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Local and Global Optimization

From Roos, Terlaky and DeKlerk, ”Nonlinear Optimisation”, 2002.
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Optimization and gradient descent
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Black Box Optimization Problems

min
x∈Rn

f (x)

x f(x)
BLACK BOX

f nonlinear function; derivatives of f not available

Noisy functions, stochastic or deterministic

min
x∈Rn

f (x) = φ(x) + ε(x) min
x∈Rn

f (x) = φ(x)(1 + ε(x))
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Motivation

Machine Learning

Source(s): https://blog.statsbot.co/, https://campus.datacamp.com/

Deep Learning

Source(s): https://medium.com/

Reinforcement Learning

Source(s): http://people.csail.mit.edu/
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Optimizing	properties	obtained	from	expensive	simulations	or	experiments

Critical	temperatures	from	
molecular	dynamics	

simulations

Dignon et al. ACS Cent. Sci., Article ASAP

Reaction	rate	estimation	
from	kinetic	Monte	Carlo	

simulations

Activation	barriers	from	
quantum	mechanical	nudged	
elastic	band	calculations

ZACROS (http://zacros.org/tutorials) Andersen et al. Front. Chem. 2019

Yield	estimation	from	
experimental	organic	synthesis	

reactor	systems

• Many	examples	exist	in	the	domain	of	molecular	and	materials	science	where	
calculating	a	property	requires	expensive	computations	or	experiments

• In	many	of	these	cases,	derivatives	are	not	available

Holmes	et	al.	React.	Chem.	Eng.,	2016,	1,	36
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Derivative-free methods: direct and random search

Iterative algorithms that converge to a local optima.

In each iteration:
1 Evaluate a set of sample points around the current iterate;
2 Choose the sample point with the best function value;
3 Make this point the next iterate;
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Derivative free methods: model-based

Iterative algorithms that converge to a local optimum.

In each iteration:

1 Evaluate a set of sample points around the current iterate;

2 Interpolate the sample points with a linear or quadratic model;

3 Use this model to find the next iterate;

⇒
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Model-Based Trust Region Method (pioneered by M.J.D. Powell)

(a) starting point (b) initial sampling
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Model-Based Trust Region Method

Katya Scheinberg (Cornell University) 10 / 37



Model-Based Trust Region Method
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Model-Based Trust Region Method
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Model-Based Trust Region Method
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Model-Based Trust Region Method

Shrinking and expanding trust region radius, exploiting curvature, efficient in terms of samples
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Direct Search

11307 function evaluations
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Random Search

3705 function evaluations
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Trust Region Method

69 function evaluations
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Active learning, generative models and derivative free optimization
optimization

What does model-based derivative-free optimization do?

Using some ”labeled” data (x , f (x)), build a models m(x). What do we want from that
model m(x)? Quality? Simplicity?

Optimize m(x) or ”related function”, to obtain new potentially interesting data point. What
do we optimize?

Modify model (how?), repeat.

What do we need for convergence?
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Assumptions on models for convergence

For trust region, first-order convergence

‖∇f (xk )−∇mk (xk )‖ ≤ O(∆k ),

For trust region, second-order convergence

‖∇2f (xk )−∇2mk (xk )‖ ≤ O(∆k )

‖∇f (xk )−∇mk (xk )‖ ≤ O(∆2
k )

For line search, first-order converegnce

‖∇f (xk )−∇mk (xk )‖ ≤ O(αk‖∇mk‖)

Intuition

In other words, model should have comparable Taylor expansion as the true function w.r.t. the
step size.
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Building models via linear interpolation

m(y) = f (x) + g(x)T (y − x) : m(y) = f (y), ∀y ∈ Y.
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Building models via linear interpolation

m(y) = f (x) + g(x)T (y − x) : m(y) = f (y), ∀y ∈ Y.

Let Y = {x + σy1, ..., x + σyn}, σ > 0,

FY =


f (x + σy1) − f (x)

.

.

.
f (x + σyn) − f (x)

 ∈ Rn, MY =


yT1

.

.

.

yTn

 ∈ Rn×n
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Building models via linear interpolation

m(y) = f (x) + g(x)T (y − x) : m(y) = f (y), ∀y ∈ Y.
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
f (x + σy1) − f (x)
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yT1

.

.

.

yTn

 ∈ Rn×n

Model m(y) constructed to satisfy interpolation conditions:

σMYg = FY

Theorem [Conn, Scheinberg & Vicente, 2008]

Let Y = {x, x + σy1, . . . , x + σyn} be set of interpolation points such that maxi ‖yi‖ ≤ 1 and that MY is nonsingular.
Suppose that the function f has L-Lipschitz continuous gradients. Then,

‖∇m(x)−∇f (x)‖ ≤
‖M−1
Y ‖2

√
nσL

2
.

Cost: O(n3) (reduces to O(n2) if MY is orthornormal and O(n2) if MY = I )
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Quadratic Interpolation Models

m(y) = f (x) + g(x)T (y − x) +
1

2
(y − x)TH(x)(y − x) : m(y) = f (y), ∀y ∈ Y.
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m(y) = f (x) + g(x)T (y − x) +
1

2
(y − x)TH(x)(y − x) : m(y) = f (y), ∀y ∈ Y.

Let Y = {x + σy1, ..., x + σyN}, σ > 0,

FY =


f (x + σy1) − f (x)

.

.

.
f (x + σyN ) − f (x)

 ∈ RN , MY =


yT1 vec(y1y

T
1 )

.

.

.

.

.

.
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T
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 ∈ RN×N

Model m(y) constructed to satisfy interpolation conditions:

σMY (g , vec(H)) = FY

Theorem [Conn, Scheinberg & Vicente, 2008]

Let Y = {x, x + σy1, . . . , x + σyn+n(n+1)/2} be set of interpolation points such that maxi ‖yi‖ ≤ 1 and that MY is

nonsingular. Suppose that the function f has L-Lipschitz continuous Hessians. Then,

‖∇m(x)−∇f (x)‖ ≤ O
(
‖M−1
Y ‖2nσ

2L
)
.

‖∇2m(x)−∇2f (x)‖ ≤ O
(
‖M−1
Y ‖2nσL

)
.

Cost: O(n6)
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Interpolation model quality

⇒

⇒
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Model deterioration
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Some conclusions so far

Interpolation models allow for old points to be reused and hence are very economical in
terms of samples.

Linear algebra is expensive and more importantly can be ill-conditioned.

Can improve lin. alg. cost and conditioning by using pre-designed sample sets, but it is more
expensive in terms of samples (e.g. FD needs n samples per gradient estimate).

What alternatives are there?
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Gaussian Smoothing

F (x) = Eε∼N (0,I )f (x + σε) =

∫
Rn

f (x + σε)π(ε|0, I )dε

π(y |x ,Σ) is the pdf of N (x ,Σ) evaluated at y

F (x) is a Gaussian smoothed approximation to f (x)

∇F (x) =
1

σ
Eε∼N (0,I )f (x + σε)ε

Idea: Approximate ∇f (x) by a sample average approximation of ∇F (x)

g(x) =
1

Nσ

N∑
i=1

f (x + σεi )εi
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Gaussian Smoothing

F (x) = Eε∼N (0,I )f (x + σε) =

∫
Rn

f (x + σε)π(ε|0, I )dε

π(y |x ,Σ) is the pdf of N (x ,Σ) evaluated at y

F (x) is a Gaussian smoothed approximation to f (x)

∇F (x) =
1

σ
Eε∼N (0,I )f (x + σε)ε

Idea: Approximate ∇f (x) by a sample average approximation of ∇F (x)

g(x) =
1

Nσ

N∑
i=1

f (x + σεi )εi

Issue: Variance →∞ as σ → 0
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Gaussian Smoothing

F (x) = Eε∼N (0,I )f (x + σε) =

∫
Rn

f (x + σε)π(ε|0, I )dε

π(y |x ,Σ) is the pdf of N (x ,Σ) evaluated at y

F (x) is a Gaussian smoothed approximation to f (x)

∇F (x) =
1

σ
Eε∼N (0,I )(f (x + σε)−f (x))ε

Idea: Approximate ∇f (x) by a sample average approximation of ∇F (x)

g(x) =
1

Nσ

N∑
i=1

(f (x + σεi )−f (x))εi
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Gaussian Smoothing

N = 1, theoretical analysis of convergence rates for convex problems

used in reinforcement learning, no theory, N is large

uses interpolation on top of sample average approximation

uniform distribution on a ball for online learning

uniform distribution on a ball for model-free LQR
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Analysis of Variance for Gaussian Smoothing

‖g(x)−∇f (x)‖ ≤ ‖g(x)−∇F (x)‖︸ ︷︷ ︸
sample average error

+ ‖∇F (x)−∇f (x)‖︸ ︷︷ ︸
smoothing error

≤ r +
√
nσL

Theorem [Berahas, Cao, S., 2019]

Suppose that the function f (x) has L-Lipschitz continuous gradients. Let g(x) denote the GSG approximation to ∇f (x). If

N ≥
1

δr2

(
3n‖∇f (x)‖2 +

n(n2 + 6n + 8)L2σ2

4

)
.

then, ‖g(x)−∇f (x)‖ ≤ r +
√

nσL.

with probability at least 1− δ.

Essentially N ∼ 3n
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Gradient Approximation Accuracy

numerical experiment setup and results:

f (x) =

n/2∑
i=1

M sin(x2i−1) + cos(x2i )

 +
L−M

2n
xT 1n×nx ,

which has ‖∇f (0)‖ =
√

n
2
M. We use n = 20, M = 1, L = 2, σ = 0.01, and N = 4n for the

smoothing methods.
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Gradient Approximation Accuracy
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Algorithm Performance

Moré&Wild problems set (53 smooth problems)
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Performance and data profiles for best variant of each method. Top row: performance profiles; Bottom row:
data profiles.
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Algorithm Performance

FD = forward finite difference
LIOD = linear interpolation of orthogonal directions
LS = (backtracking) linear search
GSG = Gaussian smooth gradient
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Conclusions

Model based derivative free methods are efficient and theoretically sound

Select the type of models according to application but make sure theory applies

Use randomization only when necessary, as it can slow down convergence

Andrew R Conn, Katya Scheinberg, and Luis N Vicente. Introduction to Derivative-free
Optimization MPS-SIAM Optimization series. SIAM, Philadelphia, USA, 2008.

Albert Berahas, Liyuan Cao, Krzyzstof Choromanski, Katya Scheinberg. A theoretical and
empirical comparison of gradient approximations in derivative-free optimization, arXiv
preprint arXiv:1904.11585,1905.01332, 2019.

Jeffrey Larson, Matt Menickelly, and Stefan M Wild. Derivative-free optimization methods
arXiv preprint arXiv:1904.11585, 2019.
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