refine and rethermalise 

1.    
2.
3.    
4.  

Guarantees  
correctness

Accurate matching 
minimises cost of 

updates in fine space

Shanahan, Trewartha, Detmold, PRD (2018) [1801.05784]



1. Multi-scale algorithms: 
parallels with image recognition 
Shanahan et al., PRD 97, 094506 (2018)

2. Generative models to replace 
Hybrid Monte-Carlo 
parallels with image generation 
Albergo et al., arXiv:1904.12072 (2019)  
 
 

Machine learning QCD

New simulation strategies 
for lattice gauge theory
Michael G. Endres Lattice 2016

Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Michael G. Endres, Richard C. Brower, William Detmold, Kostas Orginos, Andrew V. Pochinsky

Multigrid  ideas for HMC
Very important and difficult problem
Major focus of US Exascale Software
project
(see Poster by Mike Endres)Gurtej Kanwar  

(MIT)

Flow-based generative models for
MCMC in lattice field theory1

Michael S. Albergo, Gurtej Kanwar, Phiala E. Shanahan

1 [Albergo, GK, Shanahan 1904.12072]
37th International Symposium on Lattice Field Theory

Wuhan, China (June 20, 2019)

Center for Theoretical Physics, MIT

Michael Albergo 
(NYU)

Consider only approaches which rigorously 
preserve quantum field theory in applicable limits

Accelerate gauge-field generation via ML



Sampling gauge field configs

Sampling lattice configs
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Sampling gauge field configs
Generate field configurations         with probability         �(x)

P [�(x)] ⇠ e�S[�(x)]

Parallels with image generation problem

Sampling lattice configs ≅ generating images
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Probability density can be computed for a given sample  
(up to normalization) 

Physics distributions have precise symmetries

Lattice symmetries (translation, rotation, reflection) 

Internal symmetries (gauge symmetries mixing field components)

Data hierarchies are challenging

109 to 1012 variables per configuration 

O(1000), samples available (fewer than # degrees of freedom per config) 

Hard to use training paradigms that rely on existing samples from 
distribution 

Sampling gauge field configs
Sampling lattice configs ≅ generating images

✓ Probability density can be computed for a given sample (up to normalization).

✓ Physics distributions have many symmetries.
○ Lattice symmetries (translation, rotation, reflection)

○ Internal symmetries (multiplication by complex phase, mixing field components).

✘ For lattice field theories, 109 to 1012 variables per config

✘ Often few, e.g. O(1000), samples available (fewer than # vars!)
○  Hard to use training paradigms that rely on existing samples from distribution 
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Flow-based generative models

Normalizing flows enable approximate
sampling/inference for complicated distributions.

31

Invertible
&

Tractable 
Jacobian

Easily sampled Approximates 
desired dist.

[Rezende & Mohamed 1505.05770]

Flow-based models learn a change-of-variables that transforms 
a known distribution to the desired distribution 

Generative flow models

[Rezende & Mohamed 1505.05770] 

Using a change-of-variables, produce a
distribution approximating what you want.

Flow-based generative models

14

Invertible
&

Tractable 
Jacobian

Easily sampled Approximates 
desired dist.

[Rezende & Mohamed 1505.05770]



Flow-based generative models

Normalizing flows enable approximate
sampling/inference for complicated distributions.

31

Invertible
&

Tractable 
Jacobian

Easily sampled Approximates 
desired dist.

[Rezende & Mohamed 1505.05770]

Flow-based models learn a change-of-variables that transforms 
a known distribution to the desired distribution 

Generative flow models

[Rezende & Mohamed 1505.05770] We chose real non-volume preserving (real NVP)
flows for our work.

Flow-based generative models

32

Invertible
&

Tractable 
Jacobian

Easily sampled Approximates 
desired dist.

Many simple layers 
composed to produce f

[Dinh et al. 1605.08803]
Using a change-of-variables, produce a
distribution approximating what you want.

Flow-based generative models
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Real NVP coupling layer

● Affine transformation of half the variables:
scaling by exp(s), translation by t

● s and t are neural networks depending
on untransformed variables only

● Simple inverse and Jacobian

33

Application of gi
-1

Generative flow models

Choose real non-volume preserving flows:

Affine transformation of half of the variables: 
scaling by exp(s)
translation by t 
s and t arbitrary neural networks depending on 
untransformed variables only 

Simple inverse and Jacobian 

[Dinh et al. 1605.08803] 



Real NVP coupling layer

● Affine transformation of half the variables:
scaling by exp(s), translation by t

● s and t are neural networks depending
on untransformed variables only

● Simple inverse and Jacobian

33

Application of gi
-1

Generative flow models

Choose real non-volume preserving flows:

Affine transformation of half of the variables: 
scaling by exp(s)
translation by t 
s and t arbitrary neural networks depending on 
untransformed variables only 

Simple inverse and Jacobian 

[Dinh et al. 1605.08803] Density can be 
squished/stretched by 
change-of-variables

Can use physically-motivated 
choices of variable splits 

e.g. checkerboard building 
correlations between nearest 

neighbours 



Target distribution is known up to normalisation  
 

Train to minimise shifted KL divergence:  

 
 
 

Training the model

● Desired distribution is known up to normalization:

● For our application, train to minimize shifted KL divergence

● This loss allows self-training: sampling with respect to model distribution 
p̃f(𝜙) to estimate loss

Training by minimizing loss function
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normalization Z

[Zhang, E, Wang 1809.10188] 

shift removes unknown 
normalisation ● Desired distribution is known up to normalization:

● For our application, train to minimize shifted KL divergence

● This loss allows self-training: sampling with respect to model distribution 
p̃f(𝜙) to estimate loss

Training by minimizing loss function
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shift removes
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normalization Z



Guarantee exactness of generated distribution by forming a 
Markov chain: accept/reject with Metropolis-Hastings step

Exactness via Markov chainMaking things exact via MCMC

● Borrow idea from standard approach to lattice physics: Markov Chain Monte 
Carlo (MCMC)

● Use generative model for proposals in a Metropolis-Hastings step

37
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Carlo (MCMC)

● Use generative model for proposals in a Metropolis-Hastings step
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model 
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Markov 
Chain

✘

proposal independent 
of previous sample

Acceptance 
probability Model dist

True dist



Fields via flow models
Overview of algorithm

40

Parameterize flow using Real 
NVP coupling layers Each layer contains

arbitrary neural nets
s and t

Training step

Draw samples from model

Compute loss function

Gradient descent

Markov chain using
samples from model

Desired accuracy?

Save trained 
model

generating samples is 
"embarrassingly parallel"

Summary chart: Tej Kanwar



First application: scalar lattice field theory

One real number                          per lattice site x (2D lattice) 

Action: kinetic terms and quartic coupling 

5 lattice sizes: L2 = {62, 82, 102, 122, 142} with parameters tuned for 
analysis of critical slowing down  
 

Application: scalar field theory

● One real number 𝜙(x) ∊ (-∞,∞) per lattice site x (2D lattice)

● Action consists of kinetic terms and quartic coupling

Toy model: scalar 𝜙4 lattice field theory

42

Tests on scalar lattice field theory

● 5 lattice sizes L2 = {62, 82, 102, 122, 142} with bare parameters tuned for 
analysis of critical slowing down

● Integrated autocorrelation time measured for all observables

● HMC and local Metropolis compared against ML method

45

�(x) 2 (�1,1)
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Prior distribution chosen to be uncorrelated 
Gaussian: 

Real non-volume-preserving (NVP) couplings
8-12 Real NVP coupling layers 
Alternating checkerboard pattern for variable split 
NNs with 2-6 fully connected layers with 100-1024 
hidden units

Train using shifted KL loss with Adam optimizer
Stopping criterion: fixed acceptance rate in Metropolis-
Hastings MCMC 

Application: scalar field theory

● Prior distribution chosen to be uncorrelated Gaussian,
i.e. for each site x,

● Real NVP model:
○ 8-12 Real NVP coupling layers
○ Alternating checkerboard pattern for variable split
○ 2-6 fully connected layers with 100-1024 hidden units

● Trained using shifted KL loss with Adam optimizer
○ Target fixed acceptance rate in Metropolis-Hastings MCMC

ML method for scalar lattice field theory
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First application: scalar lattice field theory

●Prior distribution chosen to be uncorrelated Gaussian,
i.e. for each site x,

●Real NVP model:
○8-12 Real NVP coupling layers
○Alternating checkerboard pattern for variable split
○2-6 fully connected layers with 100-1024 hidden units

●Trained using shifted KL loss with Adam optimizer
○Target fixed acceptance rate in Metropolis-Hastings MCMC

ML method for scalar lattice field theory
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Compare with standard updating algorithms: ‘local’, ‘HMC’ Samples from ML model vs standard algorithms

By eye, ML model produces varied samples and correlations at the right scale

47

Application: scalar field theory

First application: scalar lattice field theory

ML model produces varied samples and correlations at the right scale 
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(a) Flow-based MCMC trained to 50% mean

acceptance.

62 ML
62 HMC

1
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Count

102 ML
102 HMC

1
10
100
1000
104

142 ML
142 HMC

0 20 40 60 80
1
10
100
1000
104

Run length
(b) Flow-based MCMC trained to 70% mean

acceptance and HMC tuned to 70% mean

acceptance.

FIG. 2: Histograms of length of consecutive runs of Metropolis rejections in machine-learned (ML) models at both 50% and
70% mean acceptance. Also shown is the same statistic for Markov chains generated via HMC, where mean acceptance was
tuned to 70%. The frequency of long runs of rejections is consistently reduced for models trained to reach higher average
acceptance. The ML and HMC ensembles at 70% acceptance display very similar distributions of rejection streaks.

where xµ = (~x, t), as well as the corresponding pole mass

mp = �@t log
D
G̃c(0, t)

E
, (24)

and the two-point susceptibility

�2 =
X

x

Gc(x). (25)

In the limit � ! 1, with m
2
/� < 0 fixed, scalar �

4

theory reduces to an Ising model. Another observable of
interest is therefore the average Ising energy density [45],
defined by

E =
1

d

X

1µd

Gc(µ̂), (26)

where the sum runs over single-site displacements in all
dimensions.

The action of �4 theory is invariant under the discrete
symmetry �(x) ! ��(x). Depending on the value of
the parameters m

2 and �, this symmetry can be spon-
taneously broken. The theory thus has two phases: a
symmetric phase and a broken-symmetry phase.

A. Model definition and training

For this proof-of-principle study, the flow-based
MCMC algorithm detailed in Section II was applied to
�
4 theory in two dimensions with L = {6, 8, 10, 12, 14}

lattice sites in each dimension. The parameters m
2 and

� were chosen to fix mpL ⇡ 4 for each lattice size; their

numerical values are given in Table I. For simplicity in
this initial work, all parameters were chosen to lie in the
symmetric phase. In principle, the flow-based MCMC
algorithm can be applied with identical methods to the
broken-symmetry phase of the theory, but it remains to
be shown that models can be trained for such choices of
parameters.
For each set of parameters, real NVP models were de-

fined using 8–12 a�ne coupling layers (see Sec. II B). The
coupling layers were defined to update half of the lattice
sites in a checkerboard pattern; successive layers alter-
nately updated the odd and even sites. The neural net-
works si and ti used in coupling layer gi (see Eq. (9))
were constructed from two to six fully-connected layers,
each defined as multiplication by a rectangular matrix
followed by pointwise application of a nonlinear function
(here, a leaky rectified linear unit [46]). Intermediate
vectors (hidden units) had sizes ranging between 100–
1024. The prior distribution r(z) was chosen to be an
uncorrelated Gaussian distribution

r(z) /
Y

i

e
�z

2
i /2. (27)

The models were trained to minimize the shifted KL loss
between the output distribution p̃f (�) and the desired
distribution p(�) = e

�S(�)
/Z using gradient-based up-

dates with the Adam optimizer [42], a specific variety
of gradient descent with momentum. A mean absolute
error loss, defined in Appendix B, was optimized before
training in the case of the 142 model where it was found
to accelerate convergence to the KL loss minimum.
An exhaustive study of the optimal choice of prior dis-

tribution r(z), model depth, architecture and initializa-

Application: scalar field theory

First application: scalar lattice field theory
Compare with standard updating algorithms: ‘local’, ‘HMC’ 

Rejection runs in the 
Metropolis-Hastings 
accept/reject step are 
comparable to those in 
Hamiltonian Monte-Carlo 
tuned to same acceptance



Application: scalar field theory
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FIG. 5: Susceptibility (�2) and Ising energy (E) estimated
on all ensembles. Results computed using 106 configurations
from the HMC, local Metropolis, and machine-learned (ML)
ensembles are consistent within statistical errors. Errors in-
dicate 68% confidence intervals estimated using bootstrap re-
sampling with bins of size 100.

FIG. 6: Statistical error varying with number of samples N
in two candidate observables, �2 and E, for the HMC, local
Metropolis, and machine-learned (ML) ensembles. The red
dashed line shows a 1/

p
N curve normalized by the average

error estimate of the three approaches at N = 1000. Central
values were estimated as 68% confidence intervals on each
observable by bootstrap resampling ensemble subsets of size
N . Error bars indicate 68% confidence intervals estimated
using an external bootstrap resampling step.

methods. Moreover, Figure 6 shows that the statistical
uncertainties of the observables scale as 1/

p
N with the

number of samples N , as expected for decorrelated sam-
ples.

C. Critical slowing down

For �
4 theory, a number of algorithms have been de-

veloped that mitigate CSD to various extents, such as
worm algorithms [45], multigrid methods [49], Fourier-
accelerated Langevin updates [50] and cluster updates
via embedded Ising dynamics [51]. The path towards
generalizing those algorithms to more complicated theo-
ries such as QCD, however, is not clear. Algorithms such
as HMC and local Metropolis, which are also used for
studies of QCD and pure gauge theory, exhibit CSD for
�
4 (as well as more complicated theories) as the contin-

uum limit is approached.
The parameter sets chosen for the study of �4 theory

in this work (Table I) correspond to a critical line with
constant mpL as L ! 1. For the flow-based MCMC
approach proposed here, as well as for ensembles gener-
ated using the HMC and local Metropolis algorithms, the

autocorrelation times of the set of physical observables
discussed previously were fit to leading-order power laws
in L to determine the dynamical critical exponents zO

for that observable. Figure 7 shows the autocorrelation
times for each observable for each approach to ensemble
generation. The absolute values of ⌧int are not directly
comparable between methods because the cost per up-
date di↵ers. The scaling with lattice size, on the other
hand, indicates the sensitivity of each method to critical
slowing down. For both HMC and local Metropolis, the
critical behavior and consequently the performance of the
algorithm was found to depend on the observable. In each
case, the critical exponent was 0.3 . zO . 2.0. In com-
parison, for the flow-based MCMC ensembles at a fixed
acceptance, the critical exponent was found to be consis-
tent with zero, with the autocorrelation time observable-
independent and in agreement with the acceptance-based
estimator defined in Section IIC.

Since the the mean acceptance rate was used as the
stopping criterion for training these models, it was not
guaranteed a priori that the measured integrated auto-
correlation time would be constant across the di↵erent
models used. The results in Figure 7, however, suggest
that beyond the simple lower bound from Eq. (18) there

First application: scalar lattice field theory
Compare with standard updating algorithms: ‘local’, ‘HMC’ 

Physical observables match 
computed on ensembles 
generated from ML model 
and from standard methods

Toy model: scalar 𝜙4 lattice field theory

● Measured observables:

○ Two-point Green's functions and pole masses

○ Two-point susceptibility

○ Ising limit energy

44

inversely related to 
correlation length of the 

system



Application: scalar field theory
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FIG. 5: Susceptibility (�2) and Ising energy (E) estimated
on all ensembles. Results computed using 106 configurations
from the HMC, local Metropolis, and machine-learned (ML)
ensembles are consistent within statistical errors. Errors in-
dicate 68% confidence intervals estimated using bootstrap re-
sampling with bins of size 100.
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FIG. 6: Statistical error varying with number of samples N
in two candidate observables, �2 and E, for the HMC, local
Metropolis, and machine-learned (ML) ensembles. The red
dashed line shows a 1/

p
N curve normalized by the average

error estimate of the three approaches at N = 1000. Central
values were estimated as 68% confidence intervals on each
observable by bootstrap resampling ensemble subsets of size
N . Error bars indicate 68% confidence intervals estimated
using an external bootstrap resampling step.

methods. Moreover, Figure 6 shows that the statistical
uncertainties of the observables scale as 1/

p
N with the

number of samples N , as expected for decorrelated sam-
ples.

C. Critical slowing down

For �
4 theory, a number of algorithms have been de-

veloped that mitigate CSD to various extents, such as
worm algorithms [45], multigrid methods [49], Fourier-
accelerated Langevin updates [50] and cluster updates
via embedded Ising dynamics [51]. The path towards
generalizing those algorithms to more complicated theo-
ries such as QCD, however, is not clear. Algorithms such
as HMC and local Metropolis, which are also used for
studies of QCD and pure gauge theory, exhibit CSD for
�
4 (as well as more complicated theories) as the contin-

uum limit is approached.
The parameter sets chosen for the study of �4 theory

in this work (Table I) correspond to a critical line with
constant mpL as L ! 1. For the flow-based MCMC
approach proposed here, as well as for ensembles gener-
ated using the HMC and local Metropolis algorithms, the

autocorrelation times of the set of physical observables
discussed previously were fit to leading-order power laws
in L to determine the dynamical critical exponents zO

for that observable. Figure 7 shows the autocorrelation
times for each observable for each approach to ensemble
generation. The absolute values of ⌧int are not directly
comparable between methods because the cost per up-
date di↵ers. The scaling with lattice size, on the other
hand, indicates the sensitivity of each method to critical
slowing down. For both HMC and local Metropolis, the
critical behavior and consequently the performance of the
algorithm was found to depend on the observable. In each
case, the critical exponent was 0.3 . zO . 2.0. In com-
parison, for the flow-based MCMC ensembles at a fixed
acceptance, the critical exponent was found to be consis-
tent with zero, with the autocorrelation time observable-
independent and in agreement with the acceptance-based
estimator defined in Section IIC.

Since the the mean acceptance rate was used as the
stopping criterion for training these models, it was not
guaranteed a priori that the measured integrated auto-
correlation time would be constant across the di↵erent
models used. The results in Figure 7, however, suggest
that beyond the simple lower bound from Eq. (18) there

First application: scalar lattice field theory
Compare with standard updating algorithms: ‘local’, ‘HMC’ 

Uncertainties in physical 
observables follow 
statistical scaling as the 
number of samples is 
increased

red dashed curve: 
/ 1/

p
N
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First application: scalar lattice field theory

Success:  Critical slowing down is eliminated
Cost:      Up-front training of the model 9
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(a) HMC ensembles
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(b) Local Metropolis ensembles
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(c) Flow-based MCMC ensembles

FIG. 7: Scaling of integrated autocorrelation time with respect to lattice size for HMC, local Metropolis, and flow-based MCMC.
In (c) the upper sets of points in blue correspond to models trained to a mean acceptance rate of 50%, while the lower sets
of points in green correspond to models trained to a mean acceptance rate of 70%. Dashed red lines display power law fits to
L = {10, 12, 14} with labels Lz specifying the scaling. The HMC and local Metropolis methods demonstrate power-law growth
of ⌧int, while ⌧int for the flow-based MCMC is consistent with a constant in L and decreases as mean acceptance rate increases.
Dot-dashed blue and green lines for the flow-based ensembles display lower bounds in terms of mean acceptance rate based on
Eq. (18). Error bars indicate 68% confidence intervals estimated by bootstrap resampling and error propagation.

is a strong correlation between the mean acceptance rate
and integrated autocorrelation time for models trained
using a shifted KL loss. This is further confirmed by the
similarity of the rejection run histograms across lattice
sizes for flow-based MCMC, as shown in Figure 2.

D. Training costs

While CSD in the sampling step for the flow-based
MCMC is eliminated, training the generative model in-
troduces an additional up-front cost, as discussed in Sec-
tion IID. Since this cost is amortized over the ensem-
ble, this approach will naturally be computationally ad-
vantageous in the limit of generating a large number of
samples. For a finite target ensemble size, the poten-
tial acceleration o↵ered depends crucially on the training
time.

In this work, all models were trained using one to two
GPU-weeks, with the larger lattices incurring the most
computational cost. For the simple fully-connected archi-
tecture used in this work, the scaling of both the sampling
and training time is controlled by dense matrix-vector
multiplications which require O(V 2) floating point op-
erations each. The number of epochs used to train the
largest lattice was also roughly 10⇥ that of the smallest
lattice. This asymptotic scaling is a result of the simple
model architecture used in this proof-of-principle study.
For related methods applied to image generation, using
convolutional neural networks and a multi-scale archi-
tecture reduced training and sampling costs significantly
and improved scaling to O(V ) [39]. There are physical
grounds to expect these tools to apply equally well to

the present application. Convolutional networks use only
local information to update values in each layer, exploit-
ing locality in the system, and use identical weights for
each point on the lattice, manifestly preserving trans-
lational invariance. A multi-scale architecture learns
coarse-grained distributions and fine-graining procedures
in separate layers; this is an e↵ective division of tasks
for renormalizable quantum field theories, where simple
coarse-grained descriptions are expected to arise. Gen-
erative models, and in particular flow-based models, are
also rapidly evolving towards more e�cient representa-
tion capacity. Complex coupling layers have been imple-
mented [39, 52], as have generalized convolutions [53, 54]
and transformations with continuous dynamics that are
not dependent on restricted coupling layers [55]. These
developments allow models to better capture a distribu-
tion within a given number of training steps.

For complex applications, it is also critical that larger
models with many coupling layers can be trained with-
out exceeding memory bounds. The algorithm proposed
here can be trained with constant memory cost as the
number of layers is increased [56], alleviating the stor-
age limitations that can arise in gradient-based optimiza-
tion. Memory costs can be further reduced by distribut-
ing samples within each training batch across many ma-
chines.

Finally, typical applications seek to produce ensembles
at many di↵erent choices of parameters, and often require
parameter tuning. Training costs can therefore by amor-
tized further; models trained with respect to an action
at a given set of parameter values can either be used to
initialize training or as a prior distribution for models
targeting that action at nearby parameter values.

Dynamical critical exponents 
consistent with zero 

Application: scalar field theory



4 dimensions, typical lattice size 483 x 96

Gauge theory i.e., fields take matrix values at each site, with 
physics invariant under symmetry transformations

Next steps

Target application: lattice quantum chromodynamics  
for particle and nuclear physics

Scale number of dimensions
Scale number of degrees of freedom
Methods for gauge theories

1.    
2.
3.    
  



Towards higher dimensions

● Costs scale up, but no theoretical obstacle

● Preliminary: 3D 𝜙4 easily accessible, (solvable) memory bottleneck for 4D

30

Samples generated for 𝜙4 theory with V=83, m2=-6.0, λ=14.590
mL ~ 4, matching CSD investigation of [Vierhaus, Thesis, doi:10.18452/14138]

30% acc, no hyperparameter tuning required

Costs scale up, but no theoretical obstacle 
Successful tests for scalar field theory

Next steps

Scale number of dimensions1.     
  



Future Directions (2)

● Our 𝜙4 results use fully-connected neural networks, which do not scale well

● Real NVP paper suggests convolutions, and hierarchical structure
○ Convolutions explicitly preserve translational invariance
○ Preliminary results for 𝜙4 indicates that this works!

● Convolutions also make scaling physical volume easy

54

Transfer trained net +
10 mins retraining

3.5 days training

14 x 14

20 x 20

Instead of fully-connected neural networks, consider convolutions and 
hierarchical structure

Explicitly preserves translational invariance 

Makes scaling physical volume easy 

Successful tests for scalar field theory

Next steps

Future Directions (2)

● Our 𝜙4 results use fully-connected neural networks, which do not scale well

● Real NVP paper suggests convolutions, and hierarchical structure
○ Convolutions explicitly preserve translational invariance
○ Preliminary results for 𝜙4 indicates that this works!

● Convolutions also make scaling physical volume easy

54

Transfer trained net +
10 mins retraining

3.5 days training

14 x 14

20 x 20

Scale number of degrees of freedom2.     
  



Stereographic projection coupled with standard 
methods  [Gemici, Rezende, Mohammed 1611:02304]  
 
 
 
 

Other approaches?

Next steps
Future Directions (1)

● Real NVP only directly works on fields taking real values 𝜙(x) ∊ (-∞,∞)

● What about discrete models (Ising, Potts, etc.)?
○ Some recent ideas emerging [Ziegler & Rush 1901.10548]

● What about fields taking values in compact domains (XY model, gauge 
theories, etc.)?

○ Stereographic projection coupled with standard methods may work
[Gemici, Rezende, Mohammed 1611.02304]

53

Methods for gauge theories3.     
  



Multi-scale matching

Generative models to replace 
expensive HMC

Learn parameters of a 
complicated pure-gauge action 
(cheap) to reproduce action 
with dynamical fermions 
(expensive)

Machine learning for LQFT

Accelerate gauge-field generation

New simulation strategies 
for lattice gauge theory
Michael G. Endres Lattice 2016

Multiscale Monte Carlo equilibration: Pure Yang-Mills theory
Michael G. Endres, Richard C. Brower, William Detmold, Kostas Orginos, Andrew V. Pochinsky

Multigrid  ideas for HMC
Very important and difficult problem
Major focus of US Exascale Software
project
(see Poster by Mike Endres)

PROOF OF  
PRINCIPLE

PROOF OF  
PRINCIPLE



Machine learning for LQFT

Optimise extraction of physics from gauge fields

Optimise source operator 
construction        

             beat down excited         
             states

New analysis approaches 
to maximise signal-to-noise
           beat down noise 0 5 10 15 20
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Excited  
states

Signal Noise

Accelerated algorithms have huge potential to enable  
 first-principles nuclear physics studies
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