
Automatic Feature Extraction from 
Hyperspectral Imagery using Deep Recurrent 

Neural Networks



Ferroelectricity 101
Perovskite Ferroelectrics

Ferroelectric Transition

Ferroelectric Hysteresis

• Susceptibility maximized near materials 
phase transitions

• Field switchable spontaneous polarization

P

2



Multifunctional Ferroics
Piezoelectric Pyroelectric Electrocaloric

Dagdevirena et al., PNAS. 111, 5, 1927 (2013)
Dagdevirena et al., Nat. Mater. 14, 728 (2015)

C. Hildebrandt et al., Sensors. 10, 4700 (2015)

>
<

S.B. Lang, Phys. Today 58, 31 (2005)

J. C. Agar et al., MRS Commun. 6, (2016)



Need for Ferroelectrics

J. C. Agar et al., MRS Commun. 6, (2016)



Need for Ferroelectrics
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Controlled Ferroelectric Switching

6

Controlled ferroelectric phase transformations à electrical conductivity, dielectric 
constant, elastic modulus, piezoresponse, etc.

Domain Wall Devices Complex Switching

+-

J. Jiang et. al. Nat. Mater. 17, 49, 2017
J. C. Agar et. al. Nat. Mater. 15, 

549 (2016)
Ruijuan Xu



Ferroelectric Domain Structures
+EDepolarization +EStrain

180° domain wall 90° domain wall 

Domain Wall Energy (EDW)

Minimize ∇P à Reduce # of DW +  
only head-to-tail DW

+EDomain Wall

Depolarization Energy (ED)

Minimize charge asymmetry

a1 a2

Minimize average lattice mismatch 
à Varying unit-cell orientation

as as as

c

a
a

c

Strain Energy (ES)

ELandau

Orbital interaction à Polar distortion

Landau/Bulk Energy (ELan.)

ETotal=

Designing domain structures à Manipulating energies

7



Thin-Film Epitaxy Pulsed-Laser Deposition

• Growth of a wide variety of complex materials systems

• Stoichiometric and defect control during growth

• Epitaxial Heterostructures with unit-cell-level control

Viewport

Aperture

Focusing
Lens

Pulsed Excimer 
Laser 

O2 inlet

Target 
Rotator

Heate
r λ = 248 nm

8



Growth of Tensile Strained PbTiO3
Collaborators: S. Pandya, A. Damodaran (UC-Berkeley)

• Selection of appropriate substrate à
deterministic control of domain structures

• Large compressive (SrTiO3) à mondomain c
• Small compressive (DyScO3) à

polydomain, c/a
• Large tensile (SmScO3) à polydomain, 

a1/a2

• Moderate tensile (GdScO3) à Strain 
spinodal

J. C. Agar et. al. Adv. Mater. 29, 37, 1702069 (2017) 9



Understanding Hierarchical Domain Structures

Height

Amp.

. .

Amp.

• “Sticking-out,” saw-tooth plateaus à “tilted” c/a structure (?)
• Flat “valley” regions à a1/a2 domain structure
• Surface tilts match RSMs tilts à uniquely identify phases in different domains

Complex multi-domain structures; large variation in out-of-plane lattice 
parameter in a domains = complex strain accommodation

Collaborators: S. Pandya, A. Damodaran (UC-Berkeley)

J. C. Agar et. al. Adv. Mater. 29, 37, 1702069 (2017) 10

1. How does ferroelectric switching occur in this complex 
structure? 

2. What are its implications for the dielectric, piezoelectric, and 
pyroelectric susceptibilities?

a (0.65° tilt)
3.911 Å

a1/a2

3.926Å

GdScO3

220

c (1.167° tilt)
4.104 Å



Band Excitation Piezoresponse Spectroscopy
Collaborators: R. Vasudevan, S. Jesse, N. Balke and S. Kalinin (Oak Ridge National Laboratory)

Band excitation (BE) PFM allows the spatially resolved measure of piezoresponse, 
modulus, and electromechanical dissipation

11
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Visualizing Ferroelastic Switching
BE-PFM à contains the information à untenable to analyze

Amplitude Phase Loss Resonance

x20-60

Piezoresponse  = A cos(ɸ);  (x = 40-100, y = 40-100, V = 50-700, cycle = 1-6)

J. C. Agar et. al. Nat. Comm. (accepted)
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Visualizing Ferroelastic Switching
BE-PFM à contains the information à untenable to analyze

Amplitude Phase Loss Resonance

x20-60

Piezoresponse  = A cos(ɸ);  (x = 40-100, y = 40-100, V = 50-700, cycle = 1-6)

J. C. Agar et. al. Nat. Comm. (accepted)



Machine Learning Ferroelastic Switching
Identify characteristic features of piezoresponse hysteresis

14

Generalizability

• Discover unknown or difficult to quantify 
features

Interpretability

• Representation needs to be physically 
interpretable

J. C. Agar et. al. Nat. Comm. (accepted)



Principal Component Dimensionality Reduction
Constructs a set of orthogonal linear eigenvectors and 
eigenvalues ranked in terms of the variance explained

15J. C. Agar et. al. Nat. Comm. (accepted)



k-Means Clustering
Clusters data into k-clusters of equal variance

16

• Clustering identifies regions of interest which match domain structures
• Cannot account for mixed responses

Can we design a deep learning neural network for this problem?
J. C. Agar et. al. Nat. Comm. (accepted)



How to Make a Neural Network Learn Features?
Force a network to learn an identity function through a highly 
constrained layer

Input Output

Autoencoder

Encoder Decoder

Low-dimensional layer
17J. C. Agar et. al. Nat. Comm. (accepted)
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How to Train a Neural Network on Piezoelectric Hysteresis loops
Piezoelectric loops have temporal (time) dependence à need architecture which accounts for 
this structure

Long-Short Term Memory Recurrent Neural Networks 
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J. C. Agar et. al. Nat. Comm. (accepted)
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How to Train a Neural Network on Piezoelectric Hysteresis loops
Piezoelectric loops have temporal (time) dependence à need architecture which accounts for 
this structure
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How to Train a Neural Network on Piezoelectric Hysteresis loops
Piezoelectric loops have temporal (time) dependence à need architecture which accounts for 
this structure

Long-Short Term Memory Recurrent Neural Networks 
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How to Make a Neural Network Learn Features?
Force a network to learn an identity function through a highly 
constrained layer

22J. C. Agar et. al. Nat. Comm. (accepted)



Analysis of Neural Network
Compute activation from low-dimensional layer à reconstruct 
maps

23

In out

J. C. Agar et. al. Nat. Comm. 
(accepted)



Analysis of Neural Network
Compute activation from low-dimensional layer à reconstruct 
maps

24

In out

Enforcing Sparsity

Loss Function

𝐿𝑜𝑠𝑠 =
1
𝑛6
78*

.

𝑌7 − ;𝑌7
+ + 𝜆6 𝑤7

Mean Squared Error 𝑙*- normalization

𝑙*= 1 isosurface

Mean Squared Error

• 𝑙@ (x<1) imposes sparsity

w1

w2

J. C. Agar et. al. Nat. Comm. 
(accepted)



Analysis of Neural Network
Compute activation from low-dimensional layer à reconstruct 
maps

25

In out

J. C. Agar et. al. Nat. Comm. 
(accepted)



Visualization of Learning Process

26



Analysis of Neural Network
Compute activation from low-dimensional layer à reconstruct 
maps

27

Input Output

Autoencoder as a Generator

J. C. Agar et. al. Nat. Comm. (accepted)



Analysis of Neural Network
Compute activation from low-dimensional layer à reconstruct 
maps

28J. C. Agar et. al. (in preparation)

In out



Analysis of Neural Network
Compute activation from low-dimensional layer à reconstruct 
maps

29J. C. Agar et. al. Nat. Comm. (accepted)

In out
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Ferroelastic Switching
Understanding Piezoelectric Concavities

• Intermediate, stable low-piezoresponse states

• Initial elastic hardening c à a transition (low piezoresponse)

• Three-state, two-step ferroelastic switching process, >1% 
electromechanical response

1

2

3
4

5

30J. C. Agar et. al. Adv. Mater. 29, 37, 1702069 (2017)



Analysis of Neural Network
Compute activation from low-dimensional layer à reconstruct 
maps

31

In out

J. C. Agar et. al. Nat. Comm. 
(accepted)



Analysis of Neural Network
Compute activation from low-dimensional layer à reconstruct 
maps

32

In out

J. C. Agar et. al. Nat. Comm. 
(accepted)Voltage
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Analysis of Neural Network

33
J. C. Agar et. al. Nat. Comm. 

(accepted)

• Electromechanical stiffening caused by electrostatic repulsion à
charged domain front grows

Collaborators: Y. Cao (UT-Arlington)



Analysis of Neural Network
Compute activation from low-dimensional layer à reconstruct 
maps

34

In out

J. C. Agar et. al. Nat. Comm. 
(accepted)Voltage
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Analysis of Neural Network

35
J. C. Agar et. al. Nat. Comm. 

(accepted)

• a à c switching with growing charged domain wall

Collaborators: Y. Cao (UT-Arlington)
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Analysis of Neural Network
Compute activation from low-dimensional layer à reconstruct 
maps

37

In out

J. C. Agar et. al. (in preparation)Voltage
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Analysis of Neural Network

38
J. C. Agar et. al. Nat. Comm. 

(accepted)

• + bias càa switching w/ charged domain wall, - bias w/o charged domain 
wall

Collaborators: Y. Cao (UT-Arlington)
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J. C. Agar et. al. Nat. Comm. 

(accepted)Collaborators: Y. Cao (UT-Arlington)



Extracting Further insight

40

• Concavities à well behaved in voltage space

• Area of concavities represent significance of transition à fit with mixture 
of Gaussians

• Enhanced ferroelectric or ferroelastic character at different c/a/c/a-
a1/a2/a1/a2 boundaries

• Quenched cantilever resonance (dampening) along valley 
boundary à increased electromechanical energy absorption 

Fe
rr

oe
la

st
ic

Fe
rr

oe
le

ct
ric

Machine learning approaches…
• Enable real-time classification of 

switching processes 
• Identify intermediate stages of 

switching
• Find optimal geometry to favor 

ferroelastic switching and 
electromechancial response

t
tt√

𝟐

J. C. Agar et. al. Adv. Mater. 30,  28, 1800701 (2018)



Conclusions

41

Height

Complex-Domain Structures

In out

LSTM-Neural Network

Identify Features of Switching Understand Switching Mechanisms



Conclusions

42

Height

Complex-Domain Structures

In out

LSTM-Neural Network

Identify Features of Switching Understand Switching Mechanisms

Can we apply this technique to other experimental 
techniques and materials systems?



Conductive Domain Walls in ErZrMnO3

43

Dennis MeierTor GrandeTrygve Ræder

• Conductivity and conduction mechanisms of domain wall are dependent on the polar 
topology



Conductive Domain Walls in ErZrMnO3

44

Dennis MeierTor GrandeTrygve Ræder

• Recurrent autoencoder extracts features of IV response relating to different conduction 
mechanisms



Conductive Domain Walls in ErZrMnO3

45

Dennis MeierTor GrandeTrygve Ræder

• Recurrent autoencoder extracts features of IV response relating to different conduction 
mechanisms



Electron Energy Loss Spectroscopy

46



Applying this Concept to EELS

47

Spurgeon et al. Nat. Comm. 6, 6735 2015

Jamie Hart Steve Spurgeon Mitra Tahari

• Provides spatially resolvable insight about coordination chemistry
• Information about charge asymmetry at interface that drives emergent properties



Applying this Concept to EELS

48

Jamie Hart Steve Spurgeon Mitra Tahari
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Autoencoder on EELS

49

• La and Mn mixing at the interface à shows ”sharpness” of interface

• Oxygen changing its screening at the 
interface



Autoencoder on EELS

50

• Ti intermixing and changing valence state

• Oxygen changing coordination



What is next?

How can we leverage data-driven 
approaches in experimental science?

51



Experimental Scientific Data Infrastructure

52

Algorithms

Scientific Data

Hardware and 
Software 

Infrastructure 

• Simulations
• Physics-informed empirical models
• Machine Learning

• Findable
• Searchable
• Unfiltered

• Pipeline
• Automation
• Extensible



Experimental Scientific Data Infrastructure
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Algorithms

Scientific Data

Hardware and 
Software 

Infrastructure 

• Simulations
• Physics-informed empirical models
• Machine Learning

• Findable
• Searchable
• Unfiltered

• Pipeline
• Automation
• Extensible



Scientific Data Management



Lehigh University Nano-Human Interfaces Initiative

55



Optimizing Human-Machine Interactions

56



High Speed Machine Learning

57



Controlling Properties of 2D Materials via 
Termination and Intercalation:

Tracking Ti3C2Tx -F Surface Terminations In Situ

58

Adsorbed
species

H2O

F

Initial state:

Intercalants: H2O
Tx: OH0.4F0.4O0.5

Final state:

Intercalants: -
Tx: F0.2O0.5

Δσ = 4×

Hart, J.L., Hantanasirisakul, K., Lang, A.C., Anasori, B., Pinto, D., Pivak, Y., van Omme, J.T., May, S.J., 
Gogotsi, Y. and Taheri, M.L., 2019. Nature communications, 10(1), p.522.

*Mitra Taheri: mtaheri4@jhu.edu



Tracking Ti3C2Tx -F Surface Terminations 
In Situ, Continued: That’s a lot of data!

59

• DATA RATES:
• Imaging data rate is 26 Gb/s (>1.5TB/min);
• spectroscopy data rate is 6 Mb/s
• Storage rate (SS drives) is at least 26 Gb/s.

• DETAILS:
• F K edge of Ti3C2

• Data recorded while heating from 25C à
650 C. 

• F edge starts decreasing around 400 C 
(defunctionalizing)

• Spectra were initially acquired every 2 
seconds, then summed for sufficient SNR

• Each frame in the video is sum of 10 
spectra

Hart, J.L., Hantanasirisakul, K., Lang, A.C., Anasori, B., Pinto, D., Pivak, Y., van Omme, J.T., May, S.J., 
Gogotsi, Y. and Taheri, M.L., 2019. Nature communications, 10(1), p.522.

*Mitra Taheri: mtaheri4@jhu.edu

In situ acquisition (up to 400 fps)



• Second NexTEM workshop 
(organized by Taheri, Spurgeon, 
and Kepastaglou from SuperSTEM
(UK)) held at the Microscopy and 
Microanalysis meeting in 
Portland, Oregon (pre-meeting 
congress). 

• Third NexTEM being planned for 
Johns Hopkins University in late 
2020/early 2021. Join us! We 
welcome experts in: 

• Data science/AI/Analytics
• High performance computing
• Microscopy
• Physics, Materials Science, 

Chemistry, Biology, 
Manufacturing….we all need 
intelligent microscopy!

Building a Community 
for Integrated 
Microscopy 



Getting in Touch
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www.m3-learning.com

Joshua.agar@lehigh.edu

jagar2


