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Computational spectrum - virtuous cycle

9/25/2019 2

First
Principles

Machine learning

Out-of-the-box
No/Little fitting

Extrapolates
High-throughput

Sometimes cheap

- but -
As good as model
Sometimes costly

Fast
Uncanny performance

Leverage large data

- but -
As good as training data

Expensive / proprietary data

There is essentially a continuum of higher parametrization and statistical learning connecting first 
principles (theory-based simulations) to black-box statistical learning over experiments.

Discovery



High-throughput virtual screening
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Successful applications
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Organic Light Emitting Diodes

• High end displays, potentially lighting.

• Lightweight, flexible, transparent, high contrast, 
low power 

Organic Flow battery electrolytes

• High-scale energy storage

• Emerging technology, promising low-cost 

RGB  et al. Nature materials 2016 15, 1120 Lin, K. et al. Nature Energy 2016 1, 16102
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Adachi leads

This work leads

This work exp.

Better OLED

Stability

More stable battery

Charting chemical space



GCNN for interpolating
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Cheap surrogate function to save useless computations

Atoms represented as nodes and bonds as distance-labeled edges

Node and edge features updated iteratively based on learned 
neighborhood mappings

Message, update, and embedding functions are neural networks 

𝑚02

message function

Combine messages from 
all neighbors

𝑚0 = 𝑚01 +𝑚02 +𝑚03

update function

𝑟0
′

{𝑟0
′, 𝑟1

′, 𝑟2
′, 𝑟3

′}

embedding function

𝑓′

Pool atomic into 
molecular feature

3D vs 2.5D ?



GCNN and Neural Potentials

oTypically achieve state of the art performance over 
topological QSPR regression problems in chemistry

o Require 104 or more to be truly effective

oAs interatomic potentials < 1 kcal/mol energies and 1 
kcal/mol/A forces (as low as  0.1)

oCan overfit in chemical and configurational space
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+
+

+

𝑖

Smith, J. S. et. al.. Sci. Data 4, 170193 (2017); Smith, J. S Chem. Sci. 8, 3192–3203 (2017). Smith, J. S. et. al. J. Chem. Phys. 148, 241733 (2018);  Schüt
et al. J. Chem. Phys. 148, 241722 (2018); Hansen, K. et al. J. Phys. Chem. Lett. 6, 2326–2331 (2015); 
Chmiela, S. et al.  Sci. Adv. 3, e1603015 (2017); Schütt, K. T. Nat. Commun. 8, 13890 (2017); Chmiela, S. Nat. Commun. 9, 3887 (2018).



Inverse design
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?

Progress in predicting performance given candidate

Can we generate candidate based on design targets?



Inverse design
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Trial and error High-throughput Inverse design



Semisupervised Molecular VAE

9/25/2019 10Gomez-Bombarelli et al. ACS Central Science 2018, 4 (2), 268–276

The latent representation now encodes mapping to one or more 

properties.



Chemical space is different
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In chemistry, one's ideas, however beautiful, logical, elegant, imaginative they 
may be in their own right, are simply without value unless they are actually 

applicable to the one physical environment. (Woodward)Is there a distribution 
we want to draw from?



Coarse-graining MD
TOWARDS INVERSE DESIGN IN  3D
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Coarse Grained Methods

Coarse Graining MD simulates coarse grained variables that represents slow 
collective atomistic motions derived from full atomistic simulations

Coarse Graining methods find the “effective” coarse grained potential given a 
predetermined coarse graining mapping 

S. J. Marrink et al. J. Phys. Chem. B 111, 7812 (2007).9/25/2019 13



Coarse Grained Methods

Extensively studied how to find the coarse graining
potentials that reproduces equilibrium structural
correlation function from atomistic simulations
given a pre-determined CG mapping

Methods to approximate Coarse Grained Force 
Fields: Relative Entropy, Force Matching, g-YBG
(implemented in VOTCA, BOCS, etc.)

Systematic Coarse Grained force fields for 
Biomolecules: MARTINI

[1] A. J. Rzepiela et al. Phys. Chem. Chem. Phys. 13, 10437 (2011). [2] N. J. H. Dunn et al. J. Phys. Chem. B 122, 3363 (2018). [3] S. J. Marrink et al. J. Phys. Chem. B 111, 7812 (2007).

[1]

[2]

[3]
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Learning to Coarse-Grain

A learning problem

M. S. Shell, in Adv. Chem. Phys. (Wiley-Blackwell, 2016), pp. 395–441.9/25/2019 15



𝐱 : atomistic coordinates
𝐕(𝐱): All-Atom Potential
𝒛 : coarse grained 
coordinates
𝑽𝑪𝑮(𝒛): coarse grained 
Potential

Instead of 
given 𝒙, 𝑽 𝒙 , 𝑬(𝒙) → find 𝑽𝑪𝑮 𝒛

We propose
given 𝒙, 𝑽 𝒙 → find 𝑬(𝒙) and 𝑽𝑪𝑮 𝒛 = 𝑬(𝒙)

𝑉𝐶𝐺 𝑧 can have an arbitrary functional form
• Classical

𝑽𝑪𝑮 𝒛 = 𝑽𝒃𝒐𝒏𝒅𝒆𝒅 𝒛 + 𝑽𝒏𝒐𝒏−𝒃𝒐𝒏𝒅𝒆𝒅(𝒛)
• Neural (using MPNN)

Coarse Grain
Projection

𝑧 = 𝐸(𝑥){𝑥, 𝑉 𝑥 } {𝑧, 𝑉𝐶𝐺(𝑧)}

Coarse-graining framework
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Force matching
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• Force matching finds 𝛻𝑉𝐶𝐺 𝑧
that best approximates the 
mean force 𝐹.

• We want to optimize the 
optimization target 𝐿 : 

𝐿 = |𝐹 + 𝛻z𝑉𝐶𝐺(𝐸(𝑥))|
2

𝑧𝑥𝑡

−𝛻z𝑉𝐶𝐺

Predetermined
Coarse Graining

Mapping

−𝜵𝒛𝑽𝑪𝑮

|𝑭 + 𝜵𝒛𝑽𝑪𝑮(𝒛)|
𝟐

𝑭 Mean force



The encoding function
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We propose a neural network like encoding
with the following constraints

1) zI= EI x = σjEIj xj [1]

2) σjEIj = 1 and EIj≥ 0

3) MI= 𝛻 E−1 TMj 𝛻 E−1

4) We use Gumbel-softmax during training 
to enforce the learning of discrete 
coarse graining variables to ensure that 
each atom only contributes to one CG 
atom

𝑧𝑥𝑡

−𝛻z𝑉𝐶𝐺

| F + 𝛻z𝑉𝐶𝐺(𝐸(𝑥))|
2

𝐸(𝑥)

Learning Discrete Variable
(Gumbel Softmax) 

[1]   I: 1 … N coarse grained atom index
j: 1 … n atom index



“Coarse Graining” Forces
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• We also need a function that variationally 
determines 𝐹

• 𝐹 = −b ⋅ 𝛻𝑉 𝑥 𝐸 𝑥 =𝑧 where 𝑏 is the force 

coarse graining function
• A consistent choice for 𝑏 from statistical 

mechanics: b =
𝛻E x T

𝛻E x T⋅𝛻E x

• Computing the mean force 𝐹 requires 
constrained dynamics. 

• However, we want a one-shot optimization 
stack without running extra MD simulations.

𝑧𝑥𝑡 𝐸(𝑥)

−𝛻z𝑉𝐶𝐺

−b ⋅ 𝛻𝑉 + 𝛻z VCG(E(x))
2

?

[1] E. Darve, Numerical Methods for Calculating the Potential of Mean Force.



Stochastic Force Matching
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𝑧𝑥𝑡 𝐸(𝑥)

−𝛻z𝑉𝐶𝐺

• We compute the instantaneous stochastic 
“coarse grained” force 𝐹𝑖𝑛𝑠 [1]

• 𝐹𝑖𝑛𝑠 = −b ⋅ 𝛻𝑉 𝑥 (instantaneous force)

• 𝐹 = 𝐹𝑖𝑛𝑠 𝐸 𝑥 =𝑧 (mean force)

𝐿𝑖𝑛𝑠 = |𝐹𝑖𝑛𝑠 + 𝛻z𝑉𝐶𝐺(𝐸(𝑥))|
2

𝐿 = |𝐹 + 𝛻z𝑉𝐶𝐺(𝐸(𝑥))|
2

𝐿𝑖𝑛𝑠 = |𝐹𝑖𝑛𝑠 + 𝛻z𝑉𝐶𝐺(𝑧)|
2

𝑏 −𝛻x𝑉

[1] L. Zhang et al.  J. Chem. Phys. 149, 034101 (2018).



Coarse Graining Auto-Encoding Framework

𝑧𝑥𝑡 𝐸(𝑥)

𝑳𝑽𝑪𝑮𝑬 = |𝑭𝒊𝒏𝒔 + 𝜵𝒛𝑽𝑪𝑮 𝑬 𝒙 |𝟐

𝑏
−𝛻x𝑉 −𝛻z𝑉𝐶𝐺−

• Supervised force matching conditioned on E(x) learns coarse graining mapping field and the potential in CG. 



Coarse Graining Auto-Encoding Framework

𝑧𝑥𝑡 𝐸(𝑥) 𝒙𝒕

𝑳𝑽𝑪𝑮𝑬 = |𝑭𝒊𝒏𝒔 + 𝜵𝒛𝑽𝑪𝑮 𝑬 𝒙 |𝟐+ 𝑫 𝑬 𝒙𝒕 − 𝒙𝒕
𝟐

𝑏
−𝛻x𝑉 −𝛻z𝑉𝐶𝐺−

𝐷(𝑧)

𝐷(𝑧) : decoding function 

• AutoEncoder automatically coarse-grains atomistic coordinates to CG coordinates in a data-driven way
• Force matching also helps to shape the learning of CG and obtain 𝑉𝐶𝐺(𝑧 = 𝐸(𝑥)) for CG simulations



𝐷(𝑧)

Coarse Graining Auto-Encoding Framework

𝑧𝑥𝑡 𝐸(𝑥) 𝒙𝒕

𝑳𝑽𝑪𝑮𝑬 = | − 𝛁𝐱𝐕 ⋅ 𝒃 + 𝜵𝒛𝑽𝑪𝑮 𝑬 𝒙 |𝟐+ 𝑫 𝑬 𝒙𝒕 − 𝒙𝒕
𝟐

𝑏
−𝛻x𝑉 −𝛻z𝑉𝐶𝐺−

• AutoEncoder automatically coarse-grains atomistic coordinates to CG coordinates in a data-driven way
• Force matching also helps to shape the learning of CG and obtain 𝑉𝐶𝐺(𝑧 = 𝐸(𝑥)) for CG simulations

9/25/2019 23



Pipeline

Run short all-atom MD trajectory on 
small system.

Shuffle frames

Decide degree of compression, 
functional form of VCG

Train E and VCG simultaneously

Deploy CG trajectory on larger system

Compare statistics
◦ Encoded AA vs. CG MD sampling

9/25/2019 24



Alanine Dipeptide fully unsupervised
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𝑉𝐶𝐺 𝑧 = 𝑉𝑏𝑜𝑛𝑑(z) + Vangle(z)

𝝓

𝑉 𝑥 = 𝑉𝑏𝑜𝑛𝑑 x + Vangle x +

Vdihe x + Vpair x + Vcoulomb(x)

CG Encoder In Training

Automatic CG for small molecules

𝝓𝒓𝟏𝒓𝟐
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Compression vs. fluctuations
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Coarse Graining Auto-Encoding Framework

𝑳𝑽𝑪𝑮𝑬 = 𝑫 𝑬 𝒙𝒕 − 𝒙𝒕
𝟐 +𝝆𝑭𝒊𝒏𝒔 𝑬 𝒙

𝟐

𝑏
−𝛻x𝑉

𝑧𝑥𝑡 𝐸(𝑥) 𝒙𝒕𝐷(𝑧)

The difference between Fins and F is related 
to the friction, memory and fluctuations in 
the GLE. 

We choose to add additional regularization to 
minimize (Fins)

2

A pre-training step  that is unsupervised (i.e. no VCG is learnt) 
followed by adding supervision



Pipeline

Split training 
◦ into pre-train with force regularization and reconstruction 

◦ fully supervised training of E and VCG
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CG of liquid ethane
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MPNN neural potentialClassical potential



CG of liquid ethane
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MPNN neural potential

Accelerated diffusion



CG of polyethylene
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120 atoms of polyethylene



C24 in bulk
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1:2 and 1:3 compression

Structure correlations are 
recovered correctly.

Diffusion kinetics are modified 
(fortuitous agreements) 

end-to-end 
distance

CG bond distance

inter-chain RDF



Evolutionary Neural 
Potentials
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Lithium chelation
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Lithium ion batteries require electrolytes to shuffle Li cations 
between electrodes.

Organic electrolytes
◦ have a great design space

◦ Liquids have high conductivity can catch fire.

◦ Polymer solids are safer but lower conductivity. Polyethylene oxides

Explore the design space of lithium-binding moieties



Chemistries and configurations
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Chemical Configuration Space
For Glymes

Sp
ec
ie
s

Conformation

We are interested in Li-organic binding 
enthalpies (and free energies too, …)

Global energy minimization requires good 
sampling of supramolecular clusters.
◦ A sampling problem!

◦ Can access with MD with some degree.

First-principles is too costly, and the 
chemistry is fairly constrained: create a 
potential.



Evolutionary NNs
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sampling sampling sampling

• Initialize with normal—mode data only and using neural 
network to sample new configurations via MD.

• Obtain DFT energies on neural network sampled data 
and validate on accuracy 

• Train on <= 30000 points BP86/SVP-D3. (E and forces) 
across 14 chemistries with <= 20 heavy atoms, validated 
on 40 larger ones

• Decouple sampling  for data acquisition. 
• Evolve by incorporating neural network sampled 

configurations into the next generation of training data



Evolutionary NNs
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Validation
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Trained species prediction MAE: 0.1 kcal/mol
New species prediction MAE:  3.1 kcal/mol 

• Validated on seen and unseen chemicals, 
of up to 2x the size.

• It achieves good accuracy when validated 
on converged geometries on species that 
are not trained by the model -> good 
transferability over ether chemical space.

DFT energy (kcal/mol)
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Error: 3.0 kcal/mol



Validating Hessians
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Exploring ether space
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Optimized 
geometry

<2ms second per 
energy/force calculations 

O(N^2) and 
embarrassingly parallel

Predicting binding affinity:
• Run neural NVE MD
• Gradient descent at some frames
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Thanks!
Wujie Wang (CG, Evolving NN)

Wil Harris (Graph NN)

Daniel Schwalbe Koda

Somesh Mohapatra

James Damewood

Shi Jun Ang


