
DYNAMICAL 
SYSTEMS

Any system that evolves (changes) in time 
according to some rules



    HIGH-DIMENSIONALITY often obscures dynamics:             

  Patterns exist, facilitating reduction 

Often EQUATIONS ARE UNKNOWN or partially known:           

  Model discovery with machine learning 

    NONLINEAR dynamics are still poorly understood:          

  Coordinate transformations to linearize dynamics        
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(a) (b)

Figure 3. Positive (red) and negative (blue) contour levels of the streamwise velocity
components of two Koopman modes. The wall is shown in grey. (a) Mode 2, with ∥v2∥ = 400
and St2 = 0.141. (b) Mode 6, with ∥v6∥ = 218 and St6 = 0.0175.

is depicted with blue symbol in figure 2(a). This mode, shown in figure 1(b), captures
the steady flow structures as discussed previously. In figure 2(a), the other (unsteady)
Ritz values vary smoothly in colour from red to white, depending on the magnitude
of the corresponding Koopman mode. The magnitudes defined by the global energy
norm ∥vj ∥, and are shown in figure 2(b) with the same colouring as the spectrum. In
figure 2(b) each mode is displayed with a vertical line scaled with its magnitude at
its corresponding frequency ωj = Im{log(λj )}/"t (with "t =2 in our case). Only the
ωj ! 0 are shown, since the eigenvalues come in complex conjugate pairs. Ordering
the modes with respect to their magnitude, the first (2–3) and second (4–5) pair of
modes oscillate with St2 = 0.141 and St4 = 0.136 respectively, whereas the third pair
of modes (6–7) oscillate with St6 = 0.017. All linear combinations of the frequencies
excite higher modes, for instance, the nonlinear interaction of the first and third pair
results in the fourth pair, i.e. St8 = 0.157 and so on.

In figures 1(e) and 1(f ) the power spectra of the two DNS time signals (black lines)
are compared to the frequencies obtained directly from the Ritz eigenvalues (red
vertical lines). The shedding frequencies and a number of higher harmonics are in
very good agreement with the frequencies of the Koopman modes. In particular, the
dominant Koopman eigenvalues match the frequencies for the wall mode (St = 0.017)
and the shear-layer mode (St = 0.14). Note that the probe signals are local measures
of the frequencies at one spatial point, whereas the Koopman eigenvalues correspond
to global modes in the flow with time-periodic motion.

The streamwise velocity component u of Koopman modes 2 and 6 are shown
in figure 3. Each mode represents a flow structure that oscillates with one single
frequency, and the superposition of several of these modes results in the quasi-
periodic global system. The high-frequency mode 2 (figure 3a) can be associated with
the shear layer vortices; along the jet trajectory there is first a formation of ring-like
vortices that eventually dissolve into smaller scales due to viscous dissipation. Also
visible are upright vortices: on the leeward side of the jet, there is a significant
structure extending towards the wall. This indicates that the shear-layer vortices and
the upright vortices are coupled and oscillate with the same frequency. The spatial
structures of modes 4 and 8 are very similar to those of mode 2, as one expects, since
the frequencies are very close.

On the other hand, the low-frequency mode 6 shown in figure 3(b) features large-
scale positive and negative streamwise velocity near the wall, which can be associated
with shedding of the wall vortices. However, this mode also has structures along
the jet trajectory further away from the wall. This indicates that the shedding of
wall vortices is coupled to the jet body, i.e. the low frequency can be detected nearly
anywhere in the vicinity of the jet since the whole jet is oscillating with that frequency.
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Figure 2. The panels describe the data and output of the dynamicmode decomposition (DMD) on three examples: Google Flu, pre- vaccinationmeasles
in the UK, and type 1 paralytic polio cases. In each panel, two plots are included to visualize the data: the top left plot shows four time-histories from
different locations; the bottom left is a visualization of all the locations in time. The time histories in the bottom left are normalized, described in the text.
The three plots illustrate the output of DMD: how to select the mode based on a power calculation, the eigenvalue spectrum of Ã, a dynamic mode
φ plotted as a map.
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The relationship between the dynamic characteristic of the
reduced-order model of Ã and !A can be exactly recovered
through the method described by Tu JH et al.3 The following are
called dynamic modes of the full system.

f = X′Ṽ S̃
− 1

w. (8)

If l = 0, then this is the DMD mode for l. If the eigenvalue is 0,
then the dynamic mode is computed using f = Ũw.

The collection of dynamic modes and their respective eigenva-
lues are the low-dimensional coherent spatial-temporal patterns
within the dataset. The eigenvalues describe the growth/decay
and oscillatory characteristics of each dynamic mode. Figure 1
illustrates an example eigenvalue spectrum with two pairs of
complex conjugate eigenvalues. The red pair indicates a purely os-
cillatory mode since they lie on the unit circle, whereas the blue
pair lie within the unit circle and thus have a decaying dynamic
characteristic. The oscillatory frequency of each eigenvalue of

Figure 1. An illustration of the data collection and the dynamicmode decomposition (DMD)method. In the top panel, an illustration of how to construct
the datamatrices fromnumerical, laboratory, or historical data sources. The historical data illustration is of flu data for the US according to the Google Flu
Trends tool. A longer description of the data is described in the Results section. The bottom panel illustrates the key components of solving for A: the
singular value decomposition (SVD), the eigenvalue spectrum, and the dynamic modes. For infectious disease data, each of the elements of a
dynamic mode will typically represent a specific geo-spatial location. The magnitude and phase of the element describes how the geo-spatial
locations are related to each within that mode. If the mode has an associated eigenvalue with a nonzero imaginary component, indicating
oscillatory behavior, then the angle of each element represents the relative phase of the location’s oscillation relative to the other locations for that
dynamic mode. This representation allows for a direct interpretation of the DMD output for disease spread: each dynamic mode identifies the
locations involved in that dynamic pattern of disease spread as well as the relative phase of that location’s peak infection time.
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To compute DMD:
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� = X0V⌃�1W
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Eigenvalues: growth/decay, oscillations
DMD modes: spatial correlations between measurements

X̂(k�t) = �⇤tb0
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Dynamic mode decomposition of numerical
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(Received 20 May 2009; revised 7 March 2010; accepted 7 March 2010;

first published online 1 July 2010)

The description of coherent features of fluid flow is essential to our understanding
of fluid-dynamical and transport processes. A method is introduced that is able to
extract dynamic information from flow fields that are either generated by a (direct)
numerical simulation or visualized/measured in a physical experiment. The extracted
dynamic modes, which can be interpreted as a generalization of global stability
modes, can be used to describe the underlying physical mechanisms captured in
the data sequence or to project large-scale problems onto a dynamical system of
significantly fewer degrees of freedom. The concentration on subdomains of the flow
field where relevant dynamics is expected allows the dissection of a complex flow
into regions of localized instability phenomena and further illustrates the flexibility
of the method, as does the description of the dynamics within a spatial framework.
Demonstrations of the method are presented consisting of a plane channel flow,
flow over a two-dimensional cavity, wake flow behind a flexible membrane and a jet
passing between two cylinders.

1. Introduction and motivation
The accurate description of the disturbance behaviour in complex geometries poses

a great challenge to numerical simulations and physical experiments, as well as to
the computational algorithms that extract and quantify this behaviour. At the same
time, many industrial applications, such as flow in a combustion chamber, could
greatly benefit from a more thorough understanding of the underlying transition and
instability mechanisms.

Global stability analyses for flows in complex geometries are becoming more
commonplace, but the resulting large stability matrix sizes have put considerable
strain on computational resources. Direct methods, the method of choice for
simple problems, become prohibitively expensive, and iterative schemes have thus
to be employed to extract the global stability modes. The Arnoldi scheme (see
Edwards et al. 1994) has been particularly successful in this respect. It is based
on an approximation of the high-dimensional system matrix by projecting it onto
a lower-dimensional Krylov subspace. In this way, the dominant eigenvalues (and
corresponding eigenvectors) of the full system can be computed rather efficiently.
Convergence can be improved in various ways by shifting, mapping, restarting,
locking and purging techniques (Lehoucq & Scott 1997), but in most cases this
is accomplished at the expense of computational efficiency due to the necessity of
additional matrix inversions.

† Email address for correspondence: peter@ladhyx.polytechnique.fr
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Figure 6. Representative dynamic modes, visualized by the streamwise velocity component,

for flow over a cavity at Re = 4500. (a) Most unstable dynamic mode, (b –d ) dynamic mode

from the unstable branch, (e, f ) dynamic modes from the stable branch. Because data from

linearized Navier–Stokes simulations have been processes, the dynamic modes are equivalent

to global modes.

structures. The criterion is given by a projection of a specific dynamic modes Φi

onto the POD basis U, computed from the data sequence VN−1
1 ; the modulus of the

coefficients of this projection measures the presence of various POD modes and thus

gives a measure of coherence. It is important to realize, however, that modes with

a moderate to small projection onto a POD basis (blue symbols) can still play a

significant dynamic role within the snapshot sequence.
Representative dynamic modes are displayed in figure 6 using the streamwise

velocity component; their respective eigenvalues are given in table 1 (second and third

columns). The unstable mode (figure 6a) is clearly located in the shear layer of the

flow and shows the characteristic streamwise wavelength of the observed instability.

Other modes from the unstable branch (figure 6b –d ) have significant components in

the shear layer, but also show features inside the cavity. These features are related

to the instability of the shear layer detaching from the right edge of the cavity.

Dynamic modes from the stable branch (figure 6e, f ) contain similar characteristics:

vortical structures coincidental with the mean shear layer on top of the cavity and

features linked to the vortex inside the cavity. Modes from the stable branch show

increasingly more small-scale features inside the cavity, as the frequency λi increases,

which is consistent with observations of Barbagallo et al. (2009).



J. Fluid Mech., page 1 of 13 c⃝ Cambridge University Press 2009

doi:10.1017/S0022112009992059

1

Spectral analysis of nonlinear flows
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We present a technique for describing the global behaviour of complex nonlinear
flows by decomposing the flow into modes determined from spectral analysis of
the Koopman operator, an infinite-dimensional linear operator associated with the
full nonlinear system. These modes, referred to as Koopman modes, are associated
with a particular observable, and may be determined directly from data (either
numerical or experimental) using a variant of a standard Arnoldi method. They
have an associated temporal frequency and growth rate and may be viewed as a
nonlinear generalization of global eigenmodes of a linearized system. They provide
an alternative to proper orthogonal decomposition, and in the case of periodic data
the Koopman modes reduce to a discrete temporal Fourier transform. The Arnoldi
method used for computations is identical to the dynamic mode decomposition
recently proposed by Schmid & Sesterhenn (Sixty-First Annual Meeting of the APS
Division of Fluid Dynamics, 2008), so dynamic mode decomposition can be thought of
as an algorithm for finding Koopman modes. We illustrate the method on an example
of a jet in crossflow, and show that the method captures the dominant frequencies
and elucidates the associated spatial structures.

1. Introduction
Many fluid flows exhibit complex phenomena that occur on a wide range of scales

in both space and time. Even with large amounts of information available from
simulations, and comprehensive experimental measurements such as time-resolved
particle image velocimetry (PIV), analysis of complex flow phenomena directly from
raw time histories of the dynamics is usually not fruitful. In practice, one often analyses
flow structures by decomposing them into modes. Common techniques include global
eigenmodes for linearized dynamics (see e.g. Bagheri et al. 2009b), discrete Fourier
transforms, proper orthogonal decomposition (POD) for nonlinear flows (Holmes,
Lumley & Berkooz 1996), balancing modes for linear systems (Rowley 2005) and
many variants of these techniques, such as using shift modes (Noack et al. 2003) in
conjunction with POD modes.

Here, we present a modal decomposition for nonlinear flows based on spectral
analysis of a linear operator, called the Koopman operator, that is defined for any

† Email address for correspondence: cwrowley@princeton.edu
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Figure 3. Positive (red) and negative (blue) contour levels of the streamwise velocity

components of two Koopman modes. The wall is shown in grey. (a) Mode 2, with ∥v2∥ = 400

and St2 = 0.141. (b) Mode 6, with ∥v6∥ = 218 and St6 = 0.0175.
is depicted with blue symbol in figure 2(a). This mode, shown in figure 1(b), captures

the steady flow structures as discussed previously. In figure 2(a), the other (unsteady)

Ritz values vary smoothly in colour from red to white, depending on the magnitude

of the corresponding Koopman mode. The magnitudes defined by the global energy

norm ∥vj ∥, and are shown in figure 2(b) with the same colouring as the spectrum. In

figure 2(b) each mode is displayed with a vertical line scaled with its magnitude at

its corresponding frequency ωj = Im{log(λj )}/"t (with "t =2 in our case). Only the

ωj ! 0 are shown, since the eigenvalues come in complex conjugate pairs. Ordering

the modes with respect to their magnitude, the first (2–3) and second (4–5) pair of

modes oscillate with St2 = 0.141 and St4 = 0.136 respectively, whereas the third pair

of modes (6–7) oscillate with St6 = 0.017. All linear combinations of the frequencies

excite higher modes, for instance, the nonlinear interaction of the first and third pair

results in the fourth pair, i.e. St8 = 0.157 and so on.In figures 1(e) and 1(f ) the power spectra of the two DNS time signals (black lines)

are compared to the frequencies obtained directly from the Ritz eigenvalues (red

vertical lines). The shedding frequencies and a number of higher harmonics are in

very good agreement with the frequencies of the Koopman modes. In particular, the

dominant Koopman eigenvalues match the frequencies for the wall mode (St = 0.017)

and the shear-layer mode (St = 0.14). Note that the probe signals are local measures

of the frequencies at one spatial point, whereas the Koopman eigenvalues correspond

to global modes in the flow with time-periodic motion.
The streamwise velocity component u of Koopman modes 2 and 6 are shown

in figure 3. Each mode represents a flow structure that oscillates with one single

frequency, and the superposition of several of these modes results in the quasi-

periodic global system. The high-frequency mode 2 (figure 3a) can be associated with

the shear layer vortices; along the jet trajectory there is first a formation of ring-like

vortices that eventually dissolve into smaller scales due to viscous dissipation. Also

visible are upright vortices: on the leeward side of the jet, there is a significant

structure extending towards the wall. This indicates that the shear-layer vortices and

the upright vortices are coupled and oscillate with the same frequency. The spatial

structures of modes 4 and 8 are very similar to those of mode 2, as one expects, since

the frequencies are very close.On the other hand, the low-frequency mode 6 shown in figure 3(b) features large-

scale positive and negative streamwise velocity near the wall, which can be associated

with shedding of the wall vortices. However, this mode also has structures along

the jet trajectory further away from the wall. This indicates that the shedding of

wall vortices is coupled to the jet body, i.e. the low frequency can be detected nearly

anywhere in the vicinity of the jet since the whole jet is oscillating with that frequency.
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Figure 1. (a) Snapshot of the flow field at t =400. Red and grey isocontours represent

λ2 = −0.1 and u=0.2 (near the wall) respectively. (b) The same quantities for the time-averaged

flow which also is the first Koopman mode. (c, d ) Time signal probes located near the wall and

on the jet shear layer respectively (see the text). (e, f ) The spectral content of the corresponding

time signals in (c) and (d ) are shown in black and the magnitudes of the first seven pairs of

Koopman modes at each frequency are shown in red. The amplitudes are normalized with

their maximum values.

inhomogeneous boundary condition for the wall-normal velocity component at the

wall (y = 0). The grid resolution is 256 × 201 × 144 grid points in a computational

box (Lx, Ly, Lz)= (75, 20, 30)δ∗
0 . The three-dimensional flow behaviour is triggered by

an asymmetric localized perturbation imposed at t = 0. For the exact form of the

jet-profile and further numerical details see Bagheri et al. (2009b).
The flow physics of the jet-in-crossflow has been studied extensively (see e.g. Fric &

Roshko 1994; Kelso, Lim & Perry 1996; Muppidi & Mahesh 2007) and it is shown

that it is mainly characterized by four to five vortical structures depending on R and

Re. In the present study, we could identify two steady, two unsteady and one quasi-

steady vortex systems. Four of these can be seen in figure 1(a, b) where isocontours

of the λ2 criterion (red) (Jeong & Hussain 1995) and the streamwise velocity (grey)

are displayed. The most significant unsteady feature of the jet is the highly unsteady

shear-layer vortices (see figure 1a): These half-ringed shaped vortices grow along the

jet trajectory, lead to a breakdown of the ordered flow and, eventually, dissipate due

to viscous effects. Connected to the shear layer are the vertically oriented ‘upright

vortices’, which are periodically appearing vortices connecting the jet body and the

wall layer in the wake of the jet. These structures are easily identified from the vorticity

field, but are not visible here. On the other hand, the steady counter-rotating vortex
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(a) (b)

Figure 3. Positive (red) and negative (blue) contour levels of the streamwise velocity
components of two Koopman modes. The wall is shown in grey. (a) Mode 2, with ∥v2∥ = 400
and St2 = 0.141. (b) Mode 6, with ∥v6∥ = 218 and St6 = 0.0175.

is depicted with blue symbol in figure 2(a). This mode, shown in figure 1(b), captures
the steady flow structures as discussed previously. In figure 2(a), the other (unsteady)
Ritz values vary smoothly in colour from red to white, depending on the magnitude
of the corresponding Koopman mode. The magnitudes defined by the global energy
norm ∥vj ∥, and are shown in figure 2(b) with the same colouring as the spectrum. In
figure 2(b) each mode is displayed with a vertical line scaled with its magnitude at
its corresponding frequency ωj = Im{log(λj )}/"t (with "t =2 in our case). Only the
ωj ! 0 are shown, since the eigenvalues come in complex conjugate pairs. Ordering
the modes with respect to their magnitude, the first (2–3) and second (4–5) pair of
modes oscillate with St2 = 0.141 and St4 = 0.136 respectively, whereas the third pair
of modes (6–7) oscillate with St6 = 0.017. All linear combinations of the frequencies
excite higher modes, for instance, the nonlinear interaction of the first and third pair
results in the fourth pair, i.e. St8 = 0.157 and so on.

In figures 1(e) and 1(f ) the power spectra of the two DNS time signals (black lines)
are compared to the frequencies obtained directly from the Ritz eigenvalues (red
vertical lines). The shedding frequencies and a number of higher harmonics are in
very good agreement with the frequencies of the Koopman modes. In particular, the
dominant Koopman eigenvalues match the frequencies for the wall mode (St = 0.017)
and the shear-layer mode (St = 0.14). Note that the probe signals are local measures
of the frequencies at one spatial point, whereas the Koopman eigenvalues correspond
to global modes in the flow with time-periodic motion.

The streamwise velocity component u of Koopman modes 2 and 6 are shown
in figure 3. Each mode represents a flow structure that oscillates with one single
frequency, and the superposition of several of these modes results in the quasi-
periodic global system. The high-frequency mode 2 (figure 3a) can be associated with
the shear layer vortices; along the jet trajectory there is first a formation of ring-like
vortices that eventually dissolve into smaller scales due to viscous dissipation. Also
visible are upright vortices: on the leeward side of the jet, there is a significant
structure extending towards the wall. This indicates that the shear-layer vortices and
the upright vortices are coupled and oscillate with the same frequency. The spatial
structures of modes 4 and 8 are very similar to those of mode 2, as one expects, since
the frequencies are very close.

On the other hand, the low-frequency mode 6 shown in figure 3(b) features large-
scale positive and negative streamwise velocity near the wall, which can be associated
with shedding of the wall vortices. However, this mode also has structures along
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DMD/Koopman: Highly applicable

Figure 2. The panels describe the data and output of the dynamicmode decomposition (DMD) on three examples: Google Flu, pre- vaccinationmeasles
in the UK, and type 1 paralytic polio cases. In each panel, two plots are included to visualize the data: the top left plot shows four time-histories from
different locations; the bottom left is a visualization of all the locations in time. The time histories in the bottom left are normalized, described in the text.
The three plots illustrate the output of DMD: how to select the mode based on a power calculation, the eigenvalue spectrum of Ã, a dynamic mode
φ plotted as a map.
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The relationship between the dynamic characteristic of the
reduced-order model of Ã and !A can be exactly recovered
through the method described by Tu JH et al.3 The following are
called dynamic modes of the full system.

f = X′Ṽ S̃
− 1

w. (8)

If l = 0, then this is the DMD mode for l. If the eigenvalue is 0,
then the dynamic mode is computed using f = Ũw.

The collection of dynamic modes and their respective eigenva-
lues are the low-dimensional coherent spatial-temporal patterns
within the dataset. The eigenvalues describe the growth/decay
and oscillatory characteristics of each dynamic mode. Figure 1
illustrates an example eigenvalue spectrum with two pairs of
complex conjugate eigenvalues. The red pair indicates a purely os-
cillatory mode since they lie on the unit circle, whereas the blue
pair lie within the unit circle and thus have a decaying dynamic
characteristic. The oscillatory frequency of each eigenvalue of

Figure 1. An illustration of the data collection and the dynamicmode decomposition (DMD)method. In the top panel, an illustration of how to construct
the datamatrices fromnumerical, laboratory, or historical data sources. The historical data illustration is of flu data for the US according to the Google Flu
Trends tool. A longer description of the data is described in the Results section. The bottom panel illustrates the key components of solving for A: the
singular value decomposition (SVD), the eigenvalue spectrum, and the dynamic modes. For infectious disease data, each of the elements of a
dynamic mode will typically represent a specific geo-spatial location. The magnitude and phase of the element describes how the geo-spatial
locations are related to each within that mode. If the mode has an associated eigenvalue with a nonzero imaginary component, indicating
oscillatory behavior, then the angle of each element represents the relative phase of the location’s oscillation relative to the other locations for that
dynamic mode. This representation allows for a direct interpretation of the DMD output for disease spread: each dynamic mode identifies the
locations involved in that dynamic pattern of disease spread as well as the relative phase of that location’s peak infection time.
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In recent years the theory of Hilbert space and its linear transformations
has come into prominence.' It has been recognized to an increasing
extent that many of the most important departments of mathematical
physics can be subsumed under this theory. In classical physics, for
example in those phenomena which are governed by linear conditions-
linear differential or integral equations and the like, in those relating to
harmonic analysis, and in many phenomena due to the operation of the
laws of chance, the essential r6le is played by certain linear transformations
in Hilbert space. And the importance of the theory in quantum me-
chanics is known to all. It is the object of this note to outline certain
investigations of our own in which the domain of this theory has been
extended in such a way as to include classical Hamiltonian mechanics,
or, more generally, systems defining a steady n-dimensional flow of a
fluid of positive density.

Consider the dynamical system of n degrees of freedom, the canonical
equations of which are formed from the Hamiltonian H(q, p) = H(ql,
* a qny ply .... ps), which we will assume to be single-valued, real, and
analytic in a certain 2n-dimensional region R of the real qp-space. The
solutions, or equations of motion, are qk = fk(q0, p0, t), Pk = gk(q0, po, t),
(k = 1, ..., n), these functions being single-valued, real and analytic
for all (q° , p° ) in R and for t in a real interval containing t = 0 dependent
on (q° , p° ). It is shown that the transformation St: (q° , po) > (q, p)
defined by these equations for suitably restricted t has the formal proper-
ties: St1S1, = Si, + ,, So = I. The system admits the "integral of energy"
H(q, p) = const.; hence, if Ql denote a variety H(q, p) = C of points of
R, a path curve of St having one point on Q will remain on Q as long as
the curve remains in R. We shall assume that C is such that this is the
case for all values of t; this will be the situation, for example, if Q consists
of a closed set of interior points of R. It is shown that under these condi-
tions fk and gk are analytic for all (q° , p° ) on Q and for - co < t < + o, so
that SI effectuates a one-parameter group of analytic automorphisms of
U. Furthermore, St leaves invariant the value of a certain integral
fpdw taken over an arbitrary region of U; here, p is a positive, single-
valued, analytic function on Q. This is a consequence of the fact that

.dqi.. dqn, dp.. . dp, is an integral invariant of the system. In the
special case where there are m further integrals Fj(q, p) = Cj of the system,
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This perspective highlights the mean ergodic theorem established by John von Neumann and the pointwise ergodic theorem established by
George Birkhoff, proofs of which were published nearly simultaneously in PNAS in 1931 and 1932. These theorems were of great significance
both in mathematics and in statistical mechanics. In statistical mechanics they provided a key insight into a 60-y-old fundamental problem of
the subject—namely, the rationale for the hypothesis that time averages can be set equal to phase averages. The evolution of this problem is
traced from the origins of statistical mechanics and Boltzman’s ergodic hypothesis to the Ehrenfests’ quasi-ergodic hypothesis, and then to the
ergodic theorems. We discuss communications between von Neumann and Birkhoff in the Fall of 1931 leading up to the publication of these
papers and related issues of priority. These ergodic theorems initiated a new field of mathematical-research called ergodic theory that has
thrived ever since, and we discuss some of recent developments in ergodic theory that are relevant for statistical mechanics.

George D. Birkhoff (1) and John von
Neumann (2) published separate and vir-
tually simultaneous path-breaking papers
in which the two authors proved slightly
different versions of what came to be known
(as a result of these papers) as the ergodic
theorem. The techniques that they used were
strikingly different, but they arrived at very
similar results. The ergodic theorem, when
applied say to a mechanical system such as
one might meet in statistical mechanics or in
celestial mechanics, allows one to conclude
remarkable results about the average behavior
of the system over long periods of time, pro-
vided that the system is metrically transitive

(a concept to be defined below). First of all,
these two papers provided a key insight into
a 60-y-old fundamental problem of statistical
mechanics, namely the rationale for the hy-
pothesis that time averages can be set equal to
phase averages, but also initiated a new field of
mathematical research called ergodic theory,
which has thrived for more than 80 y. Sub-
sequent research in ergodic theory since 1932
has further expanded the connection between
the ergodic theorem and this core hypothesis
of statistical mechanics.
The justification for this hypothesis is

a problem that the originators of statistical
mechanics, J. C. Maxwell (3) and L. Boltzmann
(4), wrestled with beginning in the 1870s as
did other early workers, but without math-
ematical success. J. W. Gibbs in his 1902
work (5) argued for his version of the hy-
pothesis based on the fact that using it gives
results consistent with experiments. The
1931–1932 ergodic theorem applied to the
phase space of a mechanical system that
arises in statistical mechanics and to the
one-parameter group of homeomorphisms
representing the time evolution of the system
asserts that for almost all orbits, the time
average of an integrable function on phase
space is equal to its phase average, provided
that the one-parameter group is metrically
transitive. Hence, the ergodic theorem trans-
forms the question of equality of time and
phase averages into the question of whether
the one-parameter group representing the
time evolution of the system is metrically
transitive.
To be more specific about statistical me-

chanics systems, consider a typical situation
in gas dynamics where one has a macroscopic
quantity of a dilute gas enclosed in a finite

container. The molecules are in motion,
colliding with each other and with the hard
walls of the container. The molecules can be
assumed for instance to be hard spheres
(billiard balls) bouncing off each other or
alternately may be assumed to be polyatomic
molecules with internal structure and where
collisions are governed by short-range re-
pelling potentials. One may also choose to
include the effects of external forces, such as
gravity on the molecules. We assume that the
phase spaceM consists of a surface of constant
energy. This assumption, together with the
finite extent of the container, ensures that M
is compact and that the invariant measure de-
rived from Liouville’s theorem is finite. The
equations of motion, say in Hamiltonian form,
can be written in local coordinates as a first-
order system of ordinary differential equations

dxi=dt =Xiðx1; . . . xn Þ:

First, the number of variables in the equa-
tions is enormous, perhaps on the order of
Avogadro’s number, and the equations are
quite complex. The system is perfectly deter-
ministic in principle; hence, given the initial
positions and momenta of all of the mole-
cules at an initial time, the system evolves

George D. Birkhoff. Image courtesy of the
American Mathematical Society (www.
ams.org).
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Abstract. In this paper we discuss two issues related to model reduction of deterministic or stochastic processes. The first is
the relationship of the spectral properties of the dynamics on the attractor of the original, high-dimensional dynamical system
with the properties and possibilities for model reduction. We review some elements of the spectral theory of dynamical systems.
We apply this theory to obtain a decomposition of the process that utilizes spectral properties of the linear Koopman operator
associated with the asymptotic dynamics on the attractor. This allows us to extract the almost periodic part of the evolving
process. The remainder of the process has continuous spectrum. The second topic we discuss is that of model validation, where
the original, possibly high-dimensional dynamics and the dynamics of the reduced model – that can be deterministic or stochastic
– are compared in some norm. Using the “statistical Takens theorem” proven in (Mezić, I. and Banaszuk, A. Physica D, 2004)
we argue that comparison of average energy contained in the finite-dimensional projection is one in the hierarchy of functionals
of the field that need to be checked in order to assess the accuracy of the projection.

Key words: model reduction, spectral theory of dynamical systems

1. Introduction

Since we now understand that – barring a “blinding new technology” – the power of computers that will
be available in the foreseeable future will not allow us to compute the details of physical interactions
in many of the current problems in biological and physical sciences, such as molecular conformation
or turbulence, the problem of model reduction has percolated to the top of the pile of open problems
in Applied Mathematics. The number of different approaches in this direction is large, with some
of the work relying on decompositions commonly used in probability theory – such as the proper
orthogonal decomposition (POD) (or Karhunen–Loeve, or singular value decomposition) [14], and other
projection methods such as the Mori–Zwanzig formalism and optimal prediction [8], the formalism
that involves replacing higher-order nonlinear terms with stochastic processes [15], scale-separation
and averaging methods, balanced truncation methods developed for linear control systems, operator-
theoretic projection methods and coarse time-stepping methods. A good summary of a number of these
is provided by Givon et al. [12].

In these approaches an analysis of how the dynamics on the attractor of the system that is being
reduced affects the reduction is seldom found although attempts have been made [5]. An exception
is the approach in [1] that uses directly the asymptotic dynamics on the attractor for projection and
methods of Dellnitz and collaborators (see e.g. [10]) that utilizes properties of the Perron–Frobenius
operator to reduce dynamics to a Markov chain. The formalism in this paper (based on our previ-
ous work in [17]) is based on the adjoint of the Perron–Frobenius operator, the so-called Koopman
operator.
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Figure 1. (a) Contour plot showing the level sets of cos(x + y)∗1/2 . The parameter ϵ = 0.15. (b) Phase space plot of the standard

map for 10,000 initial conditions on a regular 100 × 100 grid. The parameter ϵ = 0.15.

where i ∈ Z, x ∈ M a compact Riemannian manifold, ξ = {. . . , ξ−1, ξ 0, ξ 1, . . .} ∈ N Z, i.e. ξ j ∈ N ,

where N is a compact Riemannian manifold endowed with a probability measure p that is absolutely

continuous with respect to the Lebesgue measure on N . The product space N Z is endowed with the stan-

dard product measure #. S is the shift transformation S{. . . , ξ−1, ξ 0, ξ 1, . . .} = {. . . , ξ 0, ξ 1, ξ 2 , . . .}.

We consider observables f : M → R or C, f ∈ L 1(M). We denote T i
ξ (x) = Tξ i−1 ◦ · · · ◦ Tξ 0 where

Tξ j (x) = T (x, ξ j). We assume that Tξ (x) is Cr , r ≥ 1 in x for every ξ ∈ N . With some abuse of

notation, we will call the above DRDS T (note that T denotes a family of transformations indexed over

ξ , rather than any particular superposition). A probabilistic measure µ on M endowed with the Borel

sigma algebra is invariant for measurable T iff

E[µ(T −1(B, ξ ))] = µ(B)

for every measurable B where E[µ(T −1(B, ξ ))] = ∫
N Z µ(T −1(B, ξ )) d#(ξ ). The analogue of the

Koopman operator is the stochastic Koopman operator Ust defined by
Ust f (x) = E[ f ◦ T (x, ξ )],

where E[ f ◦ T (x, ξ )] =
∫

N Z f ◦ T (x, ξ ) d#(ξ ). The expectation of the time-average of f under T is

given by

E f ∗(x) = lim
n→∞

1
n

n−1∑

i=0

U i
st f (x).

(7)
The partition of M into level sets of E f ∗ is denoted by ζ f . An ergodic measure on M is an invariant

measure µ such that E f ∗(x) =
∫

M f (x) dµ(x) a.e. on M for every f ∈ L 1(M).
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associated eigenvalues. Recalling (2) and (3), for a continuous g(x, m),

Ug(x, m) = Us g(x, m) + Ur g(x, m)

= Us

(

g∗(x) +
k∑

j=1

f j (m)
∫

M
g(x, m) f̄ j (m) dµ(m)

)

+
∫ 1

0
exp(i2πα)d E(α)g(x, m)

= g∗(x) +
k∑

j=1

λ j f j (m)gj (x) +
∫ 1

0
exp(i2πα)d E(α)g(x, m).

where E is a complex continuous spectral measure on L 2. We have
vn

x (m) = U n
s vx (m) = v∗(x) +

k∑

j=1

λn
j f j (m)s j (x) +

∫ 1

0
exp(i2πα) d E(α)v(x, m), (15)where

s j (x) =
∫

M
v(x, m) f̄ j (m) dµ(m).

Clearly, s j (x) could be considered as shape functions. The amplitudes λn
j = exp(i2πnω j ) oscillate in

time. Note that the m dependence in the formulas above is due to the initial conditions m on the attractor.

Since the spectrum of Ur is continuous, the part vx |H1 could be considered as the deterministic part of

the field vx , while vx |H2 could be modeled by a stochastic process.
The functions s j (x) can in principle be determined from the foregoing discussion by determining U

from the evolution equation (12) and finding its eigenvalues. However, this would be hard given that

numerical solutions of (12) can be expensive and finding eigenvalues would generally require starting

the simulation from various initial conditions on the attractor M. Another problem is that we would

like to extract vx |H1 from experimental data as well, but preparing experiments with various initial

conditions on the attractor is all but impossible. Fortunately, there is a more direct way of obtaining this

information, starting from the observation that the projection of the function vx on the j-th eigenspace

can be obtained as [17]

P ω j
T (vx (m)) = lim

n→∞
1
n

n−1∑

k=0

ei2πkω j vx (T k(m)) = z(x) f j (m).
(16)Now,

∫

M
vx (m) f̄ j (m) dµ(m) =

∫

M
z(x) f j f̄ j dµ = z(x) = s j (x),

where the fact that the modulus of f j is 1 was used. Since in applications we will not know f j (m) we

can take the whole projection obtained in (16) and orthonormalize the resulting set.
Note that the decomposition (15) of the field vn

x is reminiscent of the so-called “triple decomposi-

tion” [22], where a turbulent flow field is decomposed into its “mean”, “periodic” and “fluctuating”
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and the second system, with quartic attracting manifold x2 = x41 � 2x21, is given by:
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ẋ2 = �(x2 � x41 + 2x21)

)
=) d

dt

2

664

y1
y2
y3
y4

3

775 =

2

664

µ 0 0 0
0 � 2� �
0 0 2µ 0
0 0 0 4µ

3

775

2

664

y1
y2
y3
y4

3

775 for

2

664

y1
y2
y3
y4

3

775 =

2

664

x1
x2
x21
x41

3

775 . (27)

To understand the embedding of a nonlinear dynamical system in a higher-dimensional ob-
servable subspace, in which the dynamics are linear, consider the system with quadratic attracting
manifold from Eq. (26). The full three-dimensional Koopman observable vector space is visualized
in Fig. 3. Trajectories that start on the invariant manifold y3 = y21 , visualized by the blue surface,
are constrained to stay on this manifold. There is a slow subspace, spanned by the eigenvectors
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Example: Koopman Linear Embedding
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ẋ1 = µx1
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To understand the embedding of a nonlinear dynamical system in a higher-dimensional ob-
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in Fig. 3. Trajectories that start on the invariant manifold y3 = y21 , visualized by the blue surface,
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corresponding to the slow eigenvalues µ and 2µ; this subspace is visualized by the green surface.
Finally, there is the original asymptotically attracting manifold of the original system, y2 = y21 ,
which is visualized as the red surface. The blue and red parabolic surfaces always intersect in a
parabola that is inclined at a 45� angle in the y2-y3 direction. The green surface approaches this
45� inclination as the ratio of fast to slow dynamics become increasingly large. In the full three-
dimensional Koopman observable space, the dynamics are given by a stable node, with trajectories
rapidly attracting onto the green subspace and then slowly approaching the fixed point.

4.1.2 Intrinsic coordinates defined by eigen-observables of the Koopman operator

The left eigenvectors of the Koopman operator yield Koopman eigenfunctions (i.e., eigenobserv-
ables). The Koopman eigenfunctions of Eq. (26) corresponding to eigenvalues µ and � are:

'µ = x1, and '� = x2 � bx21 with b =
�

� � 2µ
. (28)

The constant b in '� captures the fact that for a finite ratio �/µ, the dynamics only shadow the
asymptotically attracting slow manifold x2 = x21, but in fact follow neighboring parabolic trajec-
tories. This is illustrated more clearly by the various surfaces in Fig. 3 for different ratios �/µ.

In this way, a set of intrinsic coordinates may be determined from the observable functions
defined by the left eigenvectors of the Koopman operator on an invariant subspace. Explicitly,

'↵(x) = ⇠↵y(x), where ⇠↵K = ↵⇠↵. (29)

These eigen-observables define observable subspaces that remain invariant under the Koopman
operator, even after coordinate transformations. As such, they may be regarded as intrinsic co-
ordinates [17] on the Koopman-invariant subspace. As an example, consider the system from
Eq. (26), but written in a coordinate system that is rotated by 45�:

⌘ = x + y

⇠ = x � y
and

x = (⌘ + ⇠) /2
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The original eigenfunctions, written in the new coordinate systems are:
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2
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.

It is easy to verify that these remain eigenfunctions:
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In fact, in this new coordinate system, it is possible to write the Koopman subspace system:
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Eigen-observables:

Example: Koopman Linear Embedding
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5.2 Example: Nonlinear fixed point with a center manifold

Consider the simple nonlinear system with a single isolated fixed point at the origin:

d

dt
x = x2. (45)

The approach above would suggest that we augment the observable subspace with the quadratic
polynomial y2 = x2, so that:


y1
y2

�
=


x
x2

�
. (46)

However, the expression for the time-derivative of y2 requires higher polynomials in x:

d

dt
y2 = 2xẋ = 2x3. (47)

Similarly, if we introduce y3 = x3, then

d

dt
y3 = 3x2ẋ = 3x4, (48)

and so on. This results in an infinite Koopman expansion:
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Note that the determinant of any finite-rank truncation of the Koopman operator is 0, even though
the system has finite-time blow up! For this problem, it is possible to use eigenfunction coordinates
to obtain a linear model in terms of an eigenfunction that may be inverted to recover the state1:

'(x) = e�1/x =) d

dt
'(x) = x�2e�1/xẋ = '(x). (55)

Identifying eigenfunctions from data and using these linear models for control is a high-priority
future direction.
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Figure 5: Illustration of Koopman linear system from Eq. (54) converging towards true solution as
the rank of the truncation r is increased.
1From a personal communication with C. W. Rowley.
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2 Background on Koopman analysis

Consider a continuous-time dynamical system, given by:

d

dt
x = f(x), (1)

where x 2 M is an n-dimensional state on a smooth manifold M. The vector field f is an element
of the tangent bundle TM of M, such that f(x) 2 TxM. Note that in many cases we dispense
with manifolds and choose M = Rn and f a Lipschitz continuous function.

For a given time t, we may consider the flow map Ft : M ! M, which maps the state x(t0)
forward time t into the future to x(t0 + t), according to:

Ft(x(t0)) = x(t0 + t) = x(t0) +

Z t0+t

t0

f(x(⌧)) d⌧. (2)

In particular, this induces a discrete-time dynamical system:

xk+1 = Ft(xk), (3)
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In other words, the Koopman operator Kt defines an infinite-dimensional linear dynamical system
that advances the observation of the state gk = g(xk) to the next timestep:

g(xk+1) = Ktg(xk). (6)

Note that this is true for any observable function g and for any point xk 2 M.
In the original paper by Koopman, Hamiltonian fluid systems with a positive density were
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We may also describe the continuous-time version of the observable dynamical system in
Eq. (6) with the infinitesimal generator K of the one-parameter family of transformations Kt [6] :
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g = Kg. (7)

The linear dynamical systems in Eqs. (7) and (6) are analogous to the dynamical systems in Eqs. (1)
and (3), respectively. It is important to note that the original state x may be the observable, and the
infinite-dimensional operator Kt will advance this observable function. Note that we are denoting
this operator K in bold because it is an operator that operates on an infinite dimensional vector
space; given a particular basis for Hilbert space, K may be thought of as a generalization of a
matrix to infinite dimensions (i.e., an infinite-dimensional linear operator). Again, for Hamiltonian
systems, the infinitesimal generator K is self-adjoint.
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Figure 1: Schematic illustrating the Koopman operator for nonlinear dynamical systems. The
dashed lines from yk ! xk indicate that we would like to be able to recover the original state.

3 Koopman observable subspaces and exact finite-dimensional models

As with any vector space, we may choose a basis for Hilbert space and represent our observable
function g in this basis. For simplicity, let us consider basis observable functions y1(x), y2(x), etc.,
and let a given function g(x) be written in these coordinates as:

g =
1X

k=1

↵kyk. (8)

We introduce the notion of a Koopman-invariant observable subspace, given by span{ys1 , ys2 , · · · , ysm}
such that if a given function g is in this subspace,

g = ↵1ys1 + ↵2ys2 + · · · + ↵mysm , (9)

then the action of the Koopman operator K on g remains in the subspace:

Kg = �1ys1 + �2ys2 + · · · + �mysm . (10)

For observable functions in these invariant subspaces, it is possible to restrict the Koopman op-
erator to this subspace, yielding a finite-dimensional linear operator K. K acts on a vector space
Rm, with the coordinates given by the values of ysk(x). This induces a finite-dimensional linear
system, as in Eqs. (6) and (7). Koopman eigenfunctions ', such that K' = �', generate invariant
subspaces; however, these may or may not yield insights into the dynamics of the original state x.

We are especially interested in finding Koopman-invariant subspaces that include the original
state variables x1, x2, · · · , xn as observables. The Koopman operator restricted to this subspace is
finite-dimensional, linear, and it advances the original state dynamics, as well as the other observ-
ables in the subspace, as shown in Fig. 1. These Koopman-invariant subspaces may be identified
using data-driven methods, as discussed in Sec. 3.1. In the following sections, we will show that
this is rather restrictive, and it is not possible for the vast majority of nonlinear systems. In fact, it
is impossible to determine a finite-dimensional linear Koopman system that includes the original
state variables as observables, for any system with multiple fixed points, or any more general at-
tractors. This is because all finite-dimensional linear systems have a single fixed point, and cannot
be topologically conjugate to a system with multiple fixed points. However, this does not preclude
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2 Background on Koopman analysis

Consider a continuous-time dynamical system, given by:

d

dt
x = f(x), (1)

where x 2 M is an n-dimensional state on a smooth manifold M. The vector field f is an element
of the tangent bundle TM of M, such that f(x) 2 TxM. Note that in many cases we dispense
with manifolds and choose M = Rn and f a Lipschitz continuous function.

For a given time t, we may consider the flow map Ft : M ! M, which maps the state x(t0)
forward time t into the future to x(t0 + t), according to:

Ft(x(t0)) = x(t0 + t) = x(t0) +

Z t0+t

t0

f(x(⌧)) d⌧. (2)

In particular, this induces a discrete-time dynamical system:

xk+1 = Ft(xk), (3)

where xk = x(kt). In general, discrete-time dynamical systems are more general than continuous
time systems, but we choose to start with continuous time for illustrative purposes.

We also define a real-valued observable function g : M ! R, which is an element of an infinite-
dimensional Hilbert space. Typically, the Hilbert space is given by the Lebesque square-integrable
functions on M; other choices of a measure space are also valid.

The Koopman operator Kt is an infinite-dimensional linear operator that acts on observable
functions g as:

Ktg = g � Ft (4)

where � is the composition operator, so that:

Ktg(xk) = g(Ft(xk)) = g(xk+1). (5)

In other words, the Koopman operator Kt defines an infinite-dimensional linear dynamical system
that advances the observation of the state gk = g(xk) to the next timestep:

g(xk+1) = Ktg(xk). (6)

Note that this is true for any observable function g and for any point xk 2 M.
In the original paper by Koopman, Hamiltonian fluid systems with a positive density were

investigated. In this case, the Koopman operator Kt is unitary, and forms a one-parameter family
of unitary transformations in Hilbert space.

We may also describe the continuous-time version of the observable dynamical system in
Eq. (6) with the infinitesimal generator K of the one-parameter family of transformations Kt [6] :

d

dt
g = Kg. (7)

The linear dynamical systems in Eqs. (7) and (6) are analogous to the dynamical systems in Eqs. (1)
and (3), respectively. It is important to note that the original state x may be the observable, and the
infinite-dimensional operator Kt will advance this observable function. Note that we are denoting
this operator K in bold because it is an operator that operates on an infinite dimensional vector
space; given a particular basis for Hilbert space, K may be thought of as a generalization of a
matrix to infinite dimensions (i.e., an infinite-dimensional linear operator). Again, for Hamiltonian
systems, the infinitesimal generator K is self-adjoint.
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system, as in Eqs. (6) and (7). Koopman eigenfunctions ', such that K' = �', generate invariant
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Koopman invariant subspace:

2 Background on Koopman analysis

Consider a continuous-time dynamical system, given by:

d

dt
x = f(x), (1)

where x 2 M is an n-dimensional state on a smooth manifold M. The vector field f is an element
of the tangent bundle TM of M, such that f(x) 2 TxM. Note that in many cases we dispense
with manifolds and choose M = Rn and f a Lipschitz continuous function.

For a given time t, we may consider the flow map Ft : M ! M, which maps the state x(t0)
forward time t into the future to x(t0 + t), according to:

Ft(x(t0)) = x(t0 + t) = x(t0) +

Z t0+t

t0

f(x(⌧)) d⌧. (2)

In particular, this induces a discrete-time dynamical system:

xk+1 = Ft(xk), (3)

where xk = x(kt). In general, discrete-time dynamical systems are more general than continuous
time systems, but we choose to start with continuous time for illustrative purposes.

We also define a real-valued observable function g : M ! R, which is an element of an infinite-
dimensional Hilbert space. Typically, the Hilbert space is given by the Lebesque square-integrable
functions on M; other choices of a measure space are also valid.

The Koopman operator Kt is an infinite-dimensional linear operator that acts on observable
functions g as:

Ktg = g � Ft (4)

where � is the composition operator, so that:

Ktg(xk) = g(Ft(xk)) = g(xk+1). (5)

In other words, the Koopman operator Kt defines an infinite-dimensional linear dynamical system
that advances the observation of the state gk = g(xk) to the next timestep:

g(xk+1) = Ktg(xk). (6)

Note that this is true for any observable function g and for any point xk 2 M.
In the original paper by Koopman, Hamiltonian fluid systems with a positive density were

investigated. In this case, the Koopman operator Kt is unitary, and forms a one-parameter family
of unitary transformations in Hilbert space.

We may also describe the continuous-time version of the observable dynamical system in
Eq. (6) with the infinitesimal generator K of the one-parameter family of transformations Kt [6] :

d

dt
g = Kg. (7)

The linear dynamical systems in Eqs. (7) and (6) are analogous to the dynamical systems in Eqs. (1)
and (3), respectively. It is important to note that the original state x may be the observable, and the
infinite-dimensional operator Kt will advance this observable function. Note that we are denoting
this operator K in bold because it is an operator that operates on an infinite dimensional vector
space; given a particular basis for Hilbert space, K may be thought of as a generalization of a
matrix to infinite dimensions (i.e., an infinite-dimensional linear operator). Again, for Hamiltonian
systems, the infinitesimal generator K is self-adjoint.
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Koopman operator        is 
infinite dimensional and linear

Dynamical Systems:  Koopman and Operators
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Mezic, Nonlinear Dynamics 2005.

Mezic, ARFM 2013.
Williams, Kevrekidis, Rowley, JNS 2015.
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6.2 Example: Nonlinear fixed point with a center manifold

Consider the simple nonlinear system with a single isolated fixed point at the origin:

d

dt
x = x2. (51)

The Carleman linearization approach above would suggest that we augment the observable sub-
space with the quadratic polynomial y2 = x2, so that:


y1
y2

�
=


x
x2

�
. (52)

However, the expression for the time-derivative of y2 requires higher polynomials in x:

d

dt
y2 = 2xẋ = 2x3. (53)

Similarly, if we introduce y3 = x3, then d
dty3 = 3x2ẋ = 3x4, and so on. This results in an infinite

Koopman expansion:

d

dt

2

666664

y1
y2
y3
y4
...

3

777775
=

2

666664

0 1 0 0 · · ·
0 0 2 0 · · ·
0 0 0 3 · · ·
0 0 0 0 · · ·
...

...
...

... . . .

3

777775

2

666664

y1
y2
y3
y4
...

3

777775
where

2

666664

y1
y2
y3
y4
...

3

777775
=

2

666664

x
x2

x3

x4

...

3

777775
. (54)

Note that the determinant of any finite-rank truncation of the Koopman operator is 0, even though
the system has finite-time blow up! For this problem, it is possible to use eigenfunction coordinates
to obtain a linear model in terms of an eigenfunction that may be inverted to recover the state1:

'(x) = e�1/x =) d

dt
'(x) = x�2e�1/xẋ = '(x). (55)

Identifying eigenfunctions from data and using these linear models for control is a high-priority
future direction.
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Figure 5: Illustration of Koopman linear system from Eq. (54) converging towards true solution as
the rank of the truncation r is increased.
1From a personal communication with C. W. Rowley.
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5.2 Example: Nonlinear fixed point with a center manifold

Consider the simple nonlinear system with a single isolated fixed point at the origin:

d

dt
x = x2. (45)

The approach above would suggest that we augment the observable subspace with the quadratic
polynomial y2 = x2, so that:


y1
y2

�
=


x
x2

�
. (46)

However, the expression for the time-derivative of y2 requires higher polynomials in x:

d

dt
y2 = 2xẋ = 2x3. (47)

Similarly, if we introduce y3 = x3, then

d

dt
y3 = 3x2ẋ = 3x4, (48)

and so on. This results in an infinite Koopman expansion:

d

dt

2

66666664
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where
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3
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=

2
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x
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3
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. (49)

Again, it is interesting to note that the determinant of this Koopman operator is 0, even though
the system has finite-time blow up!
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d

dt
'(x) = r'(x) · f(x)

d

dt
'(x) = r'(x) · f(x) =) r'(x) · f(x) = �'(x)

PDE for Koopman 
Eigenfunctions!

d

dt
x = f(x)

Nonlinear dynamics
in original 

d

dt
'(x) = �'(x)

Linear dynamics in 
eigenfunction coordinates
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<latexit sha1_base64="RCI+YVmZNEy7D1X025TmLg89pmY=">AAAB+XicdVDLSsNAFJ3UV62vqEs3g0VwFZI2xbgrunFZwT6gDWUynbRDJ5MwMymWkD9x40IRt/6JO//GSVtBRQ8MHM69h3vmBAmjUtn2h1FaW9/Y3CpvV3Z29/YPzMOjjoxTgUkbxywWvQBJwignbUUVI71EEBQFjHSD6XUx786IkDTmd2qeED9CY05DipHS0tA0BxFSkyDMBqNYZfd5PjSrtnXZqNU9F2riup7rFaTh2W4dOpa9QBWs0Bqa79qK04hwhRmSsu/YifIzJBTFjOSVQSpJgvAUjUlfU44iIv1skTyHZ1oZwTAW+nEFF+p3R4YiKedRoDeLnPL3rBD/mvVTFXp+RnmSKsLx8lCYMqhiWNQAR1QQrNhcE4QF1VkhniCBsNJlVXQJXz+F/5NOzXLqVu3WrTavVnWUwQk4BefAARegCW5AC7QBBjPwAJ7As5EZj8aL8bpcLRkrzzH4AePtE/MHlIk=</latexit>

f(x)
<latexit sha1_base64="pPvrc0eXFQFkJkQORHVGcbSl0xA=">AAAB/3icdVDLSsNAFJ34rPUVFdy4GSxC3YSkTTHuim5cVrAPaEOZTCft0MmDmYlYYhb+ihsXirj1N9z5N076ABU9MHA4517umePFjAppmp/a0vLK6tp6YaO4ubW9s6vv7bdElHBMmjhiEe94SBBGQ9KUVDLSiTlBgcdI2xtf5n77lnBBo/BGTmLiBmgYUp9iJJXU1w97AZIjz0/9rLygd9lpXy+ZxnmtUnVsqIhtO7aTk5pj2lVoGeYUJTBHo69/9AYRTgISSsyQEF3LjKWbIi4pZiQr9hJBYoTHaEi6ioYoIMJNp/kzeKKUAfQjrl4o4VT9vpGiQIhJ4KnJPKL47eXiX143kb7jpjSME0lCPDvkJwzKCOZlwAHlBEs2UQRhTlVWiEeIIyxVZUVVwuKn8H/SqhhW1ahc26X6xbyOAjgCx6AMLHAG6uAKNEATYHAPHsEzeNEetCftVXubjS5p850D8APa+xfX45an</latexit>

xk+1
<latexit sha1_base64="oShVuJO8bVYbrjZDuTCK+8/s9Cc=">AAAB+XicdVDNSsNAGNzUv1r/oh69LBZBEELSphhvRS8eK9hWaEPYbDft0s0m7G6KJfRNvHhQxKtv4s23cdNWUNGBhWHm+/hmJ0wZlcq2P4zSyura+kZ5s7K1vbO7Z+4fdGSSCUzaOGGJuAuRJIxy0lZUMXKXCoLikJFuOL4q/O6ECEkTfqumKfFjNOQ0ohgpLQWm2Y+RGoVRfj8L8vGZMwvMqm1dNGp1z4WauK7negVpeLZbh45lz1EFS7QC870/SHAWE64wQ1L2HDtVfo6EopiRWaWfSZIiPEZD0tOUo5hIP58nn8ETrQxglAj9uIJz9ftGjmIpp3GoJ4uc8rdXiH95vUxFnp9TnmaKcLw4FGUMqgQWNcABFQQrNtUEYUF1VohHSCCsdFkVXcLXT+H/pFOznLpVu3GrzctlHWVwBI7BKXDAOWiCa9ACbYDBBDyAJ/Bs5Maj8WK8LkZLxnLnEPyA8fYJNaOUDA==</latexit>

xk
<latexit sha1_base64="fYqpTNAj3NNWLbpgN6YIxiR7l7c=">AAAB+HicdVDNSsNAGNzUv1p/GvXoZbEInkLaphhvRS8eK9haaEPYbDft0s0m7G7EGvIkXjwo4tVH8ebbuGkrqOjAwjDzfXyzEySMSmXbH0ZpZXVtfaO8Wdna3tmtmnv7PRmnApMujlks+gGShFFOuooqRvqJICgKGLkJpheFf3NLhKQxv1azhHgRGnMaUoyUlnyzOoyQmgRhdpf72TSHvlmzrbNWo+k6UBPHcR23IC3Xdpqwbtlz1MASHd98H45inEaEK8yQlIO6nSgvQ0JRzEheGaaSJAhP0ZgMNOUoItLL5sFzeKyVEQxjoR9XcK5+38hQJOUsCvRkEVP+9grxL2+QqtD1MsqTVBGOF4fClEEVw6IFOKKCYMVmmiAsqM4K8QQJhJXuqqJL+Pop/J/0Gla9aTWunFr7fFlHGRyCI3AC6uAUtMEl6IAuwCAFD+AJPBv3xqPxYrwuRkvGcucA/IDx9gmv+JPG</latexit>

F(x)
<latexit sha1_base64="7ZV1JV0FKHb7RpXucBaDAR6tOYs=">AAAB/3icdVDLSsNAFJ3UV62vqODGzWAR6iakbYpxVxTEZQX7gDaUyXTSDp08mJmIJWbhr7hxoYhbf8Odf+OkD1DRAwOHc+7lnjluxKiQpvmp5ZaWV1bX8uuFjc2t7R19d68lwphj0sQhC3nHRYIwGpCmpJKRTsQJ8l1G2u74IvPbt4QLGgY3chIRx0fDgHoUI6mkvn7Q85EcuV5ymZYW9C496etF0zirVaq2BRWxLNuyM1KzTasKy4Y5RRHM0ejrH71BiGOfBBIzJES3bEbSSRCXFDOSFnqxIBHCYzQkXUUD5BPhJNP8KTxWygB6IVcvkHCqft9IkC/ExHfVZBZR/PYy8S+vG0vPdhIaRLEkAZ4d8mIGZQizMuCAcoIlmyiCMKcqK8QjxBGWqrKCKmHxU/g/aVWMctWoXFvF+vm8jjw4BEegBMrgFNTBFWiAJsDgHjyCZ/CiPWhP2qv2NhvNafOdffAD2vsXpcOWhw==</latexit>

xk+1 = xk +�tf(x)
<latexit sha1_base64="nya9bEHI6zMfZzsKUFnknC/TLPo="></latexit>

Integrate:
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f(x)
<latexit sha1_base64="pPvrc0eXFQFkJkQORHVGcbSl0xA=">AAAB/3icdVDLSsNAFJ34rPUVFdy4GSxC3YSkTTHuim5cVrAPaEOZTCft0MmDmYlYYhb+ihsXirj1N9z5N076ABU9MHA4517umePFjAppmp/a0vLK6tp6YaO4ubW9s6vv7bdElHBMmjhiEe94SBBGQ9KUVDLSiTlBgcdI2xtf5n77lnBBo/BGTmLiBmgYUp9iJJXU1w97AZIjz0/9rLygd9lpXy+ZxnmtUnVsqIhtO7aTk5pj2lVoGeYUJTBHo69/9AYRTgISSsyQEF3LjKWbIi4pZiQr9hJBYoTHaEi6ioYoIMJNp/kzeKKUAfQjrl4o4VT9vpGiQIhJ4KnJPKL47eXiX143kb7jpjSME0lCPDvkJwzKCOZlwAHlBEs2UQRhTlVWiEeIIyxVZUVVwuKn8H/SqhhW1ahc26X6xbyOAjgCx6AMLHAG6uAKNEATYHAPHsEzeNEetCftVXubjS5p850D8APa+xfX45an</latexit>

xk+1 = xk +�tf(x)
<latexit sha1_base64="nya9bEHI6zMfZzsKUFnknC/TLPo=">AAACLHicdVDLSgMxFM3UV62vqks3wSIoQplppzguhGJduFSwKrSlZNKMDc08SO6IZZgPcuOvCOJCEbd+h5k+8IEeCBzOOZfce9xIcAWm+WrkZmbn5hfyi4Wl5ZXVteL6xqUKY0lZk4YilNcuUUzwgDWBg2DXkWTEdwW7cgeNzL+6ZVLxMLiAYcQ6PrkJuMcpAS11i422T6Dvesld2k0G+1aKj34oKcb7uH3CBBAMeGp56e5Xaq9bLJnlw1ql6thYE9t2bCcjNce0q9gqmyOU0ARn3eJTuxfS2GcBUEGUallmBJ2ESOBUsLTQjhWLCB2QG9bSNCA+U51kdGyKd7TSw14o9QsAj9TvEwnxlRr6rk5mK6rfXib+5bVi8JxOwoMoBhbQ8UdeLDCEOGsO97hkFMRQE0Il17ti2ieSUND9FnQJ00vx/+SyUraq5cq5XaofT+rIoy20jXaRhQ5QHZ2iM9REFN2jR/SCXo0H49l4M97H0ZwxmdlEP2B8fALnl6in</latexit>

Integrate:

Training Test
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LSTM/RNN

Reservoir
(Variational) Autoencoder

Vlachas et al

Pathak et al



Pathak et al, PRL 2018
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https://www.youtube.com/watch?
v=r6sGWTCMz2k&feature=youtu.be3blue1brown
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