
Benjamin Nachman

Likelihood free generative 
modeling for high energy physics

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  
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Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.
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Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
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to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.
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In contrast to flows and related methods, I won’t 
ever write down a way to evaluate the PDF.  
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High Energy Physics at the LHC
Center-of-mass energy = 13 TeV

99.9999997% 
speed of lightp

p



p

p

High Energy Physics at the LHC

?

One of the critical goals of 
the LHC is to identify new, 

massive particles

Remember E = mc2:
(need lots of E to make new 

particles with a lot of m!)



�11Generative models for HEP

Theory of everything

Physics simulators

Detector-level features

Pattern recognition

…power the inference machine

Nature

Detector-level features

Pattern recognition

…to connect our theories to nature

Experiment

another place 
where we do a lot 
of deep learning



�12Part I: GANs in HEP

Part II: High-dimensional reweighting

Higher fidelity with help from existing simulations.
+ likelihood free inference

An ab initio generator.
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• When overlayed onto RPV events, we 
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�14Part I: GANs in HEP

Accelerating simulations
replace or augment physics simulator

Saving disk space 
replace libraries with on-the-fly generation

Unbinned, high-
dimensional interpolation

Particles
Discriminator

Particles

strip particles of mass 
and add noise

Generator

Input Particle with Mass
replaced by Noise

Particle + 
Generated

Mass

Sampled from Delphes+Pythia

Mass replaced by Noise

The noise  is sampled
from a latent space 

Update Generator Weights
According to some cost

Update Discriminator Weights

According to some cost

Cost Functions
Particle + Real Mass

Pileup GAN - µ=20

Real

Fake

Sum of 
jet mass

• The GAN gives realistic looking 
pileup images

• When overlayed onto RPV events, we 
see realistic shifts in the distributions

Number 
of jets M

. P
ag

an
in

i, 
L.

 d
e 

O
liv

ei
ra

, B
PN

, P
R

L 
12

0 
(2

01
8)

 0
42

00
3

J.
 L

in
, W

. B
hi

m
ji,

 B
PN

, 
JH

EP
 0

5 
(2

01
9)

 1
81

W
. B

hi
m

ji,
 W

. B
la

ir,
 S

. 
Fa

rr
el

l, 
B

PN
, C

H
EP

 2
01

8

Focus 
for 

today

http://arxiv.org/abs/1705.02355
https://arxiv.org/abs/1903.02556
https://indico.cern.ch/event/587955/contributions/2937509/attachments/1683970/2741752/CHEP2018_HEPGANs_Farrell.pdf


1 1

1

1
1

1
1

1
1

1

1
1

1 1

1
1

1
1

1

1

1
1

1
1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1
1

1

1

1

1

1
1

1
1

1
1

1

1

1

1

1

1 1 1

11
1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

1

Image inspired by  
JHEP 0902 (2009) 007

Spanning 10-20 m up to 1 m 
can take O(min/event)

Simulations at the LHC
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State-of-the-art for material 
interactions is Geant 4.

Includes electromagnetic and 
hadronic physics with a variety of 

lists for increasing/decreasing 
accuracy (at the cost of time)

This accounts for O(1) fraction 
of all HEP computing resources! 

Simulations at the LHC
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This work: attack the most important part: 
Calorimeter Simulation 

Goal: replace (or augment) simulation steps 
with a faster, powerful generator based on 

state-of-the-art machine learning techniques  
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We are not trying to generate an entire 
event (O(1000) particles)) all at once - it 
would be very had to validate!  Instead, 
generate a single particle shower (before 
electronics) and appeal to combinatorics.  

Factorization

N.B. calorimeter energy deposits 
factorize (sum of the deposits is 

the deposit of the sum) but 
digitization (w/ noise) does not!



�21Now to the machine learning

A generator is nothing other than a function 
that maps random numbers to structure.

Our structure: calorimeter images



�22Calorimeter images

η
z

φ

Grayscale images:
Pixel intensity = 

energy deposited

η
z

φ

η
z

φ



�23Calorimeter images

η
z

φ

Challenge: multiple layers 
with non-uniform granularity 
and a causal relationship?

N.B. images are 
O(1000) dimensional



�24Reminder: GANs
Generative Adversarial Networks (GAN):  
A two-network game where one maps noise to images 
and one classifies images as fake or real.

{real,fake}

G
D

D

noise

When D is maximally 
confused, G will be 
a good generator Physics-based 

simulator



�25Introducing CaloGAN
One image per 

calo layer
One network per particle type; 

input particle energy

ReLU to 
encourage sparsity

use layer i as 
input to layer i+1

Generator network



�26Introducing CaloGAN

help avoid 
‘mode collapse’

Discriminator network

Mode collapse: learns to generate 
one part of the distribution well, 

but leaves out other parts.



�27Locally connected layers
Due to the structure of the problem, 

we do not have translation invariance.

However, convolutional-like architectures 
are still useful to e.g. reduce parameters

Classification 
studies found fully 

connected networks 
outperformed CNNs



�28Locally connected layers
Locally connected layers 

use filters on small patches
(CNN is then a special 

case with weight sharing)



�29Results: average images
Geant4

CaloGAN



�30Energy per layer

N.B. can always add these (and 
others) explicitly to the training

Pions deposit much less energy in 
the first layers; leave the calorimeter 

with significant energy  



�31Warning: challenge with GANs

Depth-weighted total energy ld

Unlike for classifiers, it is 
not easy to figure out 

which GAN is a good GAN 
- trying to learn a O(1000) 
generative model and not 
a single likelihood ratio!

…this is a place where 
science applications can 
make a big impact on ML.



~no mode 
collapse

~not 
memorizing

A key challenge in training GANs is the diversity of generated 
images. This does not seem to be a (big) problem for CaloGAN.

�32“Overtraining”



�33Extrapolating

Beyond our 
training sample!

GANs are not 
designed to 

extrapolate, but in 
some cases, they 

can smoothly go on! 

works here until there is 
no new physical 

principles which turn on 
at some energy



�34Conditioning

Figure 4. Interpolation across physical range of x
0

as a conditioning latent factor for e+ showers.
Note in the ATLAS coordinate system, x represents the vertical direction in this dataset. Each
point in the interpolation is an average of 10 showers, with each point along the traversal build
from an identical latent prior z.

Figure 5. Interpolation across physical range of ✓ as a conditioning latent factor for e+
showers, with ✓ increasing from left to right. Each point in the interpolation is an average
of 10 showers subtracted from the middle point along the interpolation path, with each point
along the traversal build from an identical latent prior z.

controllability of generation procedures, but much future work remains. In particular, a thorough
investigation around dynamics between the attribute estimation portion of the network, ⌅, and
the overall training objective should be pursued, particularly as it relates to the final fidelity of
the attribute estimates. In addition, future work should examine newer GAN formulations (as
outlined in Sec. 3) and their ability to improve image quality.
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Fix noise, scan latent variable corresponding to energy

Fix noise, scan latent variable corresponding to x-position

Figure 2. Nearest GAN-generated neighbors (bottom) for seven random Geant4-generated
e

+ showers (bottom) for the first layer (left), second layer (middle), and last layer (right) of the
calorimeter.

Figure 3. Interpolation across physical range of incident energy as a conditioning latent factor
for e+ showers, with energy increasing from 1 GeV to 100 GeV from left to right. Each point in
the interpolation is an average of 10 showers, with each point along the traversal build from an
identical latent prior z.

for seven Geant4 images and used to validate that (a) our model does not memorize shower
patterns, and (b) that the full space of displacements (both angular and positional) are explored.

At the nearest-neighbor level, the model produces convincing energy deposition patterns, as
shown in Figure 2. The model does not appear to memorize the training dataset. In addition,
positional variance (observed by noticing energy centroid deviations from the center of the
calorimeter image) is well explored by the GAN, as shown by GAN-generated images matching
all positions given by Geant4.

To further verify our models ability to condition on physical attributes, the latent space for
each conditioning variable is traversed, showing how the model learns about each conditioning
factor. In any practical setting, such conditioning mechanisms will need to be tuned to a high
level of fidelity.

To illustrate the model’s internal representation, incident energy, x
0

, and ✓ manifolds are
traversed at regular intervals along the trained range. In Figure 3, incident energy is traversed,
clearly showing more energetic behavior as the incident energy is increased from left to right.

Similarly, the latent space for x

0

is traversed, and the resulting impact on generated image
is shown in Figure 4. We note that as x

0

increases, shower position shifts downward, which is
consistent with the ATLAS coordinates used in the dataset described in Sec. 2.

Finally, as we traverse ✓ (Fig. 5) we illustrate the shower behavior dynamic using a di↵erence
between the middle point in interpolation space and each point along the ✓ traversal. As ✓

increases, we note that the width and dispersion decreases and the showers become significantly
more centralized2, which is consistent with the ATLAS definition of ✓.

7. Conclusion
In this work, we explore the ability of GANs to be conditioned on physically meaningful
attributes towards the ultimate goal of creating a viable, comprehensive solution for fast, high
fidelity simulation of electromagnetic calorimeters. Clearly, GANs show great potential for

2 In Figure 5, areas turning blue indicate that less energy is deposited in that particular section of the image at
a given point in latent space.



�35Timing

Generation Method Hardware Batch Size milliseconds/shower
GEANT4 CPU N/A 1772

1 13.1
10 5.11
128 2.19

CPU

1024 2.03
1 14.5
4 3.68
128 0.021
512 0.014

CALOGAN

GPU

1024 0.012

Table 2: Total expected time (in milliseconds) required to generate a single shower under
various algorithm-hardware combinations.

21

NVIDIA K80

Intel Xeon 
E5-2670

(clearly these numbers will change as both technologies 
improve - this is simply meant to be qualitative and motivating!)



�36Collaboration workflow

Integrating these 
techniques into a full 
detector simulation is 

another layer of 
complication, but is 

possible and hopefully 
worth the effort! 
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�40Accelerating simulations: the future

GANs (and friends) are a 
promising solution to the collider 

HEP computing challenge.
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(see the growing list of variations 
that cite the CaloGAN paper)

It is difficult hard to know which GAN is a good GAN …  
for high-precision tasks, will need to rely on other techniques.

The key challenge now is 
achieving precision.  



�41Part II: High-dimensional reweighting

New simulations
morph one simulation into another

Continuous variations
learn the dependence on parameters

Parameter estimation
use classification loss to fit parameters
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�42Part II: High-dimensional reweighting

Answer: Yes! Full phase space  
reweighing with neural networks.

Imagine we have one high-statistics expensive simulation. 

Suppose there is another simulation of the pre-detector 
dynamics.  Can we use the pre-detector parts to 
achieve a detector version of the new simulation?

Facts: detector-level simulation is expensive. 
           pre-detector particle simulations are cheap.

(e.g. Geant4)



�43Likelihood free reweighting

Let x be a simulated event.  It will be 
composed of many hundreds of particles.

Suppose that p(x) and q(x) are the 
densities for the two simulations.

We can reweight the first simulation into the second 
by assigning per-event weights of q(x)/p(x). 

…what if we don’t (and can’t easily) know q and p?



�44Likelihood free reweighting

Solution: train a neural network to 
distinguish the two simulations.  Call this f.

It is not hard to show that if f is optimal and 
you train with cross-entropy, then

f(x)
1�f(x) /

q(x)
p(x)

(for weighting, we don’t care about overall constants - 
in this case, it is the class imbalance during training)



�45Likelihood free reweighting

Solution: train a neural network to 
distinguish the two simulations.  Call this f.

It is not hard to show that if f is optimal and 
you train with cross-entropy, then

(for weighting, we don’t care about overall constants - 
in this case, it is the class imbalance during training)

This is great because classification is easy 

while generation is hard.

f(x)
1�f(x) /

q(x)
p(x)



�46Example: electron-positron collisions

Learn a classifier on the full observable phase 
space (momenta + particle flavor) and then 

check with some standard observables.

Our events have a variable number of particles & due to 
quantum mechanics, are permutation invariant.  Thus, we 
use a deep-sets variant called particle flow networks. 

PFNs: Komiske, Metodiev, Thaler, JHEP 01 (2019) 121
Deep sets: Zaheer et al., NIPS 2017 
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Learn a classifier on the full observable phase 
space (momenta + particle flavor) and then 
check with some standard 1D observables.

(# of particles) (3-particle correlation function)

Weight 
blue to 
orange
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Works also when 
the differences 

between the two 
simulations are 
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localized (right).
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histogram ratios 
for a series of 

one-dimensional 
observables
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What if we have a new simulation 
parameterized by some parameters q?

*see Cranmer, Pavez, Louppe, 1506.02169

Easy - simply learn a 
parameterized classifier* !

…simply add the 
parameter as a feature 
to the network during 
training and let it learn 

to interpolate.

“fine structure constant” 
of the strong force



�50Parameter estimation

One can combine a parameterized reweighting 
function with a classifier to fit model parameters.

2

same support1, the function w(x) = p0(x)/p1(x) is the
ideal per-event weight to morph the second simulation
into the first one. A key observation made by multiple
groups in the past is that w can be well-approximated
by training a machine learning classifier to distinguish
the two simulations. For example, let f(x) be a neural
network and trained with the binary cross-entropy loss:

loss(f(x)) = �
X

i20

log f(xi) �
X

i21

log(1 � f(xi)), (1)

where 0 and 1 represent sets of examples from the
two simulations. Then a well-known result is that2,
f(x)/(1 � f(x)) ⇡ p0(x)/p1(x). The benefit of param-
eterizing f as a neural network is that deep learning can
readily analyze all of ⌦, which was not possible with shal-
low learning attempts with a similar statistical founda-
tion. The closest attempt to a full phase space approach
directly tried to learn pi(x) using the full kinematic (i.e.
non-flavor) part of ⌦ [35, 40], but this is much harder
than learning the ratio.

An important reweighting scenario is when the two
simulations are from the same simulation program, but
with di↵erent model parameters, ✓. For example, when
model uncertainties are evaluated, one may want to
transform p✓(x) into p✓+�✓ (x). When these uncertainties
are profiled in a fit, it is important that the transfor-
mation procedure be able to continuously interpolate be-
tween model parameters. The neural network reweight-
ing approximation can be extended to this continuous
case by adding ✓ as a feature [38, 39]: f(x, ✓). In the
examples presented below, the training data are gener-
ated with a uniform distribution in ✓, but this probability
density can be optimized per application and can even be
discrete.

Even though generators have many parameters that
must be fit to data, gradient methods cannot be used di-
rectly with the models as the phase space they produce
is not usually di↵erentiable (or at least the derivative is
intractable) with respect to their model parameters. Sur-
rogate generative models built from neural networks can
be used for gradient-based parameter fitting, but may not
have su�cient quality to be reliable. Reweighting is a ro-
bust alternative to surrogate generative models. A neural
network-based continuous reweighting function is essen-
tially a di↵erentiable (in model parameters) version of the
original simulator and can be used to perform inference

1
In most physical applications, this is always the case. If there

are regions where p0(x)/p1(x) is far from unity, one can add

a regularization parameter to the training to mitigate large

weights, which may significantly reduce the statistical power of

the reweighted dataset. We found that this works well, but was

unnecessary for the examples presented in this paper.

2
See Appendix A for the derivation.

on the parameters themselves. This is especially pow-
erful for particle-level parameter tuning to data where
one sample with a computational expensive full detector
simulation can be continuously reweighted to other pa-
rameter points with the same detector model at no extra
simulation cost.

An ideal loss function used to fit model parameters
makes use of the full observable phase space. Typical
metrics such as the �

2 between histogram approxima-
tions to probability densities become impractical when
⌦ is high dimensional. As described above, classifiers
are powerful tools for accessing all of the available infor-
mation. Therefore, one can use a classifier for the loss.
When a classifier trained to distinguish some ✓0 from a ✓1
performs poorly, then the two samples are close. While
using classification to quantify di↵erences between event
samples has been used for anomaly detection [41–43], we
are unaware of an example where it is used for parameter
fitting. The idea of using the classifier loss as a metric is
similar to the minimax strategy in Generative Adversar-
ial Networks [44], only in this context the generative part
is a reweighter and is trained independently. A more ele-
gant way of implementing this approach is to fit unknown
parameters to the values that minimize the nominal clas-
sifier loss. In particular, suppose that a reweighter neural
network f is trained as described above. Such a function
will satisfy

f(x, ✓) = argmax
f 0

X

i2✓0

log f 0(xi, ✓) +
X

i2✓

log(1 � f

0(xi, ✓))

(2)

for all ✓. Note that the f

0 in the first sum takes the
parameter ✓ and not ✓0, otherwise the discrimination task
would be trivial. Now, suppose there is a new sample ✓1
where ✓1 is unknown (for instance, ✓1 are collider data).
The claim is that if ✓⇤ is chosen as

✓

⇤ = argmax
✓0

X

i2✓0

log f(xi, ✓
0) +

X

i2✓1

log(1 � f(xi, ✓
0))

(3)

then ✓

⇤ = ✓1. As f minimizes the cross-entropy loss for
any ✓ (Eq. 2),

X

i2✓0

log f(xi, ✓1) +
X

i2✓1

log(1 � f(xi, ✓1))

�
X

i2✓0

log f(xi, ✓
⇤) +

X

i2✓1

log(1 � f(xi, ✓
⇤)) (4)

must hold. However, the converse must also be true since
✓

⇤ minimizes the cross-entropy loss as well and therefore,
✓

⇤ = ✓1. Since f is di↵erentiable, Eq. 3 can be solved us-
ing standard gradient-based methods. While Eq. 3 per-
forms the fit on the same particle-level phase space as
the reweighting, it can be readily extended to do the fit-
ting (via the classification loss) at detector-level while the
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ideal per-event weight to morph the second simulation
into the first one. A key observation made by multiple
groups in the past is that w can be well-approximated
by training a machine learning classifier to distinguish
the two simulations. For example, let f(x) be a neural
network and trained with the binary cross-entropy loss:

loss(f(x)) = �
X

i20

log f(xi) �
X

i21

log(1 � f(xi)), (1)

where 0 and 1 represent sets of examples from the
two simulations. Then a well-known result is that2,
f(x)/(1 � f(x)) ⇡ p0(x)/p1(x). The benefit of param-
eterizing f as a neural network is that deep learning can
readily analyze all of ⌦, which was not possible with shal-
low learning attempts with a similar statistical founda-
tion. The closest attempt to a full phase space approach
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ing approximation can be extended to this continuous
case by adding ✓ as a feature [38, 39]: f(x, ✓). In the
examples presented below, the training data are gener-
ated with a uniform distribution in ✓, but this probability
density can be optimized per application and can even be
discrete.

Even though generators have many parameters that
must be fit to data, gradient methods cannot be used di-
rectly with the models as the phase space they produce
is not usually di↵erentiable (or at least the derivative is
intractable) with respect to their model parameters. Sur-
rogate generative models built from neural networks can
be used for gradient-based parameter fitting, but may not
have su�cient quality to be reliable. Reweighting is a ro-
bust alternative to surrogate generative models. A neural
network-based continuous reweighting function is essen-
tially a di↵erentiable (in model parameters) version of the
original simulator and can be used to perform inference
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In most physical applications, this is always the case. If there

are regions where p0(x)/p1(x) is far from unity, one can add

a regularization parameter to the training to mitigate large

weights, which may significantly reduce the statistical power of

the reweighted dataset. We found that this works well, but was

unnecessary for the examples presented in this paper.
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See Appendix A for the derivation.

on the parameters themselves. This is especially pow-
erful for particle-level parameter tuning to data where
one sample with a computational expensive full detector
simulation can be continuously reweighted to other pa-
rameter points with the same detector model at no extra
simulation cost.

An ideal loss function used to fit model parameters
makes use of the full observable phase space. Typical
metrics such as the �

2 between histogram approxima-
tions to probability densities become impractical when
⌦ is high dimensional. As described above, classifiers
are powerful tools for accessing all of the available infor-
mation. Therefore, one can use a classifier for the loss.
When a classifier trained to distinguish some ✓0 from a ✓1
performs poorly, then the two samples are close. While
using classification to quantify di↵erences between event
samples has been used for anomaly detection [41–43], we
are unaware of an example where it is used for parameter
fitting. The idea of using the classifier loss as a metric is
similar to the minimax strategy in Generative Adversar-
ial Networks [44], only in this context the generative part
is a reweighter and is trained independently. A more ele-
gant way of implementing this approach is to fit unknown
parameters to the values that minimize the nominal clas-
sifier loss. In particular, suppose that a reweighter neural
network f is trained as described above. Such a function
will satisfy

f(x, ✓) = argmax
f 0

X
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log f 0(xi, ✓) +
X
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log(1 � f

0(xi, ✓))

(2)

for all ✓. Note that the f

0 in the first sum takes the
parameter ✓ and not ✓0, otherwise the discrimination task
would be trivial. Now, suppose there is a new sample ✓1
where ✓1 is unknown (for instance, ✓1 are collider data).
The claim is that if ✓⇤ is chosen as

✓

⇤ = argmax
✓0

X
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log f(xi, ✓
0) +

X

i2✓1

log(1 � f(xi, ✓
0))

(3)

then ✓

⇤ = ✓1. As f minimizes the cross-entropy loss for
any ✓ (Eq. 2),
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�
X
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log f(xi, ✓
⇤) +
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log(1 � f(xi, ✓
⇤)) (4)

must hold. However, the converse must also be true since
✓

⇤ minimizes the cross-entropy loss as well and therefore,
✓

⇤ = ✓1. Since f is di↵erentiable, Eq. 3 can be solved us-
ing standard gradient-based methods. While Eq. 3 per-
forms the fit on the same particle-level phase space as
the reweighting, it can be readily extended to do the fit-
ting (via the classification loss) at detector-level while the

Parameterized classifier:

Classifier loss to fit the parameters
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What if we want to reweight with pre-detector 
particles, but fit to detector-level objects? 

8

at truth level (before detector simulation) while the fit
happens in data (after the e↵ects of the detector), this
procedure will not work. It works only if the reweighting
and fitting both happen at detector-level or both happen
at truth-level. The following is an alternative method:

✓

⇤ = argmax
✓0

min
g

X

i2✓0

log(g(xi))

+
X

i2✓

w(xi, ✓) log(1 � g(xi)), (B3)

where w(xi, ✓) = f(xi, ✓)/(1�f(xi, ✓)) is a trained Dctr
using binary cross entropy as in the main body. The in-
tuition of the above equation is that the classifier g is
trying to distinguish the two samples and we try to find
a ✓ that makes g’s task maximally hard. If g cannot tell
apart the two samples, then the reweighting has worked.
This is similar to the minimax graining of a GAN, only
now the analog of the generator network is the reweight-
ing network which is fixed and thus the only trainable
parameters are the ✓

0. The advantage of this second ap-
proach is that it readily generalizes to the case where the
reweighting happens on a di↵erent level:

✓

⇤ = argmax
✓0

min
g

X

i2✓0

log g(xD,i)

+
X

i2✓

w(xT,i, ✓) log(1 � g(xD,i)), (B4)

where xT is the truth value and xD is the detector-level
value. In simulation (the second sum), these come in
pairs and so one can apply the reweighting on one level
and the classification on the other.

Asymptotically, both this method and the one in the
body of the DCTR paper learn the same result: ✓⇤ = ✓0.
To see this for the second method, consider the same logic
as in Appendix A. Conditioning on x and ✓, the optimal
g is given by

g =
E[Y |X = x]

(1 � E[Y |X = x])w(x, ✓) + E[Y |X = x]
, (B5)

which reduces to the result of the previous appendix
when w = 0. For fixed g, the loss is maximized when
g is independent of x, which happens if (1 � E[Y |X =
x])w(x, ✓) / E[Y |X = x]), which means that w(x, ✓)
is proportional to the likelihood ratio between the two
samples. An example implementation of this method in
Keras can be found at Ref. [72].

xD

xDxT

f(xT ,✓)
1�f(xT ,✓)

Intuition: reweight until you 
can’t distinguish the data from 
the (reweighted) simulation!

[data]

[reweighted 
simulation]
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Part II: High-dimensional reweighting

Multiple applications under study; one of the 
most advanced is for accelerating expensive 

simulations.  Challenge: fidelity.

Can use classification to do reweighting and 
thus recycle simulations.   This can be 

parameterized and used for fitting.  High fidelity, 
but cannot be used to sample new examples.
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Theory of everything

Physics simulators

Detector-level features

Pattern recognition

Generative models: essential to connect our 
data to fundamental properties of nature.

Nature

Detector-level features

Pattern recognition

Deep learning can accelerate and enhance this work!

Experiment

Conclusions and outlook
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Pileup GAN - µ=20
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• The GAN gives realistic looking 
pileup images

• When overlayed onto RPV events, we 
see realistic shifts in the distributions

Number 
of jets

0 10 20 30

Multiplicity

0.00

0.02

0.04

0.06

0.08

Je
ts

p
er

bi
n

(n
or

m
al

iz
ed

) Pythia 8
e+e� ! Z ! dijets
anti-kT, R = 0.8

↵s = 0.1365

↵s = 0.1600

↵s = 0.1600 wgt.

0.4 0.5 0.6 0.7 0.8 0.9
⌧32

0

1

2

3

4

5

Je
ts

p
er

bi
n

(n
or

m
al

iz
ed

) Pythia 8
e+e� ! Z ! dijets
anti-kT, R = 0.8

↵s = 0.1365

↵s = 0.1600

↵s = 0.1600 wgt.

�15 �10 �5 0 5

log ECF(N = 3, � = 4)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Je
ts

p
er

bi
n

(n
or

m
al

iz
ed

) Pythia 8
e+e� ! Z ! dijets
anti-kT, R = 0.8

↵s = 0.1365

↵s = 0.1600

↵s = 0.1600 wgt.

0.150 0.155 0.160 0.165 0.170
↵s

100

101

102

�
2 /

nd
f

Unweighted

Weighted

Anders Andreassen (Google)



�57Questions?

N
or

m
al

iz
ed

 P
ix

el
 E

ne
rg

y 
D

iff
er

en
ce

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
-310×

)η[Translated] Pseudorapidity (
-1 -0.5 0 0.5 1

)φ
[T

ra
ns

la
te

d]
 A

zi
m

ut
ha

l A
ng

le
 (

-1

-0.5

0

0.5

1

b b→ 1,  8 →p p 
 = 125 GeV

1,8
re-showered with Pythia 8, m

Classification

RegressionGeneration

arbitrarily 
many 

categories

map noise 
to structure

provide 
examples 
for training


