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Deep learning: Resources

1. Goodfellow, Courville and Bengio: Deep Learning, MIT Press 2016
http://www.deeplearningbook.org/
https://github.com/janishar/mit-deep-learning-book-pdf

2. P. Mehta, M. Bukov, C.-H. Wang, A.G.R. Day, C. Richardson, C.K.
Fisher, D.J. Schwab: A high-bias, low-variance introduction to
Machine Learning for physicists
https://arxiv.org/abs/1803.08823
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Deep learning

Describes without errors

Somewhat related to the image

Describes with minor errors

A skateboarder doés a trici(
on a ramp.

A prson riding a
motorcycle on a dirt road.

A group of young people
playing a game of frisbee.

Two hockey players are fighting

A little girl in a pink hat is
over the puck.

blowing bubbles.

A close up of a cat laying
on a couch.

A her ofeephants walking
across a dry grass field.

A red motorcycle parked on the
side of the road.

A refrigerator filled with lots of
food and drinks.

A yellow school bus parked in
a parking lot.
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Supervised learning with feedforward neural networks
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Artificial neuron
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Artificial neuron

E\?dse 1 b nonlinear
activation
function
-
. — o(w x4+ )
inputs< .
Wn summation output / activation of the neuron
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weights
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Activation functions

https://en.wikipedia.org/wiki/Activation_function

dentity / fx)==

R 0 for z<0

Binary ste | =

VR ! /(=) { 1 for z>0
Logistic (a.k.a. R B 1
Soft step) =1 fle) = l14+e*
TanH / & f(z) = tanh(z) = _z 1

- l14e 2=

ArcTan / f(z) = tan'(z)

iqn [718] — | f(a) = —
Softsign — = 1+ |z|

Rectified linear f(z) = 0 for z<0
unit (ReLU) ! *)= z for z>0
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Activation functions

https://en.wikipedia.org/wiki/Activation_function

Identity / fz)=2

Binary step | e = {

Logistic (a.k.a. L] traditionally used

Soft step)

ArcTan / ._ f(z) = tan'(z)

T

0 (78] L— | f(z) =
Softsign — .  f(z) 1+ 2|

Rectified linear f(z) = 0 for z<0
unit (ReLU)® | =z for z>0
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Activation functions

https://en.wikipedia.org/wiki/Activation_function

dentity / fx)==

' 0 for z<0

Binary ste =

S EEEE f(=) { 1 for z>0
Logistic (a.k.a. R B 1
Soft step) —1 fle) = l+e*
TanH / H f(z) = tanh(z) = _z 1

1+ l1+e 2

ArcTan / f(z) = tan'(z)

ign (78] — | f(e) = —
Softsign — 1+ |z|

Rectified linear 0 for z<0

unit (ReLU)! z for z>0

Currently most widely used. Empirically easier to train and results in sparse networks.

Nair and Hinton: Rectified linear units improve restricted Boltzmann machines ICLM’10, 807-814 (2010) >
Glorot, Bordes and Bengio: Deep sparse rectifier neural networks. PMLR 15:315-323 (2011)  Freie Universitat o Berlin



Perceptron (Rosenblatt 1957)

Used as a binary classifier - equivalent to support vector machine (SVM)

1 1 ifw:z > ()
WO
f(:z:) 0 otherwise
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Perceptron (Rosenblatt 1957)
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Multilayer perceptrons (~1985)

input layer

hidden layer 1 hidden layer 2
@ Network architecture is typically the most complex model decision:

o Number of hidden layers L —1 and number of neurons (ny,...n; _1).
e Type of activation functions ©.
o Layer types (dense, convolutional, etc. — more details later)
e Additional regularization terms, e.g. promoting sparsity.
@ Choosing the network architecture:
e In principle: Hyperparameter selection problem.
e In practice: Engineering problem, problem specific architecture.
e Depends on amount and type of data and available computational

resources.

Freie Universitat C(l.Sell 2



Universal Representation Theorem

Hornik et al., 1989; Cybenko, 1989

Sloppy formulation: A neural network with a single hidden layer and a
monotonically increasing nonlinearity ¢ can approximate any continuous
function F : R™ +— R"2 from inputs R™ to outputs R"™ with arbitrary
accuracy given that sufficiently many hidden neurons ny are provided.

@ Proof for sigmoid activation functions: G. Cybenko:
"Approximations by superpositions of sigmoidal functions”,
Mathematics of Control, Signals, and Systems 2, 303-314 (1989)

@ Generalization: K. Hornik: "Approximation Capabilities of Multilayer
Feedforward Networks", Neural Networks 4, 251-257 (1991)

Caveats:

@ Existence of network parameters that approximate F does not mean
these parameters can be efficiently found.

@ Approximation of a function does not mean exact representation,
error might be too large for practical purposes.

@ For many complex functions, the number of hidden neurons required
to achieve acceptable accuracy is unpractical. — deep neural
networks.

Freie Universitat c(| S 2 Berlin



Parameter optimization (weight training)




Gradient descent of loss function

Cost or loss function C quantifies performance of network with
parameters 0 to predict observations X.

Learning network weights

6 = arg ming C(X,Y,0)

Minimimizing cost C = maximizing score —C. Often we just write C(6).

v

Neural networks are usually trained with some form of gradient descent:

Simple gradient descent algorithm

Q Initialize Og
Q@ Fort=0,..., T —1 or until converged:

©® Compute gradient g(0¢) = V4 C(6;)
© Update parameters: 011 = 0 —1n:g(0¢)

@ Networks are functions of functions, so we will need to use the chain
rule of differentiation.

@ Key is to make differentiation fully automatic so that we can just
define the network architecture without worrying about functions

and gradients.
— Backpropagation. tt Berlin



Backprop

@ Activation of a single neuron: 1 N
C(X,0)= N Z c(xk, Yk, 0)

k=1
X =0 (z,’)

dC(X,0) 1 X dc(xk,yk,0)
I _ I -1, 4l — R
%= ZW’J'XJ' +bi I k.i N ,; IPk.i
J
@ Error: Loss gradient with respect to the ith weighted input
L dc(x,y, 0) _ . 0) dyi _ dc(x,y,0) G'(z-L)
8z,.L . Jaz,.L 80'(zl.L) N
~~ activation derivative

loss derivative

@ Backpropagate error to earlier layers

@ Weight gradients at each layer e Weight update:

dc(x,y,0) _ 8c(x,3lf, 0) 82,-: _ 8c(x,)lf,6) . bl « bl —ne
]
d b; dz;  db; dz; wh — wh—ne Xj/—l
dc(x,y.0) dc(x,y,0) dz!  dc(x,y,0) | , -1
owl T T o awl T a9 d S TN with learning rate 7.
i i ij i
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Computing graphs

relu

matmul
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Stochastic gradient descent

Many cost functions and their gradients are of the form
1 N
= N Z C,‘(X,', 9) VgC X 9 Z VQC, X,
i=1

with data samples x;. Computing such gradients is expensive, involving
O (N) operations, where N may be millions.

Idea: rewrite gradient as an expectation [Ey:

VQC X, 9 ZVGCI Xi, NIE [VGC( 9)]

Subdivide the N-sample average into M averages over n samples each.
Call index sets Bpy:

LY
M m=1 'm
Stochastic gradient descent

Q Initialize 69
© For epoch e =1,..., E or until converged:
©® For minibatch m=1,..., M:

©® Compute minibatch gradient g,,,(6) = %2,-63," Voci(x;, 0)
® Update parameters: 0.7 = 0 —1:8m(6¢)

S| =

Y. Voci(xi, 8) =~ Ex[Voc(x, 0)]
B

¥ Berlin
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Stochastic gradient descent
SGD update with Momentum

Using the momentum parameter 0 < Y < 1, we can implement SGD as:

Vi =Wi-1+N:VeC(0¢)
Ori1 =0t — vy

or, equivalently, written with parameter updates AG; = 0; —0;_1:

AB¢1=7YAO:— Tltg(et)

—

SGD with momentum is equivalent to numerically solving a dynamical
equation of a particle with mass m and position & moving in a viscous
medium under the dimensionless potential C(0):

d?6 do
W
v force from potential v
total force drag force

Langevin form: When approximating the gradient V4 C(6) with
minibatches, it can be written as a deterministic part (gradient in the
limit M — N), plus a noise term depending on minibatch size. Then, Eq.
(1) is a Langevin equation.

Freie Universitat c(| S 2 Berlin



Second-order methods

@ Desirable to adapt the learning rate by taking large steps in shallow,
flat directions

@ Second-order methods do this by computing the Hessian matrix, but
this is computationally expensive.

@ Alternative: methods that track not only the gradient but also its
second moment.

@ Examples:

AdaGrad (Duchi et al., 2011)

AdaDelta (Zeiler, 2012)

RMS-Prop (Tieleman and Hinton, 2012)
ADAM (Kingma and Ba, 2014).

Freie Universitat c(| S 2 Berlin



What does a neural network learn?
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Feature detectors

Input layer Hidden layer




What is this unit doing?

~OP YN O
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Figure 1.2:

postal envelopes.
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Hidden layers become self-organized feature detectors

1 5

10 15 20 25

strong weight

low/zero weight
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What does this unit detect?

1 5 10 15 20 25

strong weight

low/zero weight
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What does this unit detect?

1 5 10 15 20 25

strong weight

low/zero weight

it will send strong signal for a horizontal
line in the top row, ignoring everywhere else

Freie Universitat £/1.8



What does this unit detect?

strong weight

low/zero weight
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What does this unit detect?

1 5 10 15 20 25

strong weight

low/zero weight

Strong signal for a dark area in the top left
corner

Freie Universitat £/1.8



Figure 1.2: Ezxamples of handwritten digits from U.S.

postal envelopes.

What features might you expect a good NN
to learn, when trained with data like this?
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Figure 1.2: Examples of handwritten digits from U.S.

postal em

elopes.
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Figure 1.2: Examples of handwritten digits from U.S
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postal envelopes.




But what about position invariance?
Our example unit detectors were tied to specific parts of the image




Deep Networks
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Successive layers can detect higher-level features

detect lines in
Specific positions

Higher level detectors
( horizontal line,

“RHS vertical lune”
“upper loop”, etc...

etc ...

What does this unit detect?

Freie Universitat E/1$



But: until few years ago, deep networks could not be efficiently trained

Freie Universitat £/1.8



2006: the deep learning breakthrough

* Hinton, Osindero & Teh
« A Fast Learning
Algorithm for Deep
Belief Nets », Neural
Computation, 2006

* Bengio, Lamblin,
Popovici, Larochelle
« Greedy Layer-Wise
Training of Deep

Bengio Networks », NIPS’2006
Montréal « Ranzato, Poultney,
Toront _ Chopra, LeCun
Hinto « Efficient Learning of

s Le Cun Sparse Representations

New York with an Energy-Based
Model », NIPS’2006

2019 Turing award




Key advances in deep learning

Until 2009, deep networks were rarely used as training them seemed too
difficult. Key advances that enabled the training of deep networks
include:

Q@ Rectifiers: Changing from activation functions such as logistic, tanh
or arctan to rectifiers (ReLu, ELU, SoftPlus) avoids the vanishing
gradient problem, makes the loss surface less “frustrated” and thus
Improves convergence.

@ Stochastic Gradient Descent: Changing from full gradient descent
to stochastic gradient descent resulted in significant reduction of the
computational cost to convergence (cheaper iterations and ability to
escape flat local minima and saddle points)

© GPU implementations of neural networks (Theano, TensorFlow),
the resulting computational speedup, and the flexibility of automatic
differentiation.

Freie Universitat (13 4



Applications to molecular systems
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Physical Systems — example: O2 molecule

@ Invariance to reference frame: U(x) is invariant when translating
or rotating the molecule. We can thus choose an arbitrary position
and orientation of the molecule, e.g.:

x; = (0,0,0) x2 = (d,0,0),

— energy becomes a function of the interatomic distance, E(d).

@ Energy conservation: U(x) and f(x) are related by
f(x) = —-VU(x).

With the choice, we can compute the components of f(x) as:
f=(-292,00) £=(2500)

© Universality of physical laws: Same physical laws apply
everywhere in the universe. Energy is unchanged if exchange the
labels “1"” and “2" (permutation invariance).

Freie Universitat (18 “ Berlin



Data augmentation

[

Original Image

De-texturized

De-colorized

Edge Enhanced

Salient Edge Map

Flip/Rotate

uuuuuuuuu

Freie Universitat /. S ¥4 Berlin



Physical Systems — example: O2 molecule

@ O, example: Energy is invariant wrt rotation, translation and

permutation.
@ Equivariance: A function is equivariant if it transforms the same

way as its argument. For example, the force is defined by
f(x) = —-VU(x).

If we rotate the molecule with R-, the force will rotate in the same
way as the gradient is equivariant wrt rotation

R.
X — Rx
L VU(+) L VU()
VU(X) =5 RVU(x)=VU(Rx)
d
' ' ) d
OO [Rotate>
E = (d— dy)?
F=-VE

“\ ST *
*f Berlin

Freie Universitat
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Building Physics into the ML model

@ Incorporating physical symmetries into ML model avoid learning
them “by heart” via data augmentation.

@ Reduces the dimensionality of the problem. In the Oy example
above, we have reduced the learning of:

U(x) :R® = R, f(x) : R® — R®

to
U(d) : R — R, f(d) = —VU(d).

@ We only operate on the manifold of physically meaningful solutions.

0 Predictions without

training data physical constraints

physically valid
manifold

Space of possible ML models of a given class

_?\‘ FAL7y ,/’
Freie Universitat £/ )“ Berlin
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Translation, rotation, energy conservation

@ R- rotates each atom with random 3D rotation matrix, T translates
each atom with a translation vector.
@ Potential or free energy of a molecule without external field is
invariant to roto-translation:

U(Rx+T) = U(x).

— easily achieved by transforming the x into rototranslationally
invariant features y (e.g., distances, angles).
@ Force is equivariant to rotation, but invariant to translation

~VU(Rx+T) = —RVU(x)

achieved by computing force explicitly in network (SchNet, CGnet)

featurization

y [—|Uly(x))

-grad,

f(x)

Freie Universitat &/




Permutation invariance

e Energy/force a molecule are invariant/equivariant with
permutation of equivalent particles:

U(Px) = U(x)
—VU(Px) = —-PVU(x)

@ Number of permutations increases exponentially with the number
of identical particles — learning permutation invariance by data

augmentation is hopeless.

o DeepSets!, Theorem 2: any permutation symmetric function f(r)
can be represented in the form p(Y; ¢(r;)), with functions p,¢.

@ Common choice: compute potential energy as a sum

E(x) =Y Eix). (4)

E; is the contribution of the energy by the ith atom in its chemical
environment.

1Zaheer et al, NIPS 2017

P %N
Freie Universitat £/1.8 <' Berlin
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Learning to represent energy functions

a Coordinates @ s @ b Coordinates H,0 @ e e @
NS

Atom i energy

Total energy E

@ Rototranslational and permutation invariances; parameter sharing.

@ a) Network for computing the atomic energy of a single atom i. The
system coordinates are mapped to rototranslationally-invariant
features describing the chemical environment of atom /.

@ b) Molecular system, e.g., H»O, is composed by employing a
network copy for each atom. Parameters are shared between
networks for same elements.

@ Total energy equals sum of atomic energies — permutation

Behler and Parrinello, PRL 98, 146401 (2007)

Freie Universitt /.S



Learning coarse-grained free energy functions

Prior energy

U(x)

Energy
Net

grad,

CGnet’
£
o
5
x || 21y
>
©
i
°
)
o
@ No permutation inv
o

ariance.

f(x)

No parameter sharing — not scalable, not transferable.

Rototranslationally invariant features y — invariant energy U(x).
Energy conserving: f(x) = —VxU(x) — equivariant force f(x).

Prior energy: defines correct asympotic behavior where U(x) — co.

9Wang, Olsson, Wehmeyer, Pérez, Charron, De Fabritiis, Noé, Clementi: ACS

Cent. Sci. 5, 755-767 (2019)

Freie Universitat £/




Convolutional Neural Networks

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5

INPUT
3032 6@28x28

S2: f. maps

C5: layer
6@14x14

120 F6:layer OUTPUT

84 10

’ Full coanection ‘ Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning
Applied to Document Recognition, Proceedings of the IEEE,
86(11):2278-2324, November 1998



Convolutional filters

Discrete convolution:

Vi =(x*w), ZXJW’—J_ZWJX’—J

Convolutional Kernel / Filter 2210

Apply convolutions

SN
. . . W i

Freie Universitat £/1.8
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Convolutions are translation-equivariant

@ Convolutions combine parameter sharing and equivariance.
@ Standard convolutions are translation-equivariant.

e Rotation-equivariant convolutions exist (spherical CNNs, SchNet).

Freie Universitat /.S ¥ Berlin



Convolutional filters perform image processing

Operation Filter Convolved
Image
0 0 0
Identity 0 1 0
0 0 0
1 0 -1
o 0 )
1 0 1
0 1 0
Edge detection 1 4 1
0 1 0
[-1 -1 -1]
-1 8 -1
| ~1 1 1]
[0 1 07
Sharpen 1 5 1
. 0 -1 0 J
2 : 1 1 1 1
ox blur 11 1 1
(normalized) 9
1 1 1
1 2 1
Gaussian blur L 2 4 2
(approximation) 16 | © -
1 2 1

Freie Universitd Berlin




Example: face recognition

First Layer Representation Second Layer Representation Third Layer Representation




i
Q
2]
©

e
©

©

2/

e,

=

21

s S| sl SIS s

¢ | S ¢

Q

Q
Q

Q
Q
Qf—
Q
Q
Q

)
2|A|z|al2d]alald]R

D333 3133333

ACIEARAEARARACANAL

Q| -

S

Gl elellelellelelel el &
AWAPAPANVAVAVAVARAY:
8|8|s|8|& 8lslslsls

Glallqlalalalqlalal]

60,000 original datasets

Test error: 0.95%

—boTFToO0O r~m N
v NOoN Tk HS
e F PO 0—T b N™®
L e S~ 0GP o
NN CQUQNNYd O 5
NDNOERNDSNN NI o
W N=—=0nN0 YN
v N - XA -\
NN T N Q N

540,000 artificial distortions

+ 60,000 original
Test error: 0.8%




«r - (e » - o0 r—

wio el vl sl Oy~ Q)
VW el Iy ol @ N9
V) VNl Q] @ N\
S T SN S % YA < YA
NS T SV S RN
WP S AL Rl N
A U SR NS
SISV S SN S
M O N QN gl o bl
S IR S IR S AR SN,

n
S
Q
=
©
X
@
O
=
e
0
2
s
O
3
£
-
gl
<
=



Convolution is a linear operation

Convolving x € R"” with w € R™, m < n can be written as linear

operation
y = Wx
with W € R"~"1X7 heing a Toeplitz matrix:
Wl .« o Wm
W =
Wl .« o Wm
Convolutional Networks:
T ;
Pooling Layer Compresses image max pooling
4 1 0 2 3
Detector Layer Nonlinear transform 4 6 6 8 6 8
t 31 1o N
Convolution Layer Affine transform -- 2 4

/]\

Freie Universitat c(| S 2 Berlin



Motivation from neuroscience

@ Pioneering neuroscientists: Hubel and Wiesel (1959, 1962, 1968):

e Discrovered basic functionality of mammalian vision system by

recording individual neuron activity in cats

e Neurons in the early visual system respond mostly to specific

patterns of light, such as precisely oriented bars.

@ Primary visual cortex (V1): first brain area that performs advanced

processing of visual input — inspires ConvNets

e V1 is arranged in 2d spatial map, mirroring the image in the retina.
— inspires 2d structure of ConvNets.

e V1 simple cells respond approximately linearly to a small, spatially
localized receptive field.
— inspires ConvNet detector units

e Most simple cells seem to perform convolutions whose weights are
described by Gabor functions.

ddadEEERER
ddadESESERR
AAdd=ESENR
[HAAZASKNNN
(0 0 NN S 22 2
UNNSEZ2vw
NNSSEEZPV
SNSSSEEEPgP

OODOEEEEN
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doOODEEEN
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DOODDNNN®D
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Unsupervised learning
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Principal component analysis

©@ Compute the covariance matrix
1
Co=—X'X
0 T . 1 bl
which is just a scaled version of XX .
@ Solve the Eigenvalue problem: N
COWi — O',2W, 20 10 0 10 20

with normalization w; w; = 1.
© Select m eigenvectors with largest eigenvalues.

© Reduce dimension from n to m with W, = [wy, ...wp]:

Ym=XW,,.

Freie Universitit <\ ol ) Berlin
2 Vs,
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input

code
Z
decoder
encoder
Loss(x; 0) = Y [§:(x;6) — ]
)

output
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Recurrent neural networks
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one to one one to many many to one many to many many to many
f Pt 1 f tt 1 Pt
f f Pt Pt P+t

@ One-to-one: Classical (dense or convolutional) feedforward nets
@ One-to-many: Given Image, generate sequence of words.

@ Many-to-one: Given sequence of words, make classification (e.g.,
sentiment)

@ Many-to-many: Text translation, on-line video segmentation

Freie Universitat c(| S 2 Berlin



@ Specialized for:

e processing a sequence of values [x(1),...,x(t),...,x(T)].
(t not necessarily physical time)
e Sequences of variable length.

e Example: “/ went to Chile in 2013" and “In 2013, | went to Chile.”

e Extract the year the narrator went to Chile.

e Traditional fully connected net would have separate parameters for
each input feature, i.e. learn all of the rules of the language
separately at each position in the sentence.

@ Key idea: parameter sharing.

e related idea: Convolution across a 1-D temporal sequence
(time-delay neural networks — see Lang and Hinton, 1988; Waibel et

al., 1989; Lang et al., 1990).

Freie Universitat (/i Sell 2



e Example: dynamical system driven by external signal x(t):
h(t) = f(h(t—1),x(); 6)

e Train network to predict future from the past.
o h(t) is summary of present and past. It is lossy as it represents an
arbitrary-length sequence (xi,...,x¢) with fixed length.

m @@ f
f f

@ Unfolding: represent recurrence after t steps with a function g;:

h(t) = g (x(t),....x(1)) = f (h(t —1),x(t); §)

e Folding factorizes g; into repeated application of a function f.
e f has same input size regardless of sequence length.
e Parameter sharing: use same transition function f every time step.

Freie Universitat £} :,- Berlin



Basic universal RNN

@ Can with finite size compute any function computable by a Turing
machine (Siegelmann and Sontag, 1991; Siegelmann, 1995; Siegelmann and
Sontag, 1995; Hyotyniemi, 1996).

@ Loss L measures distance of predictions o; from training targets y;.

Freie Universitat (18 “ Berlin



RNNs are deep — gradient annihilation

short “time” dependency: The clouds are in the sky.

b CFT@

A A A A A

é é é 1

long “time” dependency: [ was born in France. Over the years, | have
learned many foreign languages, but my native language is french.

& O ® ® €5
I\TT ?

A j r
&

» A — A —

Sl Sl aliv's

ST 2
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Long-short time memory

Simple RNN

& ® ®
f ! f

— N,

A J A
|

|
&) O &) 1
Long Short Time Memory (LSTM, Hochreiter & Schmidhuber 1997)

o e e
LI

| |
&) (x) &) )
] O — > —<

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

ST,
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Generate Shakespeare

@ 4.4 MB text input,

@ 3-layer RNN, 512 hidden nodes per layer.

VIOLA:
Why, Salisbury must find his flesh and thought

That which | am not aps, not a man and in fire,

To show the reining of the raven and the wars

To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father’s world;

When | was heaven of presence and our fleets,

We spare with hours, but cut thy council | am great,
Murdered and by thy master’s ready there

My power to give thee but so much as hell:

Some service in the noble bondman here,

Would show him to her wine.

KING LEAR:
O, if you were a feeble sight, the courtesy of your law,

Your sight and several breath, will wear the gods

With his heads, and my hands are wonder’d at the deeds,
So drop upon your lordship’s head, and your opinion
Shall be against your honour.”
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Generate Math

@ Source: 16 MB LaTeX code http://stacks.math.columbia.edu/
@ Sample: almost compiles, minor corrections needed.

eey

any sets F on X, U is a closed immersion of S, then U — T is a separated algebraic
space.

Proof. Proof of (1). It also start we get
S =Spec(R)=U xx U xx U

and the comparicoly in the fibre product covering we have to prove the lemma
generated by [[Z xy U — V. Consider the maps M along the set of points
Schspps and U — U is the fibre category of S in U in Section, 7?7 and the fact that
any U affine, see Morphisms, Lemma ?77. Hence we obtain a scheme S and any
open subset W C U in Sh(G) such that Spec(R’) — S is smooth or an

U:UUz XS, Uz

which has a nonzero morphism we may assume that f; is of finite presentation over
S. We claim that Ox ; is a scheme where z,2’,s” € S’ such that Ox »» — O%. ., is
separated. By Algebra, Lemma ?? we can define a map of complexes GLg/ (z’/S")
and we win. O

To prove study we see that F|y is a covering of X/, and 7; is an object of Fy /s for
¢ > 0 and F, exists and let F; be a presheaf of Ox-modules on C as a F-module.
In particular F = U/JF we have to show that

M®=71° ®Spec(k) Os.s — 2)_(1]7)
is a unique morphism of algebraic stacks. Note that

Arrows = (Sch/S) PP ¢, (Sch/S) pps
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@ Source: 16 MB LaTeX code http://stacks.math.columbia.edu/

@ Sample: almost compiles, minor corrections needed.

Proof. This is form all sheaves of sheaves on X. But given a scheme U and a

ey

S at the schemes X; -+ X and U = lim; X. O
The following lemma surjective restrocomposes of this implies that F,, = F,, =
Fx,.0

Lemma 0.2. Let X be a locally Noetherian scheme over S, E = Fx/s. Set I =
J1 C I, Since I C I™ are nonzero over ig < p is a subset of J, oo Az works.

Lemma 0.3. In Situation ??7. Hence we may assume q' = 0.

Proof. We will use the property we see that p is the mext functor (??). On the
other hand, by Lemma 77 we see that

D(Ox/) = Ox(D)

where K is an F-algebra where 4, is a scheme over S. O
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Multi-task learning

X —

h shared

h(1)

Alpha Go Zero

The network learns “tabula rasa’ (From a blank slate)

At no point is the network trained using human knowledge or expert moves

The value head

game volue for current ployer
-.n

farh non-inearvty
scolor
Fully connected loyer
EE V-Em
Rectifier non-inearty
=N © Em

Hdden loyer: sze 256

Fully connected loyer

EE V-Em
Rectifier non-ineanity
1 N o EE
Batch normalsation _§
I NN E = 3
1 convokutional filf 5
er
() .
Input

A convolutional layer

HE N-Em
Rectifier non-ineanity
t EE V-Em
Batch normalisation
‘ EEETE-En
256 convolutional
fiters (3x3)
Input

The network

e e poky et

Input: The gome
state (see below)

The policy head

19 x19 + 1 (for poss)

move logt probabithes
Fuly comnected loyer
‘ EE ©-Em
Rectfier non-inearty
1 "m v oEm
Batch normaksation
I EEETE-EE
2 convolutiondl fih
) - .
Input
A residual layer
EE ¥-Em
Rectifier non-ineanity
N w-Em

256 convolutiond
fiters (3x3)

I

Input I




Adversarial attacks and training

e Adversarial attacks (trying to fake the network):

e Intended perturbation: Accuracy reduced to random with test
test train

test _  train

% Y; for given

examples with small ‘ but large |

ij.

e Random perturbation: Add Gaussian noise with a very small
amplitude. Picture indistinguishable for humans, but breaks neural
network performance (Szegedy et al. 2014).

+ .007 X
. T +
@ SIgn(Val (6:2,9) ¢ Gign(v,J(6, 2,1))
y ="panda” “nematode” “gibbon”
w/ 57.7% w/ 8.2% w/ 99.3 %
confidence confidence confidence 1

@ Adversarial training: include adversarial attacks in the training
data to force predictions to be locally constant near training data.
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@ With most network architectures, when adding layers (increasing
depth), the training loss first reduces but then increases.

@ Indicates training problem — adding layers make the network more
expressive, so training loss should be non-increasing.
— also affects the test loss.

@ Residual Networks (He, Zhang, Ren, Sun, 2015) enable training of
very deep networks.

plain-18 ResNet-18 ‘ AN AN
=—plain-34 | —ResNet-34 , 34-layer
% 10 20 30 40 50 % 10 20 3 40 50

iter. (1e4) iter. (1e4)

(| s V') Berlin



@ As in LSTMs, ResNets introduces a short-cut path that can carry
gradients deep.

@ ResNets are state-of-the-art in many problems (CIFAR, ImageNet,
AlphaGo Zero).

Reference paper

Input

Convolution

Batch Norm

Convolution

Batch Norm

Addition

i

Output

Batch Norm after add No ReLU

Revolution of Depth

152 layers
Convolution A
Batch Norm
S 22 layers ‘ 19 Iayers I I
Addition Batch Norm

Convolution

Batch Norm

Convolution
* 3.57 8 layers 8 layers shallow
Batch Norm Addition . . . . .
ReLU ILSVRC'15  ILSVRC'14  ILSVRC'14  ILSVRC'13  ILSVRC'12 ILSVRC'11  ILSVRC'10
ResNet GoogleNet VGG AlexNet
Output Output ImageNet Classification top-5 error (%)
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