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Agenda: Deep Neural Networks motivated by PDEs

Deep Learning meets Optimal Control (warmup) J%
Stability and Generalization (skipped ~~ yesterday) ffﬁg %

» when is deep learning well-posed?
> stabilizing the forward propagation

‘g{'@}

Convolutional Neural Networks motivated by PDEs

» parabolic CNNs: multiscale and multilevel schemes él
> hyberbolic CNNs: memory efficient + stable Q*W
> IMEX-Net: Semi-implicit time integration 7

» LeanResNet: reduced architectures

Conclusion and Summary

Goals: Theoretical insight, mathematically sound
architectures, competitive results.

E Haber, LR B Chang et al., LR, E Haber
@ Stable Architectures ﬁ E Holtham etal. ﬁ Ffeversi?)le ﬁ Deep Neural
for DNNs. éii;g’sng Across Architectures for Networks motivated
Inverse Problems, AAAI 2'01 8 Deep ResNNs. by PDEs.
2017. ’ i AAAI, 2018. arXiv, 2018.
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Deep Learning meets Optimal
Control
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Deep Learning Revolution (?)

Yir = o(KY;+b))
Yiii = Y +0(KY;+b))
Yiir = Yj+0(Kjpo(K;1Y;+bj1) +bjo)

input layer

hidden layer 1 hidden layer 2

(Notation: Y; : features, K;, b;: weights, o : activation)

» deep learning: use neural networks (from ~ 1950’s) with many hidden
layers

» able to "learn” complicated patterns from data

> applications: image classification, face recognition, segmentation,
driverless cars, ...

» recent success fueled by: massive data sets, computing power
> A few recent references:

» A radical new neural network design could overcome big challenges in
Al, MIT Tech Review '18

> Data Scientist: Sexiest Job of the 21st Century, Harvard Business Rev ’17
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Optimal Control Framework for Deep Learning

tralnmg data Yy, C prop. features, Y(T),C classification result

Supervised Deep Learning Problem

Given training data, Yo, and labels, C, find network parameters 6 and
classification weights W, . such that the DNN predicts the data-label
relationship (and generalizes to new data), i.e., solve

minimizeg w ., loss[g(W + w), C] + regularizer[0, W, u]

IMEX

Lean

Intro Parabolic

Title Hyper
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Deep Residual Neural Networks (simplified)

Award-winning forward propagation
Yj+1 =Yj+th720‘(Kj,1Yj—|—bj), vVj=0,1,...,N—1.
ResNet is forward Euler discretization of

Oy (1) = Ka(t)o (Ki (0)y (1) +b(1)),  ¥(0) = yo.

input features, Yy
Notation: 0(¢r) = (K, (z), K»(¢),b(z)) and

9y(1) = f(y,0(1)), ¥(0) =yo

where  £(y,8) = Ka(1)o (K (1)y(1) +b(1))

[@ K. He, X. Zhang, S. Ren, and J. Sun
Deep residual learning for image recognition.

IEEE Conf. on CVPR, 770-778, 2016. propagated features, Yy
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(Some) Related Work

DNNs as (stochastic) Dynamical Systems Optimal Control

> Weinan E, Proposal on ML via Dynamical > S. Glnther, LR, J.B. Schroder,
Systems, Commun. Math. Stat., 5(1), 2017. E.C. Cyr, N.R. Gauger,

> E Haber, LR, Stable Architectures for DNN, Layer-parallel training of ResNets,
Inverse Problems, 2017. arXiv, 2018.

> Q. Li, L. Chen, C. Tai, Weinan E, Maximum > A. Gholami, K. Keutzer, G. Biros,
Principle Based Algorithms, arXiv, 2017. ANODE: Unconditionally Accurate

> B. Wang, B. Yuan, Z. Shi, S. Osher, ResNets Memory-Efficient Gradients for
Ensemble via the Feynman-Kac Formalism, arXiv, Neural ODEs, arXiv, 2019.
2018. > T. Zhang, Z. Yao, A. Gholami, K.

Keutzer, J. Gonzalez, G. Biros, M.
Mahoney, ANODEV2: A Coupled
Neural ODE Evolution Framework,

Numerical Time Integrators

> Y. Lu, A. Zhong, Q. Li, B. Dong, Beyond Finite
Layer DNNs, arXiv, 2017.

arXiv, 2019.

» B. Chang, L. Meng, E. Haber, LR, D. Begert, E.
Holtham, Reversible architectures for DNNs, PDE-motivated Approaches
AAAl, 2018. > E. Haber, LR, E. Holtham,

> T. Chen, Y. Rubanova, J. Bettencourt, D. Learning across scales - Multiscale
Duvenaud, Neural ODEs, NeurlPS, 2018. CNNs, AAAI, 2018.

» E. Haber, K. Lensink, E. Treister, LR, IMEXnet: > LR, E. Haber, DNNs motivated by
Forward Stable DNN. ICML, 2019. PDEs, arXiv, 2018.
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Convolutional Neural Networks
meet PDEs
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CNNs: Computer Science and Engineering Challenges

Computations

> note that networks have a widths and depth

> Toy example: width 16 , depth 20 (time steps).
Forward propagation: 5,120 2D-convs/image

Memory Consumption
> adjoint equations (backpropagation) need
intermediate states (hidden features)
> Toy example (continued): training data is 5k images
with 32 x 32 pixels.
Storage (just features): 130 GB (double) or 65 GB
(single).

Architecture Design & Interpretation

> CNN should be easy to train and generalize well
> CNN should be difficult to fool (adversarial attacks)
» CNN should give uncertainties and explain reasoning

Pei et al., DeepXplore, 2017

paradigm shift needed for stable, well-posed, and efficient ML

Intro Parabolic Hyper Num IMEX Lean z
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Convolutions and PDEs
Let y be of 1D grid function y «» y (grid: n cells of width i, = 1/n)

4 2h, n2

X

K(G)y:[el 9293]*)’: <IB] [1 2 1]+ b [—1 0 1]+/83[—1 2—1]>>ky,

where the coefficients g1, 8, 83 satisfy

1/4 —1/(2hy) —1/H? B 0,
1/2 0 2/h B l=1| 6 ].
1/4  1/(2hy) —1/H> B3 05

In the limit 2, — 0 this gives

K(0(1)) = B1(t) + Ba(1)0: + B3(1)0%;.

Take-aways:

» Convolution operator K is linear combination of differential operators
» CNN weights determine the PDE properties: order, type, stability,. . .
» Multiple channels ~ coupled system of PDEs (one per channel)

Intro Parabolic Hyper ~ Num IMEX

Lean >
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Multi-Resolution Learning

level 1,12 x 12 level 2,24 x 24 level 3,48 x 48 level 4, 96 x 96

Multi-Resolution Learning

Restrict the images n times
6°, WO, 10 « random initialization
forj=1:ndo
optimize with data on level k starting from &', Wi—1_ p*=1
obtain 0%, W* u*
¢ « prolongate 6*
W/ « prolongate W*

How to prolongate the kernels?

Title Intro Parabolic Hyper Num IMEX Lean z 11
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Galerkin Projection of Convolution Kernels

Ky = RK,P,

where
» K, fine mesh operator (given)
> R restriction (e.g., averaging)

» P prolongation (e.g.,
interpolation)

coarse convolution

c
.2
)
&)
=
)
n
(]
hel

Remarks:
> Galerkin: R = +P'

» Coarse — Fine: unique if kernel
size constant.

» only small linear solve required

.
|

fine convolution
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Example: Multiresolution Learning

data
» 60,000 gray-scale images 18 x 18
» Residual Neural Network, width 6
» 2D convolution layers, fully connected
» tanh activation, softmax classifier

multilevel experiments
1. train on fine — classify coarse:

84.1% VS. 94.9%
(no restriction) (with restriction)

2. train on coarse — classify fine:

61.0% VS. 91.0%
(no prolongation) (with prolongation)
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PDE-motivated Networks
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Parabolic Residual Neural Networks

Recall the decay property of heat equation. Example:

Oy(t,x) = Owy(t,x), + initial + boundary cond.

Some consequences for learning:
» forward propagation is asymptotically stable
> theoretically, network is robust against perturbation of inputs (adversarial)
» learning problem ill-posed (~ do not integrate for too long)
» numerical methods for parabolic include multiscale, multilevel, ROM, ...

Title Intro Parabolic Hyper Num IMEX Lean z 15
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Parabolic CNN

In original Residual Net choose K, = —-K| =K.
This gives parabolic PDE

Y = —K(1)To(K(t)Y + b(r)), Y(0) = Y,.

The Jacobian is

J(t) = —K() "diag (o/(K(t)Y + b(2))) K(2).

J is symmetric negative semidefinite (¢’ > 0) ~~ stable if K, b do not change
too quickly. Use forward Euler discretization with 2 small enough

Y=Y —hK o(KY+b), j=01,....N—1
Similar to anisotropic diffusion (popular in image processing)

[@ Y.Chen, T. Pock
Trainable Nonlinear Reaction Diffusion.
IEEE PAMI, 39(6), 1256—1272, 2017.
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Theorem (LR, Haber' 2018)

If o is monotonically non-decreasing, then the forward propagation is stable,
i.e., there is aM > 0 (independent of T) such that

IY(T) = Y(T)|[r < M[[Y(0) = Yc(0)[[F,
where Y and Y. are solutions for different initial values.
For ease of notation, assume no bias. We show that

aY(1) = Ye(n)||7 < 0.

Integrating this over [0, 7] yields the stability result.
Why? Note that for all r € [0, 7] taking derivative gives

(—K(t)TU(K(t)Y) +K()To(K()Y.), Y — Ye>
— (o(K()Y) — o(K(OY.), K()(Y — Y.)) <0.

Where (-, -) is inner product and we use ¢’ > 0.

thanks to Martin Burger for pointing us to monotone operator theory

Title Intro Parabolic Hyper Num IMEX Lean z 17
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Hyperbolic Residual Neural Networks

Recall the reversibility of hyperbolic equations. Example:

Ouy(t,x) = Oyy(t,x),  + initial + boundary cond.

Similar property recently discovered for residual networks
Yir1 = Vi + F(xz) Xi—1 = X — G(yx)
Xir1 = Xk + G(yx) Vi1 = Yx — F(xz)
useful for adjoint computations (backpropagation)
Reversible ResNets: ||| memory 1 computation

ﬁ B.D. Nguyen, G.A. McMechan ﬁ A.N. Gomez, M. Ren, R. Urtasun, R.B. Grosse
Five ways to avoid storing source wavefield snapshots in The Reversible Residual Network:
2D elastic prestack reverse time migration. Backpropagation Without Storing Activations.

Geophysics, 2014. arXiv, 2017.
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Hamiltonian CNN

Introducing auxiliary variable Z, consider dynamics

Y (1) = K{ (1)o (Ki(1)Z(1) + b1 (7)),
OZ(1) = —K3 (1) (Ka ()Y (1) + ba(1)).

In matrix form this is

()= (0 ) (& %) (2)+ ()

(Can be shown that eigenvalues of Jacobian are all
imaginary ~- stability when K, K, by, b, change
slowly in time) Discretize using Verlet method

Y11 =Y+ iK} o (K1 Z; + bj1),
Zjy1 = Z; — hKLo (Kp Y1 +bp).

Title Intro Parabolic Hyper Num IMEX Lean z
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Reversible Hamiltonian Neural Networks
Forward propagation in double-layer Hamiltonian
Y=Y+ thTIO’(Klej +bj1),
Zi = Z; — hK) o (Kp Y + bp).

Recall: Antisymmetric structure gives stability (when parameters change
slowly).

Clearly, given Yy and Z, dynamics can be computed backwards: For
j=N—-1,N—2,...,Ndo

Z;=Zj 1 + hK)o(KpYj +bp)

Y; = Y11 — K] 0 (K Z; + bjy),

Possible to recompute weights, 150% computation costs, but large
memory savings + stability

ﬁ fjhn’?d/learz(ta:r?;;n’ ge\éecji?rlg e ﬁ B. Chang, L Meng, E. Holtham, E. Haber, LR, D Begert
ing deep Imag Reversible Architectures for Arbitrarily Deep ResNNs.
representations by inverting them. AAAL 2018
CVPR, 2015. ’ '

Hyper Num IMEX Lean z
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Second-Order Network

Consider second-order forward
dynamics

/Y = —K(1) "o (K(1)Y + b(1))

And their Leapfrog discretization

Y1 =2Y, - Y, — K o(K;Y + b))

Similar to: Full Waveform Inversion,
Ultrasound, ...

Note: architecture is reversible.

Title Intro Parabolic Hyper Num IMEX Lean b
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Numerical Results

Title
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& Lars Ruthotto DNNs motivated by PDEs @ IPAM, 2019

Example (STL-10): Comparison of Architectures

opening connector connector
3% 3 1 x 1 conv 1 x 1 conv
X & @y RelLU, batchnorm RelLU, batchnorm

v

RelLU, batchnorm
3 — 16 channels
962 pixels

average pool
16 — 32 channels
962 — 482 pixels

average pool
128 — 128 channels
122 — 1 pixel

v

ResNet € { Parabolic, Second-order, Hamiltionian }
left to right: resolution | number of channels 1.

» STL-10: 5k training images, 8k test images, 10
classes

» training via stochastic gradient descent,
momentum= 0.9

> regularization: smoothness in time (tv regularizer)

v
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Example (STL-10): Increasing Training Data

parabolic

second-order hamiltonian

bolic

1,000

Hyper

1,500

2,000 2,500 3,000
<— number of training images —

3,500

4,000

DNNs motivated by PDEs @ IPAM, 2019

airplane
bird

car

cat
deer
dog
horse
monkey
ship
truck

airplane

<— true class —

+— predicted class —
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Example (STL-10): Comparison of Architectures

#weights | test accuracy
Parabolic 1.01M 80.9%
Hamiltonian 0.52M 80.4%
Hamiltonian 1.28M 85.5%
Second-order | 1.01M 81.0%
Second-order | 2.44M 84.6%

Parabolic CNN
true label
Hamiltonian CNN
true label

@ different architectures give overall
competitive results

true label
true label

—— il
Hamiltonian CINII |

second-order CNN

<« individual results may vary

' Nairplane Wcar Bdeer Bhorse Bship
Obird Hcat Odog B monkey Btruck
[M BChangetal, [@ LR, E Haber
Reversible Architectures for Deep ResNNs. Deep Neural Networks motivated by PDEs.
AAAI, 2018. arXiv, 2018.
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Experiment (CIFAR-10 and STL-10): Stability and
Generalization

Goal: Compare efficiency of reversible Hamiltonian CNN to ResNN

80

~
=)

Accuracy (%)
o
o

u
=3

40

30

—6—HrNet
- @ -ResNet

Title Intro

Hyper Num IMEX

6 8 10 12 14 16 18
Training Data Percentage (%)

CIFAR10 (total: 50k images)

20

Accuracy (%)
B » w w (=)} [} ~ ~ o]
o w o w o w o w o

w
o

—e—HrNet
- & -ResNet

10

20 30 40 50 60 70 80
Training Data Percentage (%)

STL10 (total: 5k images)

stability leads to improved generalization

Lean >
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Semi-Implicit Networks

Title
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IMEXnet - Forward Stable DNN

Goals: Gain stability and address field-of-view problem with only few layers
Ohy(t) = f(y(2),0(r)) + Ly(z) — Ly(1),
——

/

IMEXnet]ResNet JResNet]

ex;)ﬁcit implicit
for some L (symmetric positive definite and easy to invert).
Discretization leads to implicit-explicit forward propagation

Yji1 = (L4 hL) "' (Y; + ALY, + hf (Y}, 6))),

ﬁ C.B. Schénlieb, A. Bertozzi. @ E Haber, K Lensik, E. Treister, LR
Unconditionally stable schemes for higher order IMEXnet - A Forward Stable Deep Neural
inpainting. Network.

Commun. Math. Sci., 9: 413-457, 2011. ICML 2019.
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Example: Semantic Segmentation

Goal: Label each pixel in an Test image segmentation IMEXnet  ResNet

image

Challenges:

» high-resolution output
> limited field of view

» synthetic Qtips data

[8 E Haber, K Lensik, E. Treister, LR
IMEXnet - A Forward Stable Deep
Neural Network.

ICML 2019.
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Lean Convolutional Neural
Networks

ro Parabolic Hyper Num IMEX Lean b
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LeanResNet: Low-cost Convolutional Residual Networks

Commonly, convolutions couple all feature channels.

Example: Let C(0) be spatial convolution with stencil & and assume four

inputs and outputs. Idea: Use sparser coupling patterns.
Next, reduce number of elements in stencil

011 612 013 W)
01 05 023 | — | 021 625 023

031 63> 033 03,
Motivation: Reaction-diffusion PDEs.

Clearly, fewer parameters and flops, but how effective is it?
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LeanResNet:

Title

Low-cost Convolutional Residual Networks

DNNs motivated by PDEs @ IPAM, 2019

CIFAR10
Architecture  Network Params \ FLOPs[M] Acc
ResNet Res24 4.3\ 241 94.54%
MobileNetV2 Res24 0.5\ 33 91.71%
ShuffleNetV2 0.5X 0.4\ 42 91.56%
ShiftResNet Res24 0.5\ 31 92.50%
LeanResNet Res24 0.5\ 29 92.98%

CIFAR100
ResNet Res40 27.0\ 1529 78.5%
MobileNetV2 Res40 3.1\ 167 71.94%
ShuffleNetV2 1.5X 2.6\ 375 74.2%
ShiftResNet Res40 3.1\ 201 74.2%
LeanResNet Res40 2.9\ 179 74.3%

TinylmageNet200

ResNet Res38 34.6 \ 6899 65.18%
MobileNetV2 1.4 4.7 \ 661 48.68%
ShuffleNetV2 2.0X 5.7\ 740 58.39%
ShiftResNet Res38 4.5\ 793 61.82%
LeanResNet Res38 46\ 712 62.58%

[§ JEphrath, LR, E Haber, E Treister
LeanResNet: A Low-cost yet Effective Convolutional Residual Networks.
ICML Workshop on On-Device ML, 2019.

Intro

Parabolic

Hyper Num IMEX

Lean >
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Conclusion
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Some Perspectives
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Analogies in PDE-Based Image Processing

» A few seminal works

>
>

>

>

» The common thread

>

optical flow (Horn&Schunck, 1981)

nonlinear diffusion for denoising (Perona&Malik,
1990, Weickert 2009)

nonlinear edge-preserving denoising (Rudin, Osher,
Fatemi, 1992)

variational methods for image segmentation
(Mumford&Shah, 1989)

model images as functions I : RY — R¢

~ abstract from resolution

interpret operations on images as PDE operators
create insight by analyzing underlying PDE
(existence, uniqueness, regularity)

use efficient PDE solvers for image processing

@ K Akiyama et al.

Imaging the Schwarzschild-radius-scale Structure of M87 with the Event Horizon Telescope using
Sparse Modeling.

arXiv:1702.07361 [astro-ph.IM]

Title Intro Parabolic Hyper Num IMEX Lean z




‘ﬁ Lars Ruthotto DNNs motivated by PDEs @ IPAM, 2019

Y. Deep Neural Networks motivated by PDEs

- - ,‘
Optimal control formulation w%ﬁ
> new insights, theory, algorithms f{‘“;g‘f
> stability and impact on convergence/generalization {Q,&

Properties of PDE-inspired CNNs

> parabolic: numerical stability, multiscale, . ..

hyperbolic: reversible, preserve high-frequency features,. . .
IMEX: stability, global coupling in feature space

Lean: drastical reduction in #weights and flops

all: performance matches/outperforms existing methods (~
Sensitivity analysis to select architecture)

vVVvyVvyy

Mission: Make CNNs stable, well-posed, and efficient
enough to enable scientific machine learning

E Haber, LR B Chang et al., LR, E Haber
a Stable Architectures ﬁ E Holtham etal. ﬁ Reversigle ﬁ Deep Neural
for DNNs. gi.z;g;ng Across Architectures for Networks motivated
Inverse Problems, AAA 2'01 8 Deep ResNNs. by PDEs.
2017. ’ ’ AAAI 2018. arXiv, 2018.
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