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Local and Global Optimization
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Optimization and gradient descent
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Black Box Optimization Problems

in f
xrglan" (X)

@ f nonlinear function; derivatives of f not available

@ Noisy functions, stochastic or deterministic

min F(x) = ¢00) + <(x)  min £(x) = S(x)(1 + c(x))
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Optimizing properties obtained from expensive simulations or experiments

Critical temperatures from rate Actit barriers from Yield estimation from
molecular dynamics from kinetic Monte Carlo hanical nudged experii I organic synthesis
simulations simulations elastic band calculations reactor systems
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Andersen et al. Front. Chem. 2019

* Many examples exist in the domain of molecular and materials science where
calculating a property requires expensive computations or experiments
* In many of these cases, derivatives are not available
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Derivative-free methods: direct and random search
Iterative algorithms that converge to a local optima.
In each iteration:

@ Evaluate a set of sample points around the current iterate;

@ Choose the sample point with the best function value;
© Make this point the next iterate;
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Derivative free methods: model-based

Iterative algorithms that converge to a local optimum.

In each iteration:
@ Evaluate a set of sample points around the current iterate;
@ Interpolate the sample points with a linear or quadratic model;
© Use this model to find the next iterate;
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Model-Based Trust Region Method (pioneered by M.J.D. Powell)

(a) starting point (b) initial sampling
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Model-Based Trust Region Method
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Model-Based Trust Region Method
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Model-Based Trust Region Method

x1

Shrinking and expanding trust region radius, exploiting curvature, efficient in terms of samples

Katya Scheinberg  (Cornell University) 19 / 37



Direct Search

11307 function evaluations
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Random Search

3705 function evaluations
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Trust Region Method

69 function evaluations
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Active learning, generative models and derivative free optimization
optimization

What does model-based derivative-free optimization do?

@ Using some "labeled” data (x, f(x)), build a models m(x). What do we want from that
model m(x)? Quality? Simplicity?

o Optimize m(x) or "related function”, to obtain new potentially interesting data point. What
do we optimize?

@ Modify model (how?), repeat.

o What do we need for convergence?
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Assumptions on models for convergence

For trust region, first-order convergence

IVF(K) = Vm () < O(A),
For trust region, second-order convergence
V2 F(xK) = 77 m (<)l
IVF(x¥) = Vmi (M)l
For line search, first-order converegnce

IVFOF) = Vme () < 0ol Vmil)

In other words, model should have comparable Taylor expansion as the true function w.r.t. the
step size.
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Building models via linear interpolation

m(y) = f(x) +2(x)T(y =x):  m(y) = f(y),Yy € V.
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Building models via linear interpolation

m(y) = f(x)+2(x)T(y —=x):  m(y)=f(y),Vy € V.
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Building models via linear interpolation

m(y) = f(x)+2(x)T(y —x):  m(y)=f(y),Vy € V.

o Let Y ={x+oy1,....x+0oyn}, 0 >0,

f(x + oy1) — F(x) v

— . n — . nxn
Fy = . ERY, My=|_]|€R

Fx+ ovm) = () T

@ Model m(y) constructed to satisfy interpolation conditions:

ocMyg = Fy

Theorem [Conn, Scheinberg & Vicente, 2008]

Let Y = {x,x + oy1,...,x + oyn} be set of interpolation points such that max; [ly;|| < 1 and that My, is nonsingular.
Suppose that the function f has L-Lipschitz continuous gradients. Then,
=il
My, " ll2v/noL
IVm6) = VA < —>———.

e Cost: O(n3) (reduces to O(n?) if My is orthornormal and O(n?) if My = 1)
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Quadratic Interpolation Models

m(y) = f(x) +2(x)"(y — x) + %(y = x)TH(x)(y =x): m(y) = f(y), Vy € .
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Quadratic Interpolation Models
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Quadratic Interpolation Models

m(y) = f(x) +2(x)" (v —x) + %(y —X)THE)y =x) = mly) = f(y), Yy € V.
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Quadratic Interpolation Models
miy) = () + 20T =)+ 50 =0 HEIY =) s m(y) = F(0), Vy € V.

o Let Y ={x+oy,...x+oyn}, o >0,

Flx + oy) — F(x) vl veclny)
B . N . . Nx N
Fy = : erV, my = : €R
f(x + oyy) — f(x) T veclny])

@ Model m(y) constructed to satisfy interpolation conditions:

oMy (g,vec(H)) = Fy

Theorem [Conn, Scheinberg & Vicente, 2008]

Let Y = {x,x+oy1,...,x+ rry,,Jr,,(,,Jrl)/Q} be set of interpolation points such that max; [|y;|| < 1 and that My, is
nonsingular. Suppose that the function f has L-Lipschitz continuous Hessians. Then,

IV m(x) = VeIl < O (I1M3; [l2no’L) -

177 m(x) = V()1 < © (IM5 1 lanot) -

e Cost: O(n®)

Katya Scheinberg  (Cornell University) 26 /37



Interpolation model quality
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Model deterioration
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Some conclusions so far

@ Interpolation models allow for old points to be reused and hence are very economical in
terms of samples.

o Linear algebra is expensive and more importantly can be ill-conditioned.

@ Can improve lin. alg. cost and conditioning by using pre-designed sample sets, but it is more
expensive in terms of samples (e.g. FD needs n samples per gradient estimate).

@ What alternatives are there?
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Gaussian Smoothing

F(x) = Eenno,nf(x + o€) = / f(x + oe)m(el0, I)de
Rn

e 7(y|x,X) is the pdf of N(x, X) evaluated at y

o F(x) is a Gaussian smoothed approximation to f(x)

1
VF(x) = —Econro,nyf(x + ce)e

g

o Idea: Approximate Vf(x) by a sample average approximation of V F(x)

N
1
g(x) = No ; f(x + o€i)ei
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Gaussian Smoothing

F(x) = Eeononf(x + o€) = / F(x + oe)m(€|0, 1)de
Rn

e 7(y|x,X) is the pdf of N(x, ¥) evaluated at y

@ F(x) is a Gaussian smoothed approximation to f(x)
1
VF(x) = ;EeNN(OJ)f(X + o€)e
o |dea: Approximate Vf(x) by a sample average approximation of VF(x)

1N
g(x) = mzf(x-i'”ﬁi)ﬁi

i=1

@ Issue: Variance — oo as o — 0
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Gaussian Smoothing

F(x) = Eenno,nf(x + o€) = / f(x + oe)m(el0, I)de
Rn

e 7(y|x,X) is the pdf of N(x, X) evaluated at y

o F(x) is a Gaussian smoothed approximation to f(x)
1
VF() = ZEeronso.(FGx+ o6)~F(x))e

o Idea: Approximate Vf(x) by a sample average approximation of V F(x)

1 N
g(x) = e Z(f(x + oe€i)—1(x))e
i=1

g <
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Gaussian Smoothing
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Abraham D Flaxman, Adam Tauman Kalai, and H Brendan McMahan. Online convex optimization in
the bandit setting: gradient descent without a gradient. In Proceedings of the sizteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 385-394. Society for Industrial and Applied Mathemat-
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uniform distribution on a ball for online learning

Maryam Fazel, Rong Ge. Sham M Kakade, and Mehran Mesbahi. Global convergence of policy
gradient methods for the linear quadratic regulator. arXiv preprint arXiv:1801.05039, 2018.

uniform distribution on a ball for model-free LQR
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Analysis of Variance for Gaussian Smoothing

lle(x) = VI < le(x) = VF(X)[| + [IVF(x) = V()|

sample average error smoothing error

r++/nolL

IN

Theorem [Berahas, Cao, S., 2019]

Suppose that the function f(x) has L-Lipschitz continuous gradients. Let g(x) denote the GSG approximation to Vf(x). If

1 n(n® + 6n + 8)L25?
N> — <3nHVf(><)H2 + AT
&r2 4

i ll2(x) = VIl < r + vnoL.

with probability at least 1 — 4.

Essentially N ~ 3n
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Gradient Approximation Accuracy

numerical experiment setup and results:

n/2

f(x) = ZMsin(XQ,-_l)JrCOS(XQi) +L
i=1

-M
2n

T
X" Lnpxnx,

which has ||[Vf(0)|| = \/EM. We use n =20, M =1, L =2, 0 =0.01, and N = 4n for the

smoothing methods.
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Gradient Approximation Accuracy
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Algorithm Performance

Moré&Wild problems set (53 smooth problems)

o

(d)r=10"1 (e) =103 (f)r=10"°

Performance and data profiles for best variant of each method. Top row: performance profiles; Bottom row:

data profiles.
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Algorithm Performance

FD = forward finite difference

LIOD = linear interpolation of orthogonal directions
LS = (backtracking) linear search
GSG = Gaussian smooth gradient
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Reinforcement learning tasks: Swimmer (left), HalfCheetah (center), Reacher (right).
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Conclusions

@ Model based derivative free methods are efficient and theoretically sound
@ Select the type of models according to application but make sure theory applies

@ Use randomization only when necessary, as it can slow down convergence
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Thank you!
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