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Agenda: Deep Neural Networks motivated by PDEs

I Deep Learning meets Optimal Control (warmup)
I Stability and Generalization (skipped yesterday)
I when is deep learning well-posed?
I stabilizing the forward propagation

I Convolutional Neural Networks motivated by PDEs
I parabolic CNNs: multiscale and multilevel schemes
I hyberbolic CNNs: memory efficient + stable
I IMEX-Net: Semi-implicit time integration
I LeanResNet: reduced architectures

I Conclusion and Summary

Goals: Theoretical insight, mathematically sound
architectures, competitive results.

E Haber, LR
Stable Architectures
for DNNs.
Inverse Problems,
2017.

E Holtham et al.
Learning Across
Scales.
AAAI, 2018.

B Chang et al.,
Reversible
Architectures for
Deep ResNNs.
AAAI, 2018.

LR, E Haber
Deep Neural
Networks motivated
by PDEs.
arXiv, 2018.
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Deep Learning meets Optimal
Control
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Deep Learning Revolution (?)
Yj+1 = σ(KjYj + bj)
Yj+1 = Yj + σ(KjYj + bj)
Yj+1 = Yj + σ (Kj,2σ(Kj,1Yj + bj,1) + bj,2)

...

(Notation: Yj : features, Kj, bj: weights, σ : activation)

I deep learning: use neural networks (from ≈ 1950’s) with many hidden
layers

I able to ”learn” complicated patterns from data
I applications: image classification, face recognition, segmentation,

driverless cars, . . .
I recent success fueled by: massive data sets, computing power
I A few recent references:
I A radical new neural network design could overcome big challenges in

AI, MIT Tech Review ’18
I Data Scientist: Sexiest Job of the 21st Century, Harvard Business Rev ’17
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Optimal Control Framework for Deep Learning

training data, Y0,C prop. features, Y(T),C classification result

Supervised Deep Learning Problem

Given training data, Y0, and labels, C, find network parameters θ and
classification weights W, µ such that the DNN predicts the data-label
relationship (and generalizes to new data), i.e., solve

minimizeθ,W,µ loss[g(W + µ),C] + regularizer[θ,W,µ]

Title Intro Parabolic Hyper Num IMEX Lean Σ 5



Lars Ruthotto DNNs motivated by PDEs @ IPAM, 2019

Deep Residual Neural Networks (simplified)

Award-winning forward propagation

Yj+1 = Yj + hKj,2σ(Kj,1Yj + bj), ∀ j = 0, 1, . . . ,N − 1.

ResNet is forward Euler discretization of

∂ty(t) = K2(t)σ (K1(t)y(t) + b(t)) , y(0) = y0.

Notation: θ(t) = (K1(t),K2(t),b(t)) and

∂ty(t) = f (y,θ(t)), y(0) = y0

where f (y,θ) = K2(t)σ (K1(t)y(t) + b(t)) .

K. He, X. Zhang, S. Ren, and J. Sun
Deep residual learning for image recognition.
IEEE Conf. on CVPR, 770–778, 2016.

input features, Y0

propagated features, YN
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(Some) Related Work

DNNs as (stochastic) Dynamical Systems
I Weinan E, Proposal on ML via Dynamical

Systems, Commun. Math. Stat., 5(1), 2017.
I E Haber, LR, Stable Architectures for DNNs,

Inverse Problems, 2017.
I Q. Li, L. Chen, C. Tai, Weinan E, Maximum

Principle Based Algorithms, arXiv, 2017.
I B. Wang, B. Yuan, Z. Shi, S. Osher, ResNets

Ensemble via the Feynman-Kac Formalism, arXiv,
2018.

Numerical Time Integrators
I Y. Lu, A. Zhong, Q. Li, B. Dong, Beyond Finite

Layer DNNs, arXiv, 2017.
I B. Chang, L. Meng, E. Haber, LR, D. Begert, E.

Holtham, Reversible architectures for DNNs,
AAAI, 2018.

I T. Chen, Y. Rubanova, J. Bettencourt, D.
Duvenaud, Neural ODEs, NeurIPS, 2018.

I E. Haber, K. Lensink, E. Treister, LR, IMEXnet:
Forward Stable DNN. ICML, 2019.

Optimal Control
I S. Günther, LR, J.B. Schroder,

E.C. Cyr, N.R. Gauger,
Layer-parallel training of ResNets,
arXiv, 2018.

I A. Gholami, K. Keutzer, G. Biros,
ANODE: Unconditionally Accurate
Memory-Efficient Gradients for
Neural ODEs, arXiv, 2019.

I T. Zhang, Z. Yao, A. Gholami, K.
Keutzer, J. Gonzalez, G. Biros, M.
Mahoney, ANODEV2: A Coupled
Neural ODE Evolution Framework,
arXiv, 2019.

PDE-motivated Approaches
I E. Haber, LR, E. Holtham,

Learning across scales - Multiscale
CNNs, AAAI, 2018.

I LR, E. Haber, DNNs motivated by
PDEs, arXiv, 2018.
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Convolutional Neural Networks
meet PDEs
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CNNs: Computer Science and Engineering Challenges

Computations
I note that networks have a widths and depth
I Toy example: width 16 , depth 20 (time steps).

Forward propagation: 5,120 2D-convs/image

Memory Consumption
I adjoint equations (backpropagation) need

intermediate states (hidden features)
I Toy example (continued): training data is 5k images

with 32× 32 pixels.
Storage (just features): 130 GB (double) or 65 GB

(single).

Architecture Design & Interpretation
I CNN should be easy to train and generalize well
I CNN should be difficult to fool (adversarial attacks)
I CNN should give uncertainties and explain reasoning

Pei et al., DeepXplore, 2017

paradigm shift needed for stable, well-posed, and efficient ML
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Convolutions and PDEs
Let y be of 1D grid function y↔ y (grid: n cells of width hx = 1/n)

K(θ)y = [θ1 θ2 θ3] ∗ y =

(
β1

4
[1 2 1] +

β2

2hx
[−1 0 1] +

β3

h2
x
[−1 2− 1]

)
∗ y,

where the coefficients β1, β2, β3 satisfy 1/4 −1/(2hx) −1/h2
x

1/2 0 2/h2
x

1/4 1/(2hx) −1/h2
x

 β1
β2
β3

 =

 θ1
θ2
θ3

 .

In the limit hx → 0 this gives

K(θ(t)) = β1(t) + β2(t)∂x + β3(t)∂2
x .

Take-aways:
I Convolution operator K is linear combination of differential operators
I CNN weights determine the PDE properties: order, type, stability,. . .
I Multiple channels coupled system of PDEs (one per channel)
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Multi-Resolution Learning

level 1, 12× 12 level 2, 24× 24 level 3, 48× 48 level 4, 96× 96

Multi-Resolution Learning

Restrict the images n times
θ0,W0,µ0 ← random initialization
for j = 1 : n do

optimize with data on level k starting from θj−1,Wj−1,µk−1

obtain θ∗,W∗,µ∗
θj ← prolongate θ∗

Wj ← prolongate W∗

How to prolongate the kernels?
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Galerkin Projection of Convolution Kernels

KH = RKhP,

where
I Kh fine mesh operator (given)
I R restriction (e.g., averaging)
I P prolongation (e.g.,

interpolation)

Remarks:
I Galerkin: R = γP>

I Coarse→ Fine: unique if kernel
size constant.

I only small linear solve required

∗

∗
pr

o
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n
g

at
io

n

re
st
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ct
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n

fine convolution

coarse convolution
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Example: Multiresolution Learning

data
I 60, 000 gray-scale images 18× 18
I Residual Neural Network, width 6
I 2D convolution layers, fully connected
I tanh activation, softmax classifier

multilevel experiments
1. train on fine→ classify coarse:

84.1% vs. 94.9%
(no restriction) (with restriction)

2. train on coarse→ classify fine:

61.0% vs. 91.0%
(no prolongation) (with prolongation)
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PDE-motivated Networks
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Parabolic Residual Neural Networks

Recall the decay property of heat equation. Example:

∂ty(t, x) = ∂xxy(t, x), + initial + boundary cond.

Some consequences for learning:
I forward propagation is asymptotically stable
I theoretically, network is robust against perturbation of inputs (adversarial)
I learning problem ill-posed ( do not integrate for too long)
I numerical methods for parabolic include multiscale, multilevel, ROM, . . .
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Parabolic CNN

In original Residual Net choose K2 = −K>1 = K>.
This gives parabolic PDE

∂tY = −K(t)>σ(K(t)Y + b(t)), Y(0) = Y0.

The Jacobian is

J(t) = −K(t)>diag
(
σ′(K(t)Y + b(t))

)
K(t).

J is symmetric negative semidefinite (σ′ ≥ 0) stable if K,b do not change
too quickly. Use forward Euler discretization with h small enough

Yj+1 = Yj − hK>j σ(KjY + bj), j = 0, 1, . . . ,N − 1

Similar to anisotropic diffusion (popular in image processing)

Y. Chen, T. Pock
Trainable Nonlinear Reaction Diffusion.
IEEE PAMI, 39(6), 1256–1272, 2017.
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Theorem (LR, Haber1 2018)

If σ is monotonically non-decreasing, then the forward propagation is stable,
i.e., there is a M > 0 (independent of T) such that

‖Y(T)− Yε(T)‖F ≤ M‖Y(0)− Yε(0)‖F,

where Y and Yε are solutions for different initial values.

For ease of notation, assume no bias. We show that

∂t‖Y(t)− Yε(t)‖2
F ≤ 0.

Integrating this over [0,T] yields the stability result.
Why? Note that for all t ∈ [0,T] taking derivative gives(

−K(t)>σ(K(t)Y) + K(t)>σ(K(t)Yε),Y− Yε

)
− (σ(K(t)Y)− σ(K(t)Yε),K(t)(Y− Yε)) ≤ 0.

Where (·, ·) is inner product and we use σ′ ≥ 0.
1thanks to Martin Burger for pointing us to monotone operator theory
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Hyperbolic Residual Neural Networks

Recall the reversibility of hyperbolic equations. Example:

∂tty(t, x) = ∂xxy(t, x), + initial + boundary cond.

Similar property recently discovered for residual networks

yk+1 = yk + F(xk)
xk+1 = xk + G(yk)

−→ xk−1 = xk − G(yk)
yk−1 = yk − F(xk)

useful for adjoint computations (backpropagation)

Reversible ResNets: ↓↓↓ memory ↑ computation

B.D. Nguyen, G.A. McMechan
Five ways to avoid storing source wavefield snapshots in
2D elastic prestack reverse time migration.
Geophysics, 2014.

A.N. Gomez, M. Ren, R. Urtasun, R.B. Grosse
The Reversible Residual Network:
Backpropagation Without Storing Activations.
arXiv, 2017.
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Hamiltonian CNN

Introducing auxiliary variable Z, consider dynamics

∂tY(t) = KT
1 (t)σ(K1(t)Z(t) + b1(t)),

∂tZ(t) = −KT
2 (t)σ(K2(t)Y(t) + b2(t)).

In matrix form this is(
∂tY
∂tZ

)
=

(
KT

1 0
0 −KT

2

)
σ
(( 0 K1

K2 0

)(
Y
Z

)
+

(
b1
b2

))
.

(Can be shown that eigenvalues of Jacobian are all
imaginary stability when K1,K2,b1,b2 change
slowly in time) Discretize using Verlet method

Yj+1 = Yj + hKT
j1σ(Kj1Zj + bj1),

Zj+1 = Zj − hKT
j2σ(Kj2Yj+1 + bj2).
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Reversible Hamiltonian Neural Networks
Forward propagation in double-layer Hamiltonian

Yj+1 = Yj + hKT
j1σ(Kj1Zj + bj1),

Zj+1 = Zj − hKT
j2σ(Kj2Yj+1 + bj2).

Recall: Antisymmetric structure gives stability (when parameters change
slowly).

Clearly, given YN and ZN dynamics can be computed backwards: For
j = N − 1,N − 2, . . . ,N do

Zj = Zj+1 + hKT
j2σ(Kj2Yj+1 + bj2)

Yj = Yj+1 − hKT
j1σ(Kj1Zj + bj1),

Possible to recompute weights, ↑50% computation costs, but large
memory savings + stability

A. Mahendran, A Vedaldi
Understanding deep image
representations by inverting them.
CVPR, 2015.

B. Chang, L Meng, E. Holtham, E. Haber, LR, D Begert
Reversible Architectures for Arbitrarily Deep ResNNs.
AAAI, 2018.
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Second-Order Network

Consider second-order forward
dynamics

∂ttY = −K(t)>σ(K(t)Y + b(t))

And their Leapfrog discretization

Yj+1 = 2Yj − Yj−1 − h2K>j σ(KjY + bj)

Similar to: Full Waveform Inversion,
Ultrasound, . . .

Note: architecture is reversible.
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Numerical Results
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Example (STL-10): Comparison of Architectures

opening

3 × 3 conv
ReLU, batchnorm
3 → 16 channels

962 pixels

ResNet

3 × 3 conv
ReLU, tv norm
N = 5, δt = 1
16 channels

962 pixels

connector

1 × 1 conv
ReLU, batchnorm

average pool
16 → 32 channels

962 → 482 pixels

. . .

ResNet

3 × 3 conv
ReLU, tv norm
N = 5, δt = 1
128 channels

122 pixels

connector

1 × 1 conv
ReLU, batchnorm

average pool
128→ 128 channels

122 → 1 pixel

I ResNet ∈ { Parabolic, Second-order, Hamiltionian }
I left to right: resolution ↓ number of channels ↑.
I STL-10: 5k training images, 8k test images, 10

classes
I training via stochastic gradient descent,

momentum= 0.9
I regularization: smoothness in time (tv regularizer)

Title Intro Parabolic Hyper Num IMEX Lean Σ 23



Lars Ruthotto DNNs motivated by PDEs @ IPAM, 2019

Example (STL-10): Increasing Training Data
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Example (STL-10): Comparison of Architectures

#weights test accuracy
Parabolic 1.01M 80.9%

Hamiltonian 0.52M 80.4%
Hamiltonian 1.28M 85.5%

Second-order 1.01M 81.0%
Second-order 2.44M 84.6%

different architectures give overall
competitive results

individual results may vary
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B Chang et al.,
Reversible Architectures for Deep ResNNs.
AAAI, 2018.

LR, E Haber
Deep Neural Networks motivated by PDEs.
arXiv, 2018.
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Experiment (CIFAR-10 and STL-10): Stability and
Generalization

Goal: Compare efficiency of reversible Hamiltonian CNN to ResNN

Name Units Channels Params Error rate
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

ResNet-32 (He et al. 2016) 5-5-5 16-32-64 0.46 0.47 7.14% 29.95%
RevNet-38 (Gomez et al. 2017) 3-3-3 32-64-112 0.46 0.48 7.24% 28.96%
HrNet-74 (Ours) 6-6-6 32-64-112 0.43 0.44 7.24% 30.22%
MidPoint-26w (Ours) 4-4-4 32-64-112 0.50 0.51 8.84% 32.75%
SecondOrder-62 (Ours) 4-4-4 32-64-112 0.50 0.51 9.65% 37.48%
HrNet-50 (Ours) 3-3-3-3 16-32-64-80 0.46 0.46 8.45% 32.18%
MidPoint-50 (Ours) 3-3-3-3 16-32-64-80 0.44 0.45 8.89% 33.53%
SecondOrder-50 (Ours) 3-3-3-3 16-32-64-112 0.50 0.51 9.17% 33.31%
ResNet-110 (He et al. 2016) 18-18-18 16-32-64 1.73 1.73 5.74% 26.44%
RevNet-110 (Gomez et al. 2017) 9-9-9 32-64-128 1.73 1.74 5.76% 25.40%
HrNet-110 (Ours) 9-9-9 32-64-128 0.81 0.82 6.80% 29.57%
HrNet-218 (Ours) 18-18-18 32-64-128 1.68 1.69 Bo running% 26.11%
MidPoint-62w (Ours) 10-10-10 32-64-128 1.78 1.79 7.24% 29.02%
SecondOrder-62w (Ours) 10-10-10 32-64-128 1.78 1.79 8.15% 32.65 %
ResNet-1202 200-200-200 32-64-128 19.4 - 7.93% -
HrNet-1202 (Ours) 100-100-100 32-64-128 9.70 - 7.25% -

Table 1: Main results for different architectures on CIFAR-10 and CIFAR-100.

Methods Accuracy

(Yang et al. 2015) 73.15%
(Dundar, Jin, and Culurciello 2015) 74.1%
(Zhao et al. 2016) 74.3%
HrNet (Ours) 85.5%
MidPoint (Ours) (16-64-128-256) 84.6%
SecondOrder (Ours) 83.7%

Table 2: Main results on STL-10.

Methods Error Rate

(Liang and Hu 2015) 1.77%
(Lee, Gallagher, and Tu 2016) 1.69%
HrNet-82 (Ours) 2.91%
HrNet-300 (Ours) Lili to run%
MidPoint-82 (Ours) 3.41%
MidPoint-300 (Ours) Bo to run%
SecondOrder-82 (Ours) 3.18%

Table 3: Main results on SVHN.

Figure 3: Comparison of ResNet and HrNet for CIFAR10

pushing the state-of-the-art results. Therefore we intention-
ally use simple architectures here as shown in Table 4. For
comparison, we use ResNet (He et al. 2016) as our base-
line. CIFAR-10 has much more training data than STL-10
(50,000 VS. 5,000), so we decrease the training data from
20% to 0.05% for CIFAR-10, while from 80% to 5% for
STL-10. The test data keeps the same.

CIFAR-10 Fig. 3 shows the result on CIFAR-10 when de-
creasing the training data from 20% to 5%. Our HrNet per-
forms consistently better in terms of accuracy than ResNet,
with even more than 13% accuracy boost when there are just
3% and 4% of the original training data.

STL-10 From the result as shown in Fig. 4, we can see that
HrNet consistently achieves better accuracy than ResNet
with the average 3.4% accuracy boost. Especially when us-
ing just 40% of the training data, HrNet has a 5.7% accuracy
boost than ResNet.

We attribute the robustness to small amount of training

Layers Nums 4 4 4 4
Filters Nums 16 64 128 256

Table 4: HrNet and ResNet Architecture for small
amount of training data of CIFRA10 and STL10

Figure 4: Comparison of ResNet and HrNet for STL10

data to the intrinsic stability of our Hamiltonian neural net-
work architecture.

Exploring with a 1202-layer HrNet
An aggressively deep ResNet is explored on CIFAR-10 in
(He et al. 2016) with 1202 layers, which has higher error rate
(7.93%) than their 110-layer ResNet (6.43%). They attribute
the higher error rate to the overfitting problem. To demon-
strate the robustness of our architecture, we also explore a
1202-layer architecture on CIFAR-10. Compared with the
original ResNet, our architecture has only a half of param-
eters, but better accuracy. To be fair comparison of ResNet,
we just only weight decay is used, without distracting from
the focus on the complicated optimization or maxout (Good-
fellow et al. 2013) or dropout (Srivastava et al. 2014) as well
LR:please revisit wording of this sentence.

Conclusion
In this paper, we present three robust and reversible architec-
tures that connect the stable ODE with deep residual neural
networks and yield well-posed learning problems. We ex-
ploit the intrinsic reversibility property to obtain a memory-
efficient implementation, which does not need to store the
activations and features at hidden layers. Together with the
stability of the forward propagation, this allows training
deeper and wider architectures with limited computational
resources. We evaluate our methods on four publicly avail-
able datasets against several strong baselines. Experimental
results show the efficacy of our method, showing superior or
on-par state-of-the-art performance. Moreover, with smaller
amount of data, our architectures achieve better accuracy
compared with the widely used state-of-the-art ResNet ar-
chitecture.
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stability leads to improved generalization
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Semi-Implicit Networks
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IMEXnet - Forward Stable DNN
Re

sN
et

Re
sN

et
IM

EX
ne

t

input output

Goals: Gain stability and address field-of-view problem with only few layers

∂ty(t) = f (y(t), θ(t)) + Ly(t)︸ ︷︷ ︸
explicit

−Ly(t)︸ ︷︷ ︸
implicit

,

for some L (symmetric positive definite and easy to invert).
Discretization leads to implicit-explicit forward propagation

Yj+1 = (I + hLj)
−1(Yj + hLYj + hf (Yj, θj)),

C.B. Schönlieb, A. Bertozzi.
Unconditionally stable schemes for higher order
inpainting.
Commun. Math. Sci., 9: 413–457, 2011.

E Haber, K Lensik, E. Treister, LR
IMEXnet - A Forward Stable Deep Neural
Network.
ICML 2019.

Title Intro Parabolic Hyper Num IMEX Lean Σ 28



Lars Ruthotto DNNs motivated by PDEs @ IPAM, 2019

Example: Semantic Segmentation

Goal: Label each pixel in an
image

Challenges:
I high-resolution output
I limited field of view
I synthetic Qtips data

E Haber, K Lensik, E. Treister, LR
IMEXnet - A Forward Stable Deep
Neural Network.
ICML 2019.

Test image segmentation IMEXnet ResNet
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Lean Convolutional Neural
Networks
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LeanResNet: Low-cost Convolutional Residual Networks

Commonly, convolutions couple all feature channels.
Example: Let C(θ) be spatial convolution with stencil θ and assume four
inputs and outputs. Idea: Use sparser coupling patterns.

Next, reduce number of elements in stencil θ1,1 θ1,2 θ1,3
θ2,1 θ2,2 θ2,3
θ3,1 θ3,2 θ3,3

 −→
 θ1,2

θ2,1 θ2,2 θ2,3
θ3,2


Motivation: Reaction-diffusion PDEs.

Clearly, fewer parameters and flops, but how effective is it?
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LeanResNet: Low-cost Convolutional Residual Networks

CIFAR10
Architecture Network Params \ FLOPs[M] Acc
ResNet Res24 4.3 \ 241 94.54%
MobileNetV2 Res24 0.5 \ 33 91.71%
ShuffleNetV2 0.5X 0.4 \ 42 91.56%
ShiftResNet Res24 0.5 \ 31 92.50%
LeanResNet Res24 0.5\ 29 92.98%

CIFAR100
ResNet Res40 27.0 \ 1529 78.5%
MobileNetV2 Res40 3.1 \ 167 71.94%
ShuffleNetV2 1.5X 2.6 \ 375 74.2%
ShiftResNet Res40 3.1 \ 201 74.2%
LeanResNet Res40 2.9\ 179 74.3%

TinyImageNet200
ResNet Res38 34.6 \ 6899 65.18%
MobileNetV2 1.4 4.7 \ 661 48.68%
ShuffleNetV2 2.0X 5.7 \ 740 58.39%
ShiftResNet Res38 4.5 \ 793 61.82%
LeanResNet Res38 4.6 \ 712 62.58%

J Ephrath, LR, E Haber, E Treister
LeanResNet: A Low-cost yet Effective Convolutional Residual Networks.
ICML Workshop on On-Device ML, 2019.
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Conclusion
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Some Perspectives
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Analogies in PDE-Based Image Processing

I A few seminal works
I optical flow (Horn&Schunck, 1981)
I nonlinear diffusion for denoising (Perona&Malik,

1990, Weickert 2009)
I nonlinear edge-preserving denoising (Rudin, Osher,

Fatemi, 1992)
I variational methods for image segmentation

(Mumford&Shah, 1989)
I The common thread
I model images as functions I : Rd → Rc

 abstract from resolution
I interpret operations on images as PDE operators
I create insight by analyzing underlying PDE

(existence, uniqueness, regularity)
I use efficient PDE solvers for image processing

K Akiyama et al.
Imaging the Schwarzschild-radius-scale Structure of M87 with the Event Horizon Telescope using
Sparse Modeling.
arXiv:1702.07361 [astro-ph.IM]
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Σ: Deep Neural Networks motivated by PDEs

Optimal control formulation
I new insights, theory, algorithms
I stability and impact on convergence/generalization

Properties of PDE-inspired CNNs
I parabolic: numerical stability, multiscale, . . .
I hyperbolic: reversible, preserve high-frequency features,. . .
I IMEX: stability, global coupling in feature space
I Lean: drastical reduction in #weights and flops
I all: performance matches/outperforms existing methods ( 

Sensitivity analysis to select architecture)

Mission: Make CNNs stable, well-posed, and efficient
enough to enable scientific machine learning

E Haber, LR
Stable Architectures
for DNNs.
Inverse Problems,
2017.

E Holtham et al.
Learning Across
Scales.
AAAI, 2018.

B Chang et al.,
Reversible
Architectures for
Deep ResNNs.
AAAI, 2018.

LR, E Haber
Deep Neural
Networks motivated
by PDEs.
arXiv, 2018.
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