

Multifunctional | Materials | Machine

Automatic Feature Extraction from Hyperspectral Imagery using Deep Recurrent Neural Networks

Joshua C. Agar

Department of Materials Science and Engineering, Lehigh University

Ferroelectricity 101

- Susceptibility maximized near materials phase transitions
- Field switchable spontaneous polarization

Multifunctional Ferroics

Need for Ferroelectrics

Need for Ferroelectrics

Controlled ferroelectric phase transformations → electrical conductivity, dielectric constant, elastic modulus, piezoresponse, etc.

Domain Wall Devices

Complex Switching

J. C. Agar *et. al. Nat. Mater.* **15**, 549 (2016)

Ruijuan Xu

Minimize charge asymmetry

 \rightarrow Varying unit-cell orientation

only head-to-tail DW

Thin-Film Epitaxy Pulsed-Laser Deposition

- Epitaxial Heterostructures with unit-cell-level control
- Growth of a wide variety of complex materials systems
- Stoichiometric and defect control during growth

Growth of Tensile Strained PbTiO₃

Collaborators: S. Pandya, A. Damodaran (UC-Berkeley)

- Selection of appropriate substrate → deterministic control of domain structures
- Large compressive (SrTiO₃) \rightarrow mondomain c
- Small compressive (DyScO₃) → polydomain, c/a
- Large tensile (SmScO₃) → polydomain, a₁/a₂
- Moderate tensile (GdScO₃) → Strain spinodal

Understanding Hierarchical Domain Structures

- 1. How does ferroelectric switching occur in this complex structure?
 - 2. What are its implications for the dielectric, piezoelectric, and pyroelectric susceptibilities?

Collaborators: S. Pandya, A. Damodaran (UC-Berkeley)

Band Excitation Piezoresponse Spectroscopy

Collaborators: R. Vasudevan, S. Jesse, N. Balke and S. Kalinin (Oak Ridge National Laboratory)

Band excitation (BE) PFM allows the spatially resolved measure of piezoresponse, MBLEHIGH modulus, and electromechanical dissipation

Visualizing Ferroelastic Switching BE-PFM \rightarrow contains the information \rightarrow untenable to analyze Piezoresponse = A cos(ϕ); (x = 40-100, y = 40-100, V = 50-700, cycle = 1-6) Resonance

x20-60

Machine Learning Ferroelastic Switching

Identify characteristic features of piezoresponse hysteresis

Generalizability

Interpretability

- Discover unknown or difficult to quantify features
- Representation needs to be physically interpretable

Principal Component Dimensionality Reduction

Constructs a set of orthogonal linear eigenvectors and eigenvalues ranked in terms of the variance explained

k-Means Clustering

Clusters data into k-clusters of equal variance

- Clustering identifies regions of interest which match domain structures
- Cannot account for mixed responses

Can we design a deep learning neural network for this problem?

How to Make a Neural Network Learn Features?

Force a network to learn an identity function through a highly constrained layer

J. C. Agar et. al. Nat. Comm. (accepted)

Piezoelectric loops have temporal (time) dependence \rightarrow need architecture which accounts for this structure

Long-Short Term Memory Recurrent Neural Networks

Piezoelectric loops have temporal (time) dependence \rightarrow need architecture which accounts for this structure

Long-Short Term Memory Recurrent Neural Networks

Piezoelectric loops have temporal (time) dependence \rightarrow need architecture which accounts for this structure

Long-Short Term Memory Recurrent Neural Networks

Piezoelectric loops have temporal (time) dependence \rightarrow need architecture which accounts for this structure

Long-Short Term Memory Recurrent Neural Networks

21

How to Make a Neural Network Learn Features?

Force a network to learn an identity function through a highly constrained layer

Compute activation from low-dimensional layer \rightarrow reconstruct

maps

Initial

Final

J. C. Agar et. al. Nat. Comm. (accepted)

Compute activation from low-dimensional layer \rightarrow reconstruct maps

Enforcing Sparsity

Loss Function

$$Loss = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 + \lambda \sum_{i=1}^{n} |w_i|$$

Mean Squared Error

 l_1 -normalization

 l_1 = 1 isosurface

Final

Compute activation from low-dimensional layer \rightarrow reconstruct

maps

Initial

Final

J. C. Agar et. al. Nat. Comm. (accepted) 25

Visualization of Learning Process

Compute activation from low-dimensional layer \rightarrow reconstruct maps

Autoencoder as a Generator

Compute activation from low-dimensional layer \rightarrow reconstruct maps

Compute activation from low-dimensional layer \rightarrow reconstruct maps

Ferroelastic Switching

Understanding Piezoelectric Concavities

- Intermediate, stable low-piezoresponse states
- Initial elastic hardening c \rightarrow a transition (low piezoresponse)
- Three-state, two-step ferroelastic switching process, >1% electromechanical response

Compute activation from low-dimensional layer \rightarrow reconstruct

maps

Initial

Final

Compute activation from low-dimensional layer \rightarrow reconstruct

maps

Final

32

 Electromechanical stiffening caused by electrostatic repulsion → charged domain front grows

Collaborators: Y. Cao (UT-Arlington)

33

Compute activation from low-dimensional layer \rightarrow reconstruct

maps

• a \rightarrow c switching with growing charged domain wall

Compute activation from low-dimensional layer \rightarrow reconstruct

maps

 + bias c→a switching w/ charged domain wall, - bias w/o charged domain wall

Collaborators: Y. Cao (UT-Arlington)

38

Extracting Further insight

Machine learning approaches...

- Enable real-time classification of switching processes
- Identify intermediate stages of switching
- Find optimal geometry to favor ferroelastic switching and electromechancial response
- Concavities \rightarrow well behaved in voltage space
- Area of concavities represent significance of transition → fit with mixture of Gaussians
- Enhanced ferroelectric or ferroelastic character at different c/a/c/aa₁/a₂/a₁/a₂ boundaries
- Quenched cantilever resonance (dampening) along valley boundary \rightarrow increased electromechanical energy absorption

Identify Features of Switching

Understand Switching Mechanisms

Conclusions

Can we apply this technique to other experimental techniques and materials systems?

Conductive Domain Walls in ErZrMnO₃

• Conductivity and conduction mechanisms of domain wall are dependent on the polar topology

Conductive Domain Walls in ErZrMnO₃

• Recurrent autoencoder extracts features of IV response relating to different conduction mechanisms

Trygve Ræder Tor Grande Dennis Meier

Conductive Domain Walls in ErZrMnO₃

Recurrent autoencoder extracts features of IV response relating to different conduction mechanisms

Trygve Ræder Tor Grande Dennis Meier

Electron Energy Loss Spectroscopy

Applying this Concept to EELS

- Provides spatially resolvable insight about coordination chemistry •
- Information about charge asymmetry at interface that drives emergent properties

Spurgeon et al. Nat. Comm. 6, 6735 2015

Steve Spurgeon Mitra Tahari

Applying this Concept to EELS

Neural Network

Autoencoder on EELS

• La and Mn mixing at the interface \rightarrow shows "sharpness" of interface

• Oxygen changing its screening at the interface

Autoencoder on EELS

• Ti intermixing and changing valence state

• Oxygen changing coordination

What is next?

How can we leverage data-driven approaches in experimental science?

Experimental Scientific Data Infrastructure

Experimental Scientific Data Infrastructure

- Simulations
- Physics-informed empirical models
 - **Machine Learning**

Scientific Data · Searchable

- **Findable**
- Unfiltered

Hardware and Software Infrastructure

- **Pipeline**
- **Automation**
- **Extensible**

Scientific Data Management

Lehigh University Nano-Human Interfaces Initiative

Optimizing Human-Machine Interactions

High Speed Machine Learning

3ms Latency Response

Controlling Properties of 2D Materials via Termination and Intercalation: *Tracking Ti*₃C₂T_x -F Surface Terminations In Situ

Hart, J.L., Hantanasirisakul, K., Lang, A.C., Anasori, B., Pinto, D., Pivak, Y., van Omme, J.T., May, S.J., Gogotsi, Y. and Taheri, M.L., 2019. Nature communications, 10(1), p.522.

*Mitra Taheri: mtaheri4@jhu.edu

Tracking $Ti_3C_2T_x$ -F Surface Terminations In Situ, Continued: That's a lot of data!

• DATA RATES:

- Imaging data rate is 26 Gb/s (>1.5TB/min);
- spectroscopy data rate is 6 Mb/s
- Storage rate (SS drives) is at least 26 Gb/s.

• DETAILS:

- F K edge of Ti₃C₂
- Data recorded while heating from 25C → 650 C.
- F edge starts decreasing around 400 C (defunctionalizing)
- Spectra were initially acquired every 2 seconds, then summed for sufficient SNR
- Each frame in the video is sum of 10 spectra

Hart, J.L., Hantanasirisakul, K., Lang, A.C., Anasori, B., Pinto, D., Pivak, Y., van Omme, J.T., May, S.J., Gogotsi, Y. and Taheri, M.L., 2019. Nature communications, 10(1), p.522.

*Mitra Taheri: mtaheri4@jhu.edu

Building a Community for Integrated Microscopy

- Second NexTEM workshop (organized by Taheri, Spurgeon, and Kepastaglou from SuperSTEM (UK)) held at the Microscopy and Microanalysis meeting in Portland, Oregon (pre-meeting congress).
- Third NexTEM being planned for Johns Hopkins University in late 2020/early 2021. Join us! We welcome experts in:
 - Data science/Al/Analytics
 - High performance computing
 - Microscopy
 - Physics, Materials Science, Chemistry, Biology, Manufacturing....we all need intelligent microscopy!

Topics

Advanced Detector and Spectroscopy Developments

- Design and use of novel detectors to investigate material structure and functionality, including 4D STEM and ptychography.
- Vibrational and phonon spectroscopies at unprecedented spatial and energy resolution.
- Methods to conduct high-resolution imaging and spectroscopy of beam-sensitive samples.
- Examination of materials structure and chemistry at cryogenic temperatures.

Frontiers of In Situ / Operando Microscopy

- Advances in S/TEM methods and instrumentation to capture the dynamics of complex materials systems, including alloys, thin films, nanoparticles, and liquids.
- Investigation of materials under stimulus across a range of sample environments and temperatures.
- New workflows for in situ experimentation to ensure reliability, reproducibility, and improve data quality.

Data-Driven Microscopy and Analysis

- Machine learning-based analysis of materials structure, dynamics, and defects.
- Integration of multiple large-scale imaging and spectroscopic data streams to elucidate physical descriptors of complex systems and phenomena.
- High-throughput simulation approaches to guide the interpretation of experimental datasets.

Next-Generation Transmission Electron Microscopy Workshop

Beyond Current Limits of Resolution, Environments, and Data Analysis

Invited Speakers

David Muller Cornell University

Naoya Shibata University of Tokyo

Stig Helveg Haldor Topsoe

Quentin Ramasse SuperSTEM

Luiz Tizei Université Paris Sud

Paul Voyles University of Wisconsin–Madison

Hamish Brown Lawrence Berkeley National Laboratory

Rama Vasudevan Oak Ridge National Laboratory

Chongmin Wang Pacific Northwest National Laboratory

Getting in Touch

61