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Canonical Flows
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Pipe flow 
Mixing Layer 
Boundary Layer 
Wall bounded flows
Isotropic turbulence

Milton Van Dyke



Milton Van DykeWAKES



Milton Van Dyke

Brown and Roshco

Callaham, Maeda, SLB

MIXING 
LAYERS



Milton Van Dyke
JETS



DataBases







Burger, Treib, Westermann, Werner, 
Lalescu, Szalay, Meneveau, Eying



Mixing



Taira & Colonius, 2007.
Colonius & Taira, 2008.

Immersed boundary method

Boundary forces computed as Lagrange-
multipliers to enforce no slip

Plunge

Pitch

2D Incompressible Navier-Stokes:



Finite-time Lyapunov exponents  (FTLE)

ẋ = x

ẏ = �y + x2

Haller, 2002; 
Shadden et al., 2005

Dynamical Systems:  Poincare and Geometry

Discrete-time update

2 Background on Koopman analysis

Consider a continuous-time dynamical system, given by:

d

dt
x = f(x), (1)

where x 2 M is an n-dimensional state on a smooth manifold M. The vector field f is an element
of the tangent bundle TM of M, such that f(x) 2 TxM. Note that in many cases we dispense
with manifolds and choose M = Rn and f a Lipschitz continuous function.

For a given time t, we may consider the flow map Ft : M ! M, which maps the state x(t0)
forward time t into the future to x(t0 + t), according to:

Ft(x(t0)) = x(t0 + t) = x(t0) +

Z t0+t

t0

f(x(⌧)) d⌧. (2)

In particular, this induces a discrete-time dynamical system:

xk+1 = Ft(xk), (3)

where xk = x(kt). In general, discrete-time dynamical systems are more general than continuous
time systems, but we choose to start with continuous time for illustrative purposes.

We also define a real-valued observable function g : M ! R, which is an element of an infinite-
dimensional Hilbert space. Typically, the Hilbert space is given by the Lebesque square-integrable
functions on M; other choices of a measure space are also valid.

The Koopman operator Kt is an infinite-dimensional linear operator that acts on observable
functions g as:

Ktg = g � Ft (4)

where � is the composition operator, so that:

Ktg(xk) = g(Ft(xk)) = g(xk+1). (5)

In other words, the Koopman operator Kt defines an infinite-dimensional linear dynamical system
that advances the observation of the state gk = g(xk) to the next timestep:

g(xk+1) = Ktg(xk). (6)

Note that this is true for any observable function g and for any point xk 2 M.
In the original paper by Koopman, Hamiltonian fluid systems with a positive density were

investigated. In this case, the Koopman operator Kt is unitary, and forms a one-parameter family
of unitary transformations in Hilbert space.

We may also describe the continuous-time version of the observable dynamical system in
Eq. (6) with the infinitesimal generator K of the one-parameter family of transformations Kt [6] :

d

dt
g = Kg. (7)

The linear dynamical systems in Eqs. (7) and (6) are analogous to the dynamical systems in Eqs. (1)
and (3), respectively. It is important to note that the original state x may be the observable, and the
infinite-dimensional operator Kt will advance this observable function. Note that we are denoting
this operator K in bold because it is an operator that operates on an infinite dimensional vector
space; given a particular basis for Hilbert space, K may be thought of as a generalization of a
matrix to infinite dimensions (i.e., an infinite-dimensional linear operator). Again, for Hamiltonian
systems, the infinitesimal generator K is self-adjoint.
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How Jellyfish Eat



Dabiri & Parker, 2012

Robotic Jellyfish!



Contaminate Release in the Ocean

We call v*(x0, t0, T) the mesochronic veloc-
ity field (15).

We denote by ftþT
t0 ðx0Þ as the map of A

mapping the fluid particle starting at time t0 at
point x0 ∈ R2 to its position x at time t0 + T. This
map represents the solution of Eq. 1. Its derivative
DftþT

t0 ðx0Þ is the Jacobian matrix J(x0) = ∂x/∂x0.
Because v is divergence-free, the eigenvalues l1,2(x0)
of J(x0) satisfy det(J(x0)) = l1(x0)l2(x0) = 1. Thus,
they are either real with l1(x0) = 1/l2(x0) or
complex-conjugate on the unit circle, |l1,2(x0)| =
1. We call a trajectory starting at x0 mesohyper-
bolic (hyperbolic on average) if l1,2(x0) are real
and different from 1, and mesoelliptic (elliptic on
average) if the eigenvalues are complex-conjugate.

The calculation shown in (4) now leads to
the conclusion that a trajectory starting at x0 is
mesohyperbolic on t, provided that det∇v*(x0) <
0 or det∇v*(x0) > 4/T2, whereas it is mesoellip-
tic, provided that 0 < det∇v*(x0) < 4/T2. There
are also differences in behavior between the case
det∇v*(x0) < 0 or det∇v*(x0) > 4/T2. The local,
linearized map behavior in the case det∇v*(x0) <
0 is a pure strain (fig. S4A), whereas in the case
of d det∇v*(x0) > 4/T2, it is strain combined with
a 180° rotation (that is, reflection across the x
and y axes) (fig. S4B). When T goes to zero, the
mesohyperbolicity/mesoellipticity criterion goes
to the well-known Okubo-Weiss criterion (16, 17)
for instantaneous snapshots of time-dependent
velocity fields, where a region is called elliptic
provided that det∇v > 0 in that region and hy-
perbolic in the region where det∇v < 0.

The Lagrangian coherent structures theory is
based on the calculation of the ridges of the finite-
time Lyapunov exponent (FTLE) field (7, 18, 19).
In contrast to the theory of Lagrangian coherent
structures that determines the stretching skeleton
of a fluid flow depending on the extrema of the
FTLE field [or the extrema of det∇v (x0, t, t0) over
a time interval [t0, t] (20)], our approach is putting
emphasis on the average behavior of trajectories
over an interval of time. In contrast to the FTLE
method, the mesohyperbolicity calculation dis-
tinguishes between two different regions of hy-
perbolic behavior (which we show in examples
below enables characterization of mixing regions)
and provides the ability for gradation of the elliptic
regions. For more detailed comparison, see (4).

Although the field we use to distinguish kin-
ematically separate regions is not frame-invariant,
it can be improved to account for the rate of rota-
tion of the strain along the lines pursued in (21, 22).

The field det∇v*(x0) becomes the centerpiece
of our finite-time diagnostics of the Lagrangian
properties. To build intuition, we begin with a sim-
ple, well-understood, cellular velocity field shown
in Fig. 1A, described by

u(x) ¼ −sin(2px1)cos(2px2)
cos(2px1)sin(2px2)

! "
ð6Þ

This divergence-free flow has families of pe-
riodic orbits around elliptic fixed points bounded
by heteroclinic orbits that connect hyperbolic

Fig. 2. (A) Ocean hypergraph map around the Mississippi Delta on 14 May, forecasting strong mixing
activity (mixture of red and blue) in the following 3 days. (B) NOAA’s oil spread estimate around the
Mississippi Delta on 17 May. The coastal areas affected were predicted by the hypergraph map on the left
3 days earlier. (C) Ocean hypergraph map around Grand Isle, Louisiana, on 19 May, forecasting strong oil
incursion (circled) in the following 3 days. (D) NOAA’s oil spread estimate around the Mississippi Delta on
22 May. The coastal areas around Grand Isle affected by oil spread were predicted by the hypergraph map
on the left 3 days earlier.

Fig. 3. (A) Ocean hypergraph map in front of the Biloxi-Pensacola shoreline on 25 May, forecasting
strong oil incursion toward the coastline (circled) in the following 3 days. (B) NOAA’s oil spread estimate
in front of the Biloxi-Pensacola shoreline on 27 May. The major directions of oil spread were predicted by
the hypergraph map 2 days earlier. The oil reached the shore several days later, on 2 June. (C) Ocean
hypergraph map in front of Pensacola on 8 June, forecasting a strong oil mixing event in front of the
shoreline and extension of the oil slick toward Panama City Beach in the following 3 days. (D) NOAA’s oil
spread estimate on 10 June in front of Pensacola. The oil developed a large slick forecasted by the
hypergraph map 2 days earlier and continued to flow toward Panama City Beach.

www.sciencemag.org SCIENCE VOL 330 22 OCTOBER 2010 487

REPORTS

 o
n 

O
ct

ob
er

 3
, 2

01
2

ww
w.

sc
ie

nc
em

ag
.o

rg
Do

wn
lo

ad
ed

 fr
om

 

Mezic, et al, Science 2010.

Olascoaga, NOAA 2010 Monterey Bay

Lekien, Coulliette, Shadden
J. Marsden & N. Leonard, 2005

Gulf Oil Spill
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Experiments

Theory

Simulations

FLUIDS

Model Control

OptimizeReduce

Tasks Aided by 
Machine Learning 

FLOW 
DATA



History Reichenberg, 1960s-1970s
Schweifel, 1970s

SLB, Noack, Koumoutsakos, 
Ann. Rev. Fluid Mech. 2019



Sir Lighthill and the AI Winter (1974)

https://www.youtube.com/watch?v=ug0oZAwjC6g



Experimental 
Measurements



LaVision PIV 

Particle Image Velocimetry (PIV)



Robust Statistics (RPCA)
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Robust Principal Component Analysis (RPCA)
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RPCA to Process Corrupted Flow Fields 3
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Figure 1. Schematic of RPCA. Corrupted snapshots are arranged as column vectors in the

matrix X, which is decomposed into the sum of a low-rank matrix L and a sparse matrix of

outliers S. (Videos: tinyurl.com/RPCA-PIV, Code: github.com/ischerl/RPCA-PIV)

2. Robust extraction of fluid coherent structures

Extracting coherent structures from data has been a central challenge in fluid mechan-
ics for decades. POD is a leading method to identify spatially correlated flow structures
from data. In snapshot POD, a data matrixX =

⇥
x(t1) x(t2) · · · x(tm)

⇤
is formed by

reshaping flow snapshots into column vectors x. The singular value decomposition (SVD)
X = U⌃V

T is used to identify dominant correlated structures, which are arranged
hierarchically in the columns ofU. However, techniques based on least-squares regression,
such as POD are highly susceptible to outliers and corrupted data. To mitigate this
sensitivity, Candès et al. (2011) have developed a robust principal component analysis
that seeks to decompose a data matrix X into a structured low-rank matrix L and a
sparse matrix S containing outliers and corrupt data:

X = L+ S. (2.1)

The principal components of L are robust to outliers and corrupt data in S.
Mathematically, the goal is to find L and S that satisfy the following:

min
L,S

rank(L) + kSk0 subject to L+ S = X. (2.2)

The rank(L) and the kSk0 terms are non-convex, making this optimization intractable.
Instead, we solve for L and S with high probability using a convex relaxation of (2.2):

min
L,S

kLk⇤ + �0kSk1 subject to L+ S = X, (2.3)

where k ·k⇤ is the nuclear norm, given by the sum of singular values, a proxy for rank and
�0 = �/

p
max(n,m). The solution to (2.3) converges to the solution of (2.2) with high

probability if � = 1, where n and m are the dimensions of X, given that L is not sparse
and S is not low-rank. In the examples below, these assumptions may only be partially
valid, so the optimal value of � may vary slightly. The convex problem in (2.3) is known
as principal component pursuit (PCP), and may be solved using the augmented Lagrange
multiplier (ALM) algorithm. Specifically, an augmented Lagrangian may be constructed:

L(L,S,Y) = kLk⇤ + �0kSk1 + hY,X� L� Si+ µ

2
kX� L� Sk2F . (2.4)

We then solve for Lk and Sk to minimize L, update the Lagrange multipliers Yk+1 =
Yk + µ(X � Lk � Sk), and iterate until convergence. In this work an inexact ALM
implementation from Sobral et al. (2015) is used. The alternating directions method
(ADM) (Lin et al. 2010; Yuan & Yang 2009) provides another simple procedure.
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RANS - Reynolds Averaged 
              Navier Stokes

    Ling & Templeton 2015, 
    Parish & Duraisamy 2016, 
    Ling, Kurzawski, Templeton 2016, 
    Xiao, Wu, Wang, Sun, Roy 2016, 
    Singh, Medida, Duraisamy, 2017, 
    Wang, Wu, Xiao, 2017 

LES - Large Eddy Simulation

    Maulik, San, Rasheed, Vedula 2019 



RANS Closure Models

Ling, Kurzawski, Templeton, JFM, 807, 2016



POD/PCA u(x, t) ⇡ ū+
rX

k=1

'k(x)ak(t)
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Reduced Order Models

This example provides a compelling test-case for the proposed algorithm, since the under-
lying form of the dynamics took nearly three decades to uncover. Indeed, the sparse dynamics
algorithm correctly identifies the on-attractor and off-attractor dynamics using quadratic nonlin-
earities and preserves the correct slow-manifold dynamics. It is interesting to note that when the
off-attractor trajectories are not included in the system identification, the algorithm incorrectly
identifies the dynamics using cubic nonlinearities, and fails to correctly identify the dynamics
associated with the shift mode, which connects the mean flow to the unstable steady state.

4.3.1 Direct numerical simulation

The direct numerical simulation involves a fast multi-domain immersed boundary projection
method [41, 11]. Four grids are used, each with a resolution of 450 ⇥ 200, with the finest grid
having dimensions of 9 ⇥ 4 cylinder diameters and the largest grid having dimensions of 72 ⇥ 32
diameters. The finest grid has 90,000 points, and each subsequent coarser grid has 67,500 distinct
points. Thus, if the state includes the vorticity at each grid point, then the state dimension is
292,500. The vorticity field on the finest grid is shown in Fig. 7. The code is non-dimensionalized
so that the cylinder diameter and free-stream velocity are both equal to one: D = 1 and U1 = 1,
respectively. The simulation time-step is �t = 0.02 non dimensional time units.

4.3.2 Mean field model

To develop a mean-field model for the cylinder wake, first we must reduce the dimension of
the system. The proper orthogonal decomposition (POD) [16], provides a low-rank basis that is
optimal in the L2 sense, resulting in a hierarchy of orthonormal modes that are ordered by mode
energy. The first two most energetic POD modes capture a significant portion of the energy; the
steady-state vortex shedding is a limit cycle in these coordinates. An additional mode, called the
shift mode, is included to capture the transient dynamics connecting the unstable steady state
with the mean of the limit cycle [31] (i.e., the direction connecting point ‘C’ to point ‘B’ in Fig. 7).

In the three-dimensional coordinate system described above, the mean-field model for the
cylinder dynamics are given by:

ẋ = µx � !y + Axz (24a)
ẏ = !x + µy + Ayz (24b)
ż = ��(z � x2 � y2). (24c)

If � is large, so that the z-dynamics are fast, then the mean flow rapidly corrects to be on the (slow)
manifold z = x2 +y2 given by the amplitude of vortex shedding. When substituting this algebraic
relationship into Eqs. 24a and 24b, we recover the Hopf normal form on the slow manifold.

Remarkably, similar dynamics are discovered by the sparse dynamics algorithm, purely from
data collected from simulations. The identified model coefficients, shown in Table 5, only include
quadratic nonlinearities, consistent with the Navier-Stokes equations. Moreover, the transient
behavior, shown in Figs. 9 and 10, is captured qualitatively for solutions that do not start on the
slow manifold. When the off-attractor dynamics in Fig. 9 are not included in the training data, the
model incorrectly identifies a simple Hopf normal form in x and y with cubic nonlinearities.

The data from Fig. 10 was not included in the training data, and although qualitatively similar,
the identified model does not exactly reproduce the transients. Since this initial condition had
twice the fluctuation energy in the x and y directions, the slow manifold approximation may not
be valid here. Relaxing the sparsity condition, it is possible to obtain models that agree almost
perfectly with the data in Figs. 8-10, although the model includes higher order nonlinearities.
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Sparse Identification of Nonlinear Dynamics (SINDy)

SLB, Proctor, Kutz, PNAS 2016.
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This example provides a compelling test-case for the proposed algorithm, since the under-
lying form of the dynamics took nearly three decades to uncover. Indeed, the sparse dynamics
algorithm correctly identifies the on-attractor and off-attractor dynamics using quadratic nonlin-
earities and preserves the correct slow-manifold dynamics. It is interesting to note that when the
off-attractor trajectories are not included in the system identification, the algorithm incorrectly
identifies the dynamics using cubic nonlinearities, and fails to correctly identify the dynamics
associated with the shift mode, which connects the mean flow to the unstable steady state.

4.3.1 Direct numerical simulation

The direct numerical simulation involves a fast multi-domain immersed boundary projection
method [41, 11]. Four grids are used, each with a resolution of 450 ⇥ 200, with the finest grid
having dimensions of 9 ⇥ 4 cylinder diameters and the largest grid having dimensions of 72 ⇥ 32
diameters. The finest grid has 90,000 points, and each subsequent coarser grid has 67,500 distinct
points. Thus, if the state includes the vorticity at each grid point, then the state dimension is
292,500. The vorticity field on the finest grid is shown in Fig. 7. The code is non-dimensionalized
so that the cylinder diameter and free-stream velocity are both equal to one: D = 1 and U1 = 1,
respectively. The simulation time-step is �t = 0.02 non dimensional time units.

4.3.2 Mean field model

To develop a mean-field model for the cylinder wake, first we must reduce the dimension of
the system. The proper orthogonal decomposition (POD) [16], provides a low-rank basis that is
optimal in the L2 sense, resulting in a hierarchy of orthonormal modes that are ordered by mode
energy. The first two most energetic POD modes capture a significant portion of the energy; the
steady-state vortex shedding is a limit cycle in these coordinates. An additional mode, called the
shift mode, is included to capture the transient dynamics connecting the unstable steady state
with the mean of the limit cycle [31] (i.e., the direction connecting point ‘C’ to point ‘B’ in Fig. 7).

In the three-dimensional coordinate system described above, the mean-field model for the
cylinder dynamics are given by:

ẋ = µx � !y + Axz (24a)
ẏ = !x + µy + Ayz (24b)
ż = ��(z � x2 � y2). (24c)

If � is large, so that the z-dynamics are fast, then the mean flow rapidly corrects to be on the (slow)
manifold z = x2 +y2 given by the amplitude of vortex shedding. When substituting this algebraic
relationship into Eqs. 24a and 24b, we recover the Hopf normal form on the slow manifold.

Remarkably, similar dynamics are discovered by the sparse dynamics algorithm, purely from
data collected from simulations. The identified model coefficients, shown in Table 5, only include
quadratic nonlinearities, consistent with the Navier-Stokes equations. Moreover, the transient
behavior, shown in Figs. 9 and 10, is captured qualitatively for solutions that do not start on the
slow manifold. When the off-attractor dynamics in Fig. 9 are not included in the training data, the
model incorrectly identifies a simple Hopf normal form in x and y with cubic nonlinearities.

The data from Fig. 10 was not included in the training data, and although qualitatively similar,
the identified model does not exactly reproduce the transients. Since this initial condition had
twice the fluctuation energy in the x and y directions, the slow manifold approximation may not
be valid here. Relaxing the sparsity condition, it is possible to obtain models that agree almost
perfectly with the data in Figs. 8-10, although the model includes higher order nonlinearities.
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This example provides a compelling test-case for the proposed algorithm, since the under-
lying form of the dynamics took nearly three decades to uncover. Indeed, the sparse dynamics
algorithm correctly identifies the on-attractor and off-attractor dynamics using quadratic nonlin-
earities and preserves the correct slow-manifold dynamics. It is interesting to note that when the
off-attractor trajectories are not included in the system identification, the algorithm incorrectly
identifies the dynamics using cubic nonlinearities, and fails to correctly identify the dynamics
associated with the shift mode, which connects the mean flow to the unstable steady state.

4.3.1 Direct numerical simulation

The direct numerical simulation involves a fast multi-domain immersed boundary projection
method [41, 11]. Four grids are used, each with a resolution of 450 ⇥ 200, with the finest grid
having dimensions of 9 ⇥ 4 cylinder diameters and the largest grid having dimensions of 72 ⇥ 32
diameters. The finest grid has 90,000 points, and each subsequent coarser grid has 67,500 distinct
points. Thus, if the state includes the vorticity at each grid point, then the state dimension is
292,500. The vorticity field on the finest grid is shown in Fig. 7. The code is non-dimensionalized
so that the cylinder diameter and free-stream velocity are both equal to one: D = 1 and U1 = 1,
respectively. The simulation time-step is �t = 0.02 non dimensional time units.

4.3.2 Mean field model

To develop a mean-field model for the cylinder wake, first we must reduce the dimension of
the system. The proper orthogonal decomposition (POD) [16], provides a low-rank basis that is
optimal in the L2 sense, resulting in a hierarchy of orthonormal modes that are ordered by mode
energy. The first two most energetic POD modes capture a significant portion of the energy; the
steady-state vortex shedding is a limit cycle in these coordinates. An additional mode, called the
shift mode, is included to capture the transient dynamics connecting the unstable steady state
with the mean of the limit cycle [31] (i.e., the direction connecting point ‘C’ to point ‘B’ in Fig. 7).

In the three-dimensional coordinate system described above, the mean-field model for the
cylinder dynamics are given by:

ẋ = µx � !y + Axz (24a)
ẏ = !x + µy + Ayz (24b)
ż = ��(z � x2 � y2). (24c)

If � is large, so that the z-dynamics are fast, then the mean flow rapidly corrects to be on the (slow)
manifold z = x2 +y2 given by the amplitude of vortex shedding. When substituting this algebraic
relationship into Eqs. 24a and 24b, we recover the Hopf normal form on the slow manifold.

Remarkably, similar dynamics are discovered by the sparse dynamics algorithm, purely from
data collected from simulations. The identified model coefficients, shown in Table 5, only include
quadratic nonlinearities, consistent with the Navier-Stokes equations. Moreover, the transient
behavior, shown in Figs. 9 and 10, is captured qualitatively for solutions that do not start on the
slow manifold. When the off-attractor dynamics in Fig. 9 are not included in the training data, the
model incorrectly identifies a simple Hopf normal form in x and y with cubic nonlinearities.

The data from Fig. 10 was not included in the training data, and although qualitatively similar,
the identified model does not exactly reproduce the transients. Since this initial condition had
twice the fluctuation energy in the x and y directions, the slow manifold approximation may not
be valid here. Relaxing the sparsity condition, it is possible to obtain models that agree almost
perfectly with the data in Figs. 8-10, although the model includes higher order nonlinearities.
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This example provides a compelling test-case for the proposed algorithm, since the under-
lying form of the dynamics took nearly three decades to uncover. Indeed, the sparse dynamics
algorithm correctly identifies the on-attractor and off-attractor dynamics using quadratic nonlin-
earities and preserves the correct slow-manifold dynamics. It is interesting to note that when the
off-attractor trajectories are not included in the system identification, the algorithm incorrectly
identifies the dynamics using cubic nonlinearities, and fails to correctly identify the dynamics
associated with the shift mode, which connects the mean flow to the unstable steady state.

4.3.1 Direct numerical simulation

The direct numerical simulation involves a fast multi-domain immersed boundary projection
method [41, 11]. Four grids are used, each with a resolution of 450 ⇥ 200, with the finest grid
having dimensions of 9 ⇥ 4 cylinder diameters and the largest grid having dimensions of 72 ⇥ 32
diameters. The finest grid has 90,000 points, and each subsequent coarser grid has 67,500 distinct
points. Thus, if the state includes the vorticity at each grid point, then the state dimension is
292,500. The vorticity field on the finest grid is shown in Fig. 7. The code is non-dimensionalized
so that the cylinder diameter and free-stream velocity are both equal to one: D = 1 and U1 = 1,
respectively. The simulation time-step is �t = 0.02 non dimensional time units.

4.3.2 Mean field model

To develop a mean-field model for the cylinder wake, first we must reduce the dimension of
the system. The proper orthogonal decomposition (POD) [16], provides a low-rank basis that is
optimal in the L2 sense, resulting in a hierarchy of orthonormal modes that are ordered by mode
energy. The first two most energetic POD modes capture a significant portion of the energy; the
steady-state vortex shedding is a limit cycle in these coordinates. An additional mode, called the
shift mode, is included to capture the transient dynamics connecting the unstable steady state
with the mean of the limit cycle [31] (i.e., the direction connecting point ‘C’ to point ‘B’ in Fig. 7).

In the three-dimensional coordinate system described above, the mean-field model for the
cylinder dynamics are given by:

ẋ = µx � !y + Axz (24a)
ẏ = !x + µy + Ayz (24b)
ż = ��(z � x2 � y2). (24c)

If � is large, so that the z-dynamics are fast, then the mean flow rapidly corrects to be on the (slow)
manifold z = x2 +y2 given by the amplitude of vortex shedding. When substituting this algebraic
relationship into Eqs. 24a and 24b, we recover the Hopf normal form on the slow manifold.

Remarkably, similar dynamics are discovered by the sparse dynamics algorithm, purely from
data collected from simulations. The identified model coefficients, shown in Table 5, only include
quadratic nonlinearities, consistent with the Navier-Stokes equations. Moreover, the transient
behavior, shown in Figs. 9 and 10, is captured qualitatively for solutions that do not start on the
slow manifold. When the off-attractor dynamics in Fig. 9 are not included in the training data, the
model incorrectly identifies a simple Hopf normal form in x and y with cubic nonlinearities.

The data from Fig. 10 was not included in the training data, and although qualitatively similar,
the identified model does not exactly reproduce the transients. Since this initial condition had
twice the fluctuation energy in the x and y directions, the slow manifold approximation may not
be valid here. Relaxing the sparsity condition, it is possible to obtain models that agree almost
perfectly with the data in Figs. 8-10, although the model includes higher order nonlinearities.
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Remarkably, similar dynamics are discovered by the sparse dynamics algorithm, purely from
data collected from simulations. The identified model coefficients, shown in Table 5, only include
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Figure 2: Applications of closed-loop turbulence control. For details, see text.

• Transition delay. The transition of a laminar into a tur-
bulent boundary layer is associated in a dramatic rise of
skin friction. Hence, engineering applications include
transition delay with closed-loop control. The laminar
state may still be stabilized based on a linearized model.
Evidently, stabilization of a laminar flow has benefits for
numerous other configurations.

• Drag reduction in wall turbulence. At high Reynolds num-
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20% drag reduction can be obtained with linear active
control [38]. Arguably, linear control is applicable be-
cause the sweep prevention in the viscous sublayer is
an effectively laminar process, like transition control.

• The in-time actuation response to large scale coherent struc-

tures may be described a linear model — extending the
examples of drag reduction in wall turbulence. Physi-
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roughly represented by a temporally constant eddy vis-
cosity. An example is the mean-field model for oscilla-
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• Adaptive control may be subject to a (limited) linear con-
trol. For instance, the change of cost function may re-
spond linearly to the small changes of the amplitude
and frequency of periodic forcing. This is an implicit
working assumption of extremum seeking control (see
Sec. 6.1). Thus, tracking may be based on locally linear
dynamics.

• Another recently discovered example of linear dynam-
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Mixing layer manipulation experiment 3

2 Experimental setup and measurements

The TUCOROM mixing layer installation is an open-circuit wind tunnel with two
driving fans, each generating a separate air stream (Fig. 1(a)). The two streams
meet at the trailing edge of a splitter plate, and depending on the stream velocity
or the type of the splitter plate terminus used, the resulting flow can be either
a mixing layer, a step flow or a wake of an infinitely long blu↵ body. The test
area is width ⇥ height ⇥ length = 1.0⇥ 1.0⇥ 3.0m3, with a square cross-section.
A porous di↵user is used at the outlet of the test section in order to prevent
resulting large scale perturbations returning into the inlets. Each stream can be
driven independently in a range of velocities [0.5 : 12]m s�1. The splitter plate
between the two streams is 80mm thick and in the current configuration ends with
a 3mm thick trailing edge. The taper is introduced only on the lower velocity side
of the splitter plate which is angled at 8�, while the upper surface is horizontal, as
can be seen in Fig. 1(b). The plane of interest xOy coincides with the centerline
of the splitter plate span, with the origin located at the trailing edge as shown in
Fig. 1(a). A head loss device (foam) is placed on the low velocity side upstream of
the bevel in order to stabilize the low velocity stream.

Fig. 1 Drawing of the TUCOROM mixing layer wind tunnel with a diagram of the splitter
plate in detail.

The trailing edge contains 96 circular cross section nozzles of diameter � =
2mm along its span. Each of them is individually connected to a micro-valve ac-
tuator, which can be controlled separately. We employ a spanwise mode 0 actua-
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There have been many powerful advances in network con-
trol theory surrounding multi-agent systems in the past two
decades. In particular, networks are often characterized by a
large collection of individuals (represented by nodes), that
each execute their own set of local protocols in response
to external stimulus. This analogy holds quite well for a
number of large graph dynamical systems, including ani-
mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]

Extremum-seeking mathematics

b = b̂ + M sin(�t) (55)

Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency �.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(�) = �/(� +�f ),
where �f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(�t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.

b = f1(s2) + c1s1s2 (56)
(57)

b = s1 (c2 + f2(s2)) (58)
(59)

b = f1(s2) + c1f2(s2) (60)
(61)

b = s1(c2 + s1s2) (62)
(63)

b = f1(s2) + f3(c3 + s2) (64)
(65)

c1 c2 c3 c4 (66)
(67)

s1 s2 s3 s4 (68)
(69)

f1 f2 f3 f4 (70)
(71)

+ � (72)

4The degree distribution of a network is the distribution of how
many other nodes each node is connected to; this is often visualized
as a histogram. Recent results indicate that all scale-free networks
are inherently sparse, with heterogeneous degree distribution.
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enact a larger supervisory control protocol to create a system-
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birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
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There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with
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free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
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case of no dynamics and a quadratic cost function. To extend
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Figure 10.8: Illustration of function tree used to represent the control law u in
genetic programming control.

been employed to tune an H1 controller in a combustion experiment [233].

Genetic programming

Genetic programming (GP) [307, 306] is a powerful generalization of genetic
algorithms that simultaneously optimizes both the structure and parameters of
an input–output map. Recently, genetic programming has also been used to
obtain control laws that map sensor outputs to actuation inputs, as shown in
Fig. 10.8. The function tree representation in GP is quite flexible, enabling the
encoding of complex functions of the sensor signal y through a recursive tree
structure. Each branch is a signal, and the merging points are mathematical
operations. Sensors and constants are the leaves, and the overall control signal
u is the root. The genetic operations of crossover, mutation, and replication are
shown schematically in Fig. 10.9. This framework is readily generalized to in-
clude delay coordinates and temporal filters, as discussed in Duriez et al. [167].

Genetic programming has been recently used with impressive results in tur-
bulence control experiments, led by Bernd Noack and collaborators [403, 417,
199, 168, 169, 416]. This provides a new paradigm of control for strongly non-
linear systems, where it is now possible to identify the structure of nonlinear
control laws. Genetic programming control is particularly well-suited to ex-
periments where it is possible to rapidly evaluate a given control law, enabling
the testing of hundreds or thousands of individuals in a short amount of time.
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trol theory surrounding multi-agent systems in the past two
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each execute their own set of local protocols in response
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mals flocking [458, 477], multi-robotic cooperative control
systems [469], sensor networks [467, 463], biological regula-
tory networks [478, 479], and the internet [462, 460], to name
a few. Similarly, in a fluid we may view packets of vor-
ticity as nodes in a graph that move collectively according
to global rules (i.e., governing physical equations) based on
local rules (diffusion, etc.) as well as their external inputs
summed across the entire network (i.e., convection due to in-
duced velocity from the Biot–Savart law).

In these large multi-agent systems, it is often possible to
manipulate the large-scale behavior with leader nodes that
enact a larger supervisory control protocol to create a system-
wide minima that is favorable [458, 470, 480]. The fact that
birds and fish often act as local flows with large-scale coher-
ence, and that leaders can strongly influence and manipulate
the large-scale coherent motion [458, 477], is promising when
considering network-based fluid flow control.

There have been recent advances in understanding
when such a network is controllable and with how many
leader or “driver” nodes in the system [480]. A key observa-
tion in this line of research is that large, sparse networks with

heterogeneous degree distributions4 (such as sparse, scale-
free turbulence networks), are especially difficult to control.
In particular, the number of driver nodes (or leaders) may be
quite large for these systems, as compared with a regular or
random graph with more homogeneous degree distribution.

Degree to which network is controllable [481]
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b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.
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Then, this signal passes through the system, and the out-
put J(s) also has a sinusoidal perturbation at frequency �.
To remove the DC component of this signal, the output is
sent through a high-pass filter of the form h(�) = �/(� +�f ),
where �f is the cutoff frequency.

Finally, the high-pass filtered signal is multiplied by the
original perturbation sin(�t + �) with a possible additional
phase � to demodulate the signal. The result is a signal that
is either mostly positive when b is left of the optimum point
b⇤ and a signal that is mostly negative when b is to the right
of the optimum point. This demodulated signal is then inte-
grated into our best estimate b̂ of b⇤, driving the input signal
towards the optimal value.

The theory is relatively straightforward to analyze in the
case of no dynamics and a quadratic cost function. To extend
this to systems with nonlinear dynamics, Wang and Krstic
leveraged singular perturbation theory and a separation of
time-scales argument.
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Figure 10.8: Illustration of function tree used to represent the control law u in
genetic programming control.

been employed to tune an H1 controller in a combustion experiment [233].

Genetic programming

Genetic programming (GP) [307, 306] is a powerful generalization of genetic
algorithms that simultaneously optimizes both the structure and parameters of
an input–output map. Recently, genetic programming has also been used to
obtain control laws that map sensor outputs to actuation inputs, as shown in
Fig. 10.8. The function tree representation in GP is quite flexible, enabling the
encoding of complex functions of the sensor signal y through a recursive tree
structure. Each branch is a signal, and the merging points are mathematical
operations. Sensors and constants are the leaves, and the overall control signal
u is the root. The genetic operations of crossover, mutation, and replication are
shown schematically in Fig. 10.9. This framework is readily generalized to in-
clude delay coordinates and temporal filters, as discussed in Duriez et al. [167].

Genetic programming has been recently used with impressive results in tur-
bulence control experiments, led by Bernd Noack and collaborators [403, 417,
199, 168, 169, 416]. This provides a new paradigm of control for strongly non-
linear systems, where it is now possible to identify the structure of nonlinear
control laws. Genetic programming control is particularly well-suited to ex-
periments where it is possible to rapidly evaluate a given control law, enabling
the testing of hundreds or thousands of individuals in a short amount of time.

Copyright © 2017 Brunton & Kutz. All Rights Reserved.
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Figure 3 | Control scheme overview. An illustration of the interdependence of the control kinematics (angular velocity), the fluid structure interaction,
forcing and resulting power output. a, Free stream velocity magnitude input to the turbine system, plotted versus time normalized by the turbine rotation
period T. b, Interaction between the fluid and the turbine blades. This is a�ected by both the incident flow and the control actuation. Here, bubble streak
flow visualization shows the roll-up of a leading-edge vortex. The areas lacking streaks are due to di�raction from the edge of the lower turbine endplate.
c, Torque produced by the turbine rotor as a result of the fluid–rotor interaction. Here torque produced by a single blade is presented in non-dimensional
form as the torque coe�cient, or CQ(✓) = ⌧ (✓)/(1/2⇢U2

1Ar). d, Turbine control actuation via the rotation rate as a function of the blade azimuthal position,
presented in non-dimensional form as the tip-speed ratio. e, The power output, presented as the e�ciency, equation (1), is the product of the torque output
and the rotation rate. This means the timing of the controlled angular velocity profile not only a�ects the fluid forcing by changing the local flow structure,
but also directly a�ects the power output. An e�ective angular velocity controller then both maximizes beneficial fluid structure interaction and aligns the
highest angular velocity with the highest fluid torque. The torque used to calculate the instantaneous torque coe�cient and e�ciency (CQ and CP
respectively) does not include the torque necessary to accelerate and decelerate the turbine. Due to the periodic nature of the accelerations, these torques
do not contribute to the mean power output (see Methods and Supplementary Table 1).

Table 1 |Optimized control performance comparison.

Control scheme Control parameters CP � (CP)⇤ Gain†

Constant ⌧ ⌧ = 0.082 N-m 0.199 0.005
Constant ! ! = 15.47 rad s�1 0.203 0.009 0%
Sinusoidal ! ! = 15.58 + 10.58 sin (2✓ + 3.96) rad s�1 0.311 0.010 53%
Semi-arbitrary ! ! = 16.43 + 10.56 sin (2✓ + 3.83) + 0.02 sin (4✓ + 1.02) +

2.63 sin (6✓ + 1.32) rad s�1
0.321 0.011 59%

The performance of optimized standard controllers, constant torque control and constant angular velocity control, is compared with optimized sinusoidal and semi-arbitrary intracycle angular velocity
control. Optimum control parameters for the schemes tested, as well as their respective mean e�ciencies (CP), are given. Mean e�ciency is also calculated over each complete revolution of the turbine
and the standard deviation of these e�ciencies is reported as � (CP). The semi-arbitrary and sinusoidal control schemes show a 59% and 53% increase in e�ciency over the constant angular velocity
controller, respectively. Note that the mean e�ciency values presented are identical whether the total or fluid torque is used due to the angular velocity periodicity (see Methods and Supplementary
Table 1). ⇤Standard deviation of CP among turbine revolutions. At least n = 500 revolutions were sampled for each control scheme. †Percentage increase in CP in comparison with constant angular
velocity control.

Intracycle control performance and interpretation
The optimized intracycle angular velocity control profiles are found
to produce a substantial increase in turbine e�ciency, as compared
with two standard control methods: constant torque and constant
angular velocity control (see Supplementary Fig. 3 for performance
as a function of average tip-speed ratio for these controllers).
Relative to the constant velocity control case, which outperformed
constant torque control, optimized sinusoidal and semi-arbitrary
angular velocity control schemes yield a 53% and 59% increase in
e�ciency, respectively. Optimized control scheme parameters and
their respective e�ciencies are given in Table 1. The resulting tip-
speed ratio profiles are shown in Fig. 4.

To investigate the mechanisms by which performance increases
are realized, results from a single-bladed turbine under constant
and sinusoidal angular velocity control schemes identical to those
listed in Fig. 4 are compared. The semi-arbitrary control scheme
is not investigated in this manner because it provides only a small
increase in performance over the sinusoidal control scheme at the

cost of much larger control torques and the more rapid acceleration
of the added mass (the volume of fluid that is accelerated with the
turbine blade), making the fluid torques more di�cult to interpret.
Further, a one-bladed turbine is used to isolate the fluid forcing on a
single blade. The validity of a single-bladed turbine as a proxy for
the individual blade forcing of a two-bladed turbine is shown in
Supplementary Fig. 5.

In Fig. 5, various measured and computed quantities of interest
are shown as functions of turbine blade position. Values for a single-
bladed turbine under constant and sinusoidal angular velocity
control are compared. The figure is split into five zones. These zones
are ranges of angular position corresponding regimes of operation.
Zone 1 ranges from ✓ = 305� to 42�, and thus wraps around both
sides of the figure.

Figure 5b shows the angular CP(✓) profiles for the constant
and sinusoidal angular velocity schemes implemented on a single-
bladed turbine. Also shown is the di�erence in e�ciency between
the sinusoidal and constant angular velocity control as a function

4
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forcing and resulting power output. a, Free stream velocity magnitude input to the turbine system, plotted versus time normalized by the turbine rotation
period T. b, Interaction between the fluid and the turbine blades. This is a�ected by both the incident flow and the control actuation. Here, bubble streak
flow visualization shows the roll-up of a leading-edge vortex. The areas lacking streaks are due to di�raction from the edge of the lower turbine endplate.
c, Torque produced by the turbine rotor as a result of the fluid–rotor interaction. Here torque produced by a single blade is presented in non-dimensional
form as the torque coe�cient, or CQ(✓) = ⌧ (✓)/(1/2⇢U2

1Ar). d, Turbine control actuation via the rotation rate as a function of the blade azimuthal position,
presented in non-dimensional form as the tip-speed ratio. e, The power output, presented as the e�ciency, equation (1), is the product of the torque output
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increase in performance over the sinusoidal control scheme at the

cost of much larger control torques and the more rapid acceleration
of the added mass (the volume of fluid that is accelerated with the
turbine blade), making the fluid torques more di�cult to interpret.
Further, a one-bladed turbine is used to isolate the fluid forcing on a
single blade. The validity of a single-bladed turbine as a proxy for
the individual blade forcing of a two-bladed turbine is shown in
Supplementary Fig. 5.

In Fig. 5, various measured and computed quantities of interest
are shown as functions of turbine blade position. Values for a single-
bladed turbine under constant and sinusoidal angular velocity
control are compared. The figure is split into five zones. These zones
are ranges of angular position corresponding regimes of operation.
Zone 1 ranges from ✓ = 305� to 42�, and thus wraps around both
sides of the figure.

Figure 5b shows the angular CP(✓) profiles for the constant
and sinusoidal angular velocity schemes implemented on a single-
bladed turbine. Also shown is the di�erence in e�ciency between
the sinusoidal and constant angular velocity control as a function

4
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