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Generative Neural Networks
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Directed Generative Nets

Idea: Learn to sample intractablep(x) by sampling tractable latent
distribution

z � p(z)

and perform a transformation to a desired distribution:

x = G(z;q) � p(x):

Complex Distribution :
G feedforward neural network
train parametersq to sample from correct distribution.

Well-known neural network architectures:
Variational Autoencoders (inference net + generator net)
Generative Adversarial Networks (generator network +
discriminator network)
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Directed Generative Nets

Idea: Learn to sample intractablep(x) by sampling tractable latent
distribution

z � p(z)

and perform a linear transformation to a desired distribution:

x = G(z;q) � p(x):

Example:
Left : Samples from normal distribution,z � N (0; I).
Right : Samples mapped throughG(z) = z

10 + z
kzk to form a ring.
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distribution

z � p(z)

and perform a linear transformation to a desired distribution:

x = G(z;q) � p(x):

Complex Distribution :
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train parametersq to sample from correct distribution.

Well-known neural network architectures:
Likelihood model Network

None Generative Adversarial Net (GAN)
Approximate Variational Autoencoder (VAE)

Exact
Flow-based models
Boltzmann Generation
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Generative Adversarial Network
GAN (Goodfellow et al., 2014)

Idea: Game in which the Generator network competes against a
Discriminator network, i.e. these two networks are adversaries.

Generator network G: directly produces samples

x = G(z;qG)

Discriminator network D:
Attempts to distinguish between samples drawn from the training
data and samples drawn from the generator.
Emits a probability value thatx is a true sample and not a fake:

ptrue(x) = D(x;qD )

Simplest formulation:Zero Sum Game
Discriminator receives payo�v(qG;qD )
Generator receives payo�� v(qG;qD )
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GAN
GAN (Goodfellow et al., 2014)

Discrimiator randomly receives either generated (fake) or training
(real) sample as input.

Generator tries to fake a sample and trick Discriminator into
believing it, Discriminator tries to reveal the truth.

https://deeplearning4j.org/generative-adversarial-network
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Generative Adversarial Network
GAN (Goodfellow et al., 2014)

During learning,each player attempts to maximize its own
payo� , so that at convergence:

q̂G = argmin
qG

max
qD

v(qG;qD ):

Default choice

v(qG;qD ) = Ex� pdatalogD(x;qD ) + Ex� pmodel(qG) log (1� D(x;qD ))

Discriminator gets reward for correctly classifying samples as real or
fake.
Generator gets reward when fooling the classi�er into believing its
samples are real.

At convergence:
The Generator's samples are indistinguishable from real data
Discriminator outputs 0:5 everywhere. The discriminator may then
be discarded.
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Generative Adversarial Network
GAN (Goodfellow et al., 2014)

Pros:
Learning process does not require approximations such as variational
inference.
When maxqD v(qG;qD ) is convex inqD , the procedure is guaranteed
to converge.

Cons:
Learning in GANs can be di�cult in practice whenG and D are
represented by neural networks andmaxqD v(qG;qD ) is not convex.
Optimization seeks a saddle point. Simultaneous gradient descent on
two players' costs is not guaranteed to reach an equilibrium.



9/54

Generative Adversarial Network
GAN (Goodfellow et al., 2014)

Pros:
Learning process does not require approximations such as variational
inference.
When maxqD v(qG;qD ) is convex inqD , the procedure is guaranteed
to converge.

Cons:
Learning in GANs can be di�cult in practice whenG and D are
represented by neural networks andmaxqD v(qG;qD ) is not convex.
Optimization seeks a saddle point. Simultaneous gradient descent on
two players' costs is not guaranteed to reach an equilibrium.



9/54

Generative Adversarial Network
GAN (Goodfellow et al., 2014)

Pros:
Learning process does not require approximations such as variational
inference.
When maxqD v(qG;qD ) is convex inqD , the procedure is guaranteed
to converge.

Cons:
Learning in GANs can be di�cult in practice whenG and D are
represented by neural networks andmaxqD v(qG;qD ) is not convex.
Optimization seeks a saddle point. Simultaneous gradient descent on
two players' costs is not guaranteed to reach an equilibrium.



9/54

Generative Adversarial Network
GAN (Goodfellow et al., 2014)

Pros:
Learning process does not require approximations such as variational
inference.
When maxqD v(qG;qD ) is convex inqD , the procedure is guaranteed
to converge.

Cons:
Learning in GANs can be di�cult in practice whenG and D are
represented by neural networks andmaxqD v(qG;qD ) is not convex.
Optimization seeks a saddle point. Simultaneous gradient descent on
two players' costs is not guaranteed to reach an equilibrium.



10/54

Generative Adversarial Network
GAN (Goodfellow et al., 2014)
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Plug & Play Generative Networks:
Nguyen et al, 2016
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Generative Face Completion
Li et al, 2017
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Image-to-Image Translation
Isola et al, 2017
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Progressive growing of GANs
Karras et al, 2018
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Cycle GANs
Zhu et al, ICCV 2017
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Reminder: Autoencoders

Latent variables encode �essential� information about data pointsx.
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Variational Autoencoders (VAEs)
Variational Autoencoder (VAE) � Kingma, 2013; Rezende et al., 2014

Instead of a single value for each attribute, represent each latent
attribute as a range of possible values.
E.g., what single value would you assign for the smile attribute if
you feed in a photo of the Mona Lisa?
VAE: describe latent attributes in probabilistic terms.
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Variational Autoencoders (VAEs)
Variational Autoencoder (VAE) � Kingma, 2013; Rezende et al., 2014

Encoder: de�ne probability distribution of latent variables
Sample: latent variablesz given the encoding of inputx
Decode: z so as to reconstruct corresponding inputx.
Enforces a continuous, smooth latent space representation.
Values which are nearby to one another in latent space should
correspond to similar reconstructions.



23/54

Variational Autoencoders (VAEs)
Variational Autoencoder (VAE) � Kingma, 2013; Rezende et al., 2014

Encoder: de�ne probability distribution of latent variables
Sample: latent variablesz given the encoding of inputx
Decode: z so as to reconstruct corresponding inputx.
Enforces a continuous, smooth latent space representation.
Values which are nearby to one another in latent space should
correspond to similar reconstructions.



23/54

Variational Autoencoders (VAEs)
Variational Autoencoder (VAE) � Kingma, 2013; Rezende et al., 2014

Encoder: de�ne probability distribution of latent variables
Sample: latent variablesz given the encoding of inputx
Decode: z so as to reconstruct corresponding inputx.
Enforces a continuous, smooth latent space representation.
Values which are nearby to one another in latent space should
correspond to similar reconstructions.



23/54

Variational Autoencoders (VAEs)
Variational Autoencoder (VAE) � Kingma, 2013; Rezende et al., 2014

Encoder: de�ne probability distribution of latent variables
Sample: latent variablesz given the encoding of inputx
Decode: z so as to reconstruct corresponding inputx.
Enforces a continuous, smooth latent space representation.
Values which are nearby to one another in latent space should
correspond to similar reconstructions.



23/54

Variational Autoencoders (VAEs)
Variational Autoencoder (VAE) � Kingma, 2013; Rezende et al., 2014

Encoder: de�ne probability distribution of latent variables
Sample: latent variablesz given the encoding of inputx
Decode: z so as to reconstruct corresponding inputx.
Enforces a continuous, smooth latent space representation.
Values which are nearby to one another in latent space should
correspond to similar reconstructions.



24/54

Kullback-Leibler Divergence

Kullback-Leibler divergence (KL-divergence or relative entropy)
between two distributionsp(x) and q(x) measures the dissimilarity
between the two distributions:

DKL (q k p) =
Z

x
q(x) log

q(x)
p(x)

dx

Interpretation : Expectation w.r.t. q of the logarithmic di�erence
between the two distributionsp and q.
Properties:

Nonnegativity : DKL (q k p) � 0 with equality if and only if p � q (in
the sense of probability distributions)
DKL (q k p) 6= DKL (p k q) � the KL-divergence is not symmetric in its
arguments.
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Variational Approximation

Physical system with con�gurationx and energy functionu(x).

p(x) = Z � 1e� u(x)

with partition function:

Z =
Z

e� u(x)dx

Free energy:
Fp = � logZp = hu(x)i p � Hp

with entropy Hp =
R

p(x) logp(x)dx
Approximatep(x) with variational distributionq(x;q) with
variational free energy

Fq = hu(x)i q � Hq

Variational free energy di�erence:

Fq(q) � Fp =
Z

q(x;q)
�

logq(x;q)
logp(x)

�
dx = KL(q k p)

KL � 0 impliesFq � Fp ! we can minimize variational free energy
Fq(q).
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Variational Mean Field of Ising Model

Ising model energy, spin variablesxi 2 f� 1;+ 1g.

u(x) = �
1
2 å

i ;j
Jij xi xj � å

i
hi xi

Mean �eld approximation: choose spins to be independent:

q(x;q) =
1

Zq
exp

 

å
i

qi xi

!

= Õ
i

eqi xi

2coshqi
:

Entropy separates into one-body terms:

Hq = � å
i

qi logqi + ( 1� qi ) log(1� qi )

with probability of spini to be + 1:

qi = eqi =2coshqi
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Variational Mean Field of Ising Model

Mean energy separates into one-body terms:

hu(x)i q = �
1
2 å

i ;j
Jij mi mj � å

i
hi mi

with mean value of spini :

mi = hxi i q = å
xi = � 1

xi qi = tanh qi (1)

Minimize variational free energyFq = hu(x)i q � Hq by taking
derivatives and setting to zero leads to:

qi = å
j

Jij mj (qj ) + hi (2)

Optimize q by iterating (1-2).
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Variational Autoencoders (VAEs)
Variational Autoencoder (VAE) � Kingma, 2013; Rezende et al., 2014

Encoder: de�ne probability distribution of latent variables

Sample: latent variablesz given the encoding of inputx

Decode: z so as to reconstruct corresponding inputx.
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Variational Inference for latent variable models

Variablesx are visible butz are hidden! we need to infer the
characteristics ofz from x:

p(z j x) =
p(x j z)p(z)

p(x)

But computing p(x) is extremely di�cult:

p(x) =
Z

z
p(x j z)p(z)dz

Approaches:
Markov-Chain Monte Carlo (no bias, but high variance)
Variational inference (bias, no variance)

Variational inference idea : approximatep(z j x) by a tractable
distribution q(z j x;q) by optimizing parametersq and then perform
inference withq.
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Variational Autoencoders
Variational Free Energy vs. Evidence Lower BOund (ELBO)

Goal: Ensure that tractable distributionq(zjx) is similar to
intractable distributionp(zjx).

Means: minimize KL divergence

DKL (q k p) = DKL (q(z j x) k p(z j x)) =
Z

z
q(z j x) log

q(z j x)
p(z j x)

dz

Direct computation is not possible because:

p(z j x) =
p(x;z)
p(x)

p(x) =
Z

z
p(x;z)dz

Is intractable. ! We cannot directly computeDKL (q k p). Can we
�nd another way to minimizeDKL (q k p) without knowing its value?
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DKL (q k p) = DKL (q(z j x) k p(z j x)) =
Z

z
q(z j x) log

q(z j x)
p(z j x)

dz

Direct computation is not possible because:

p(z j x) =
p(x;z)
p(x)

p(x) =
Z

z
p(x;z)dz

Is intractable. ! We cannot directly computeDKL (q k p). Can we
�nd another way to minimizeDKL (q k p) without knowing its value?
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Variational Autoencoders
Variational Free Energy vs. Evidence Lower BOund (ELBO)

Using Bayes equation and some basic algebra:

DKL (q k p) =
Z

z
q(z j x)

�
log

q(z j x)
p(x;z)

�
dz

| {z }
L

+ log p(x)

Variational free energy (upper bound to� logp(x)):

L =
Z

z
q(z j x)

�
log

q(z j x)
p(x;z)

�
dz

� L: Variational Evidence Lower BOund (ELBO):

� L = log p(x) � DKL (q k p) � logp(x)

Maximize model likelihood by minimizingDKL (q k p) or maximizing
the ELBO:

argminDKL (q k p) = argmin L = argmax� L
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Variational Autoencoders
Variational Free Energy vs. Evidence Lower BOund (ELBO)

Using Bayes equation and some basic algebra:

L =
Z

z
q(z j x)

�
log

q(z j x)
p(x;z)

�
dz

=
Z

z
q(z j x) log

q(z j x)
p(z)

dz �
Z

z
q(z j x) logp(x j z)dz

Interpreting these terms:

L = DKL (q(z j x) k p(z)) � Ez� q(zjx) logp(x j z)

We assume thatq has a tractable form (e.g. factorizes)
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Variational Autoencoders
Structure

min
�

� Ez� q(zjx) logp(x j z)+ DKL (q(z j x) k p(z))
	

Encoder q(z j x) (inference network, recognition model):
Maps to latent space
Models approximate posterior distributionq.
DKL [q(z j x) k pmodel(z)] tries to make q(z j x) and pmodel(z) similar.

Decoder p(x j z).
Decodesz ! x̂ with the aim to reconstruct the input x.
Ez� q(zjx) logpmodel(x j z) reconstruction log-likelihood
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Gaussian VAE
Structure
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Gaussian VAE
Explicit Solution for Regularization Loss (KL-divergence)

Ansatz: isotropic Gaussian generative model:

q(z j x) = N (z; m(x);diag(s 2(x)))

=
1

p
2p Õd

i= 1 s i
exp

"

�
1
2

d

å
i= 1

�
xi � mi

s i

� 2
#

and standard normal latent variables:

p(z) = N (0; I)

We can computeDKL (q(z j x) k p(z)) explicitly:

DKL (q(z j x) k p(z)) =
Z

z
q(z j x) log

q(z j x)
p(z)

dz

=
1
2

d

å
i= 1

�
1+ log s 2

i (x) � m2
i (x) � s 2

i (x)
�

This loss can be easily computed.
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Computing the Reconstruction Loss
Reparametrization Trick

Let us write the loss explicitly with parameters:

L = � Ez� q(zjx) logp(x j z;qdec) + DKL (q(z j x;qenc) k p(z))

Computing reconstruction loss involves a sampling of hidden
variablesz.

In stochastic gradient descent, it is natural to replace expectation by
a single sample for eachx:

logp(x j z;qdec) � Ez� q(zjx) logp(x j z;qdec)

However, the process of sampling a pdf itself is not di�erentiable. In
order to compute derivatives, we use the reparametrization trick:

1 Randomly samplee from a unit Gaussian

e � N (0; I)

2 Shift e by mean and scale it by variance of the latent distribution:

z = m(x)+ s (x) � e
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Computing the Reconstruction Loss
Reparametrization Trick

Now we can optimize the parameters of the distribution while still
maintaining the ability to randomly sample from that distribution.

Note: To avoid negative values fors , we can learnlogs and takeexp.
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Computing the Reconstruction Loss
Evaluations Reconstruction Loss by Sample

For each sample pairx, z, evaluate:

logp(x j z;q)

Example: Binary MNIST
Use binary imagesxi 2 f 0;1g,
Use logistic (sigmoid) output layer in decoder to model
x̂i (x;q) = ( p(xi ) = 1).
Compute log-likelihood (see last lecture, logistic regression)

L(q) =
N

å
i = 1

xi logx̂i (x;q) + ( 1� xi ) log [1� x̂i (x;q)]

In practice often other reconstruction losses are used, e.g.kxi � x̂i k
2
2.

There is a disconnect between the mathematical theory and common
implementations that are often based on trying to do something
similar as suggested by the intuitive interpretation of mathematics!
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Variational Autoencoders
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Variational Autoencoders
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Variational Autoencoders
MNIST VAE / Variational Autoencoder

min
�

� Ez� q(zjx) logp(x j z)+ DKL (q(z j x) k p(z))
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Gaussian VAE
Discussion

VAE advantages:
Structure is elegant, theoretically pleasing, and simple to implement.
Excellent results, among the state of the art approaches to
generative modeling.
Very robust! key advantage over Boltzmann machines, which
require extremely careful model design to maintain tractability.
Work very well with a diverse family of di�erentiable operators.
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Gaussian VAE
Discussion

VAE disadvantages:
Image VAE samples tend to be blurry.
Maximizing a lower bound on the likelihood of such a distribution is
similar to training a traditional autoencoder with mean squared error
Tends to ignore small/local features of the input.
Current VAEs tend to use only a small subset of the dimensions ofz.
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Classi�cation Variational Autoencoder
Structure

Supervised training:

min

8
><

>:
� Ez� q(zjx) logp(x j z)
| {z }

Reconstruction loss

+ DKL (q(z j x) k p(z))
| {z }

Regularization loss

+ ky � ŷk2

| {z }
Classi�cation loss

9
>=

>;

Unsupervised training without classi�cation loss.
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Classi�cation Variational Autoencoder
Input-output encoding (not optimized...)

Reconstruction:
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Classi�cation Variational Autoencoder
Sampling (not optimized...)

Input Data Generated Data
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Classi�cation Variational Autoencoder
Conditional Sampling (not optimized...)

Input Data Generated Data
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Classi�cation Variational Autoencoder
Interpolation (not optimized...)

Input Data Generated Data
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Classi�cation Variational Autoencoder
Semi-supervised learning (not optimized...)

Semi-supervised learning (Nsupervised
train + Nunsupervised

train = 60;000)

Nsupervised
train 100 400 1000 4000 10000 40000 60000

Test error 0.2569 0.3577 0.7047 0.9291 0.9697 0.9878 0.9920
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Examples
Automatic Chemical Design using Variational Autoencoders (Gómez-Bombarelli et al, 2016)

Interpolation. Starting from a discrete molecular representation, such as a SMILES
string, the encoder network converts each molecule into a vector in the latent space,
which is e�ectively a continuous molecular representation. Given a point in the latent
space, the decoder network produces a corresponding SMILES string.
Architecture:

Encode characters strings into vectors using recurrent neural networks (RNNs).
Encoder: 1D convolutional layers, fully-connected layer
Decoder: Three layers of gated recurrent unit (GRU) networks.
The last layer of the RNN decoder de�nes a probability distribution over all
possible characters at each position in the SMILES string (stochastic writeout)
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Examples
Automatic Chemical Design using Variational Autoencoders (Gómez-Bombarelli et al, 2016)

Interpolation. Projection of the molecular training sets onto learned two-dimensional
latent spaces. The one-dimensional histograms show the distribution of the training
data along each dimension, overlaid with the Gaussian prior imposed in the variational
autoencoder. The points are colored along a chemical property that is relevant to
their function, and will be the target of optimization experiments. Left : A natural
library of drug-like molecules, colored by their predicted water-octanol partition
coe�cient. Right : A combinatorially-generated library of organic LED molecules,
colored by their predicted delayed �uorescent emission rate (kTADF in ms� 1).
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Examples
Automatic Chemical Design using Variational Autoencoders (Gómez-Bombarelli et al, 2016)

Interpolation. Molecules decoded from randomly-sampled points in the latent space
of a variational autoencoder, near to a given molecule (aspirin [2-(acetyloxy)benzoic
acid], highlighted in blue).
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Examples
Automatic Chemical Design using Variational Autoencoders (Gómez-Bombarelli et al, 2016)

Interpolation. Two-dimensional interpolation between four random drugs. Left:
Starting molecules, whose encodings de�ned the four corners of a place in the latent
space. Right: Decodings of linearly-interpolated points between the latent
representations of the four molecules to the right.
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Examples
Automatic Chemical Design using Variational Autoencoders (Gómez-Bombarelli et al, 2016)

Interpolation. Gradient-based optimization in continuous latent space. After training
a surrogate model f (z) to predict the properties of molecules based on their latent
representation z, we can optimize f (z) with respect to z to �nd new latent
representation expected to have high values of desired properties. These new latent
representations can then be decoded into SMILES strings, at which point their
properties can be tested emprically.



Frank NoŽ (FU Berlin) 
frank.noe@fu-berlin.de

Boltzmann Generators: !
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