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Three waves of AI
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1

2

3

Expert	systems

Conven&onal	rule	based	if-then	algorithms	
programmed	with	expert	knowledge	to	
mimic	human	decision	making

Machine	learning

Explainable	AI	(XAI)	+	Physics-aware	AI	(PAI)

h;ps://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf				h;ps://www.Oo.gov/spg/	ODA/DARPA/CMO/DARPA-BAA-16-53/lis&ng.html

Algorithms	that	train	themselves	
to	learn	the	rules	from	the	data

Algorithms	that	explain	their	
ac&ons	and/or	respect	and	
exploit	physical	laws

https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf


AI in molecular and materials science

�3

chemical	discovery	(i,	ii)	
—	teaching	machines	chemical	intui&on	and	search

medical	diagnosis	(i,	iii)	
—	pathology	iden&fica&on,	interven&on	design

materials	engineering	(i,	ii,	iii)	
—	inverse	materials	design	via	the	what	(and	the	why)

reacDon	engineering	(ii,	iii)	
—	op&mizing	condi&ons,	predic&ve	(retro)synthesis

• AI	par&cularly	valuable	for: 
(i)	 high-dimensional	and/or	complex	systems	that	foil	human	intui&on  
(ii)	 large	conforma&onal	or	combinatorial	search	spaces  
(iii)	 inverse	problems	—	data	but	not	models,	goals	but	not	mechanisms

ALF ACS Central Science 4 8 938-941 (2018)



Data science & domain science
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• Data-driven	inquiry	emerging	as	a	
“fourth	pillar”	of	science	—	knowledge	
discovery	from	data	(KDD)
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A. Agrawal and A. Choudhary APL Mater. 4 053208 (2016)	 https://d3f1iyfxxz8i1e.cloudfront.net/courses/course_image/4a0821d298ee.png

• Success	is	con&ngent	on	integra&on	of	data	science	paradigms	and	tools	
with	domain	specific	knowledge	and	experDse	(thermo,	QM,	rxn	eng,	…)
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Nonlinear machine learning in simulations of soft and biological materials
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ABSTRACT
Interpretable parameterisations of free energy landscapes for soft and biological materials calculated from
molecular simulation require the availability of ‘good’ collective variables (CVs) capable of discriminating
themetastable states of the systemand the barriers between them. If these CVs are coincidentwith the slow
collective modes governing the long-time dynamical evolution, then they also furnish good coordinates
in which to perform enhanced sampling to surmount high free energy barriers and efficiently explore
and recover the landscape. Non-linear manifold learning techniques provide a means to systematically
extract such CVs from molecular simulation trajectories by identifying and extracting low-dimensional
manifolds lying latent within the high-dimensional coordinate space. We survey recent advances in data-
driven CV discovery and enhanced sampling using non-linearmanifold learning, describe themathematical
and theoretical underpinnings of these techniques, and present illustrative examples to molecular folding
and colloidal self-assembly. We close with our outlook and perspective on future advances in this rapidly
evolving field.
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1. Introduction

Molecular dynamics (MD) is a classical simulation technique
that integrates Newton’s equations of motion at the microscale
to simulate the dynamical evolution of atoms andmolecules [1].
Accordingly, this technique can be considered – to use a term
coined by the molecular simulation pioneer Klaus Schulten – a
‘computational microscope’ [2]. By following the microscopic
dynamics of the system,MD simulations can provide awealth of
information on the structure, mechanisms, kinetics, and ther-
modynamics of atomic and molecular systems. The inception
of the technique can be traced to a 1957 paper in which Bernie
Alder andWainwright simulated the dynamics of the collisions
between hard spheres to determine the phase behavior and
equation of state [3,4]. MD simulation has since emerged as
a mainstream methodology in the study of molecular liquids
[5], condensed phase systems [6,7], self-assembling materials
[8], proteins [9–11], DNA [12], viruses [13], and drugs [14].

The microscopic configurational state (microstate) of a
molecular system is defined by the coordinates rN of its N
constituent atoms. The potential energy surface (PES) is a 3N-
dimensional surface specifying the energy of each microstate
as a function of the Cartesian coordinates of these N particles.
In the canonical ensemble, the equilibrium probability of the
system occupying eachmicrostate rN is given by the Boltzmann
factor of the energy [15,16],

P(rN ) = e−βU(rN )

Z
, (1)

where β = 1/kBT , T is the temperature, kB is Boltzmann’s
constant, U(rN ) is the energy of microstate rN assigned by the

CONTACT A. L. Ferguson alf@illinois.edu

PES, and Z =
∫
e−βU(rN )drN is the canonical partition func-

tion. Analogous expressions exist for other ensembles [15–18].
Through this expression, the PES dictates all of the equilibrium
thermodynamic properties of the system.

In practice, couplings between degrees of freedom generi-
cally cause the system to explore only a small fraction of the
configurational space, effectively restraining its dynamical evo-
lution to a so-called intrinsic manifold of much lower dimen-
sionality [19–28]. Accordingly, the PES typically admits a low-
dimensional projection ψ(rN ) : R3N → Rk into a set of k ≪
3N collective variables (CVs) ψ = [ψ1,ψ2, . . . ,ψm] ∈ Rm.
Mathematically, this projection can be written as [16],

P(ψ) =
∫

P(rN )δ(ψ(rN ) − ψ)drN

= 1
Z

∫
e−βU(rN )δ(ψ(rN ) − ψ)drN , (2)

where δ(ψ(rN )−ψ) is theDirac delta function that employs the
projectionψ(rN ) to selectmicrostates rN with a particular value
ψ of the collective order parameters. The free energy surface
(FES) is the analog of the PES in this reduced dimensional space,

F(ψ) = −kBT ln
(
P(ψ)

)
+ C, (3)

where C is an arbitrary additive constant that reflects our (typ-
ical) ignorance of the absolute free energy scale. Due to the
dimensionality reduction associatedwith the projection into the
CVs, multiple microstates may be lumped together to the same
low-dimensional coordinates, andF(ψ) therefore contains both
energetic and entropic contributions. A point on the landscape

© 2017 Informa UK Limited, trading as Taylor & Francis Group
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1. Introduction

Data-driven modeling approaches and machine learning have 
opened new paradigms in the understanding, engineering, and 
design of soft and biological materials. Modern computational 
and theoretical tools enable efficient solution of a multitude of 
forward problems—prediction of the properties and behavior 

of particular materials under particular conditions. Less well 
developed are tools to interrogate voluminous data sets to 
extract understanding and predictive models, and approaches 
to confront the inverse problem to reverse engineer tailored 
structure and function. The development of approaches to 
engage and tackle these challenges is particularly press-
ing given the pace at which large data sets are now being 
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Abstract
In many branches of materials science it is now routine to generate data sets of such large size 
and dimensionality that conventional methods of analysis fail. Paradigms and tools from data 
science and machine learning can provide scalable approaches to identify and extract trends 
and patterns within voluminous data sets, perform guided traversals of high-dimensional 
phase spaces, and furnish data-driven strategies for inverse materials design. This topical 
review provides an accessible introduction to machine learning tools in the context of soft 
and biological materials by ‘de-jargonizing’ data science terminology, presenting a taxonomy 
of machine learning techniques, and surveying the mathematical underpinnings and software 
implementations of popular tools, including principal component analysis, independent 
component analysis, diffusion maps, support vector machines, and relative entropy. We 
present illustrative examples of machine learning applications in soft matter, including inverse 
design of self-assembling materials, nonlinear learning of protein folding landscapes, high-
throughput antimicrobial peptide design, and data-driven materials design engines. We close 
with an outlook on the challenges and opportunities for the field.

Keywords: machine learning, data science, soft materials, biological materials, inverse design, 
data-driven design
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Machine learning and data science in materials
design: a themed collection
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Guest Editors Andrew Ferguson and Johannes Hachmann introduce this themed collection of papers

showcasing the latest research leveraging data science and machine learning approaches to guide the un-

derstanding and design of hard, soft, and biological materials with tailored properties, function and

behaviour.

The application of data-driven model-
ing and machine learning in the mate-
rials domain is opening new paths to
the understanding, design, and engi-
neering of next-generation materials
systems. Traditionally, physical laws
that define the fundamental connec-
tions between a material's composition
and its structure and function are used
as the foundation for analytical or nu-

merical models, and these physics-
based approaches provide a route to as-
sess candidate compounds with respect
to properties of interest. The inverse
problem – engineering a novel material
with particular properties – has become
a focus of cutting-edge research efforts
aimed at accelerating the discovery and
design process. Inverse engineering is
more challenging as it is generally not
possible to simply “invert” a physics-
based model and run it in reverse. In-
stead, as large-scale data generated by
modern experimental and computa-
tional approaches are becoming more
readily available, paradigms and tools
from data science offer a new way to
engage both the forward and inverse
modes of inquiry.

In forward problems, informatics
techniques can facilitate high-
throughput virtual screening studies,
and data mining approaches can help
uncover latent correlations, or even the
underlying mechanisms, governing a
system's behavior. Such relationships
are typically not intuitively apparent or
readily accessible from massive and/or
high-dimensional data sets. Machine
learning allows for the construction of
inexpensive data-derived prediction

models to circumvent, or reduce the re-
liance upon, expensive physics-based
modeling or experimentation. In inverse
problems, the structure–property rela-
tionships resulting from forward analy-
ses can be utilized for the rational, de
novo design of new materials with tai-
lored features. Statistical inference tech-
niques are invaluable in performing a
principled interpolation between sparse
observations within chemical or mate-
rials space, and in directing the explora-
tion of this space towards promising
candidates.

This collection of invited papers
showcases a diverse set of investigations
in which the integration of data science
tools with domain expertise has led to
advances in materials research. These
include new insights into the properties,
functionality, and behaviors of hard,
soft, and biological materials, as well as
the acceleration of discovery and design
efforts. These contributions demon-
strate the immense potential of data sci-
ence techniques in materials and chem-
ical science and engineering, and are
emblematic of a rapidly growing body of
work implementing these paradigms
and tools in all corners of the
discipline.

Mol. Syst. Des. Eng., 2018, 3, 429–430 | 429This journal is © The Royal Society of Chemistry 2018
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Howwas your morning? Perhaps you woke up, did a
little online shopping while brewing your coffee,
posted some pictures on social media over breakfast,

glanced over the world news, drove to work, checked your
email, picked up your mail, and opened up your latest issue of
ACS Central Science. Pretty unremarkable, right? Maybe,
but in the few hours that you have been awake you have
most likely interacted with numerous instances of machine
learning algorithms ticking away just below the surface of
our everyday lives.
The term “machine learning” may be defined as algorithms

that allow computers to learn to perform tasks, identify rela-
tionships, and discern patterns without the need for humans
to provide the underlying instructions. Conventional algo-
rithms operate by sequentially executing a preprogrammed
set of rules to achieve a particular outcome. Machine learn-
ing algorithms, by contrast, are instead provided with a set
of examples by the user and train themselves to learn the rules
f rom the data. This powerful idea dates back to at least the
1950s, but has only been fully realized in recent years with
the advent of sufficiently large digital data sets over which
to perform trainingfor example, Google photo albums,
Amazon shopping lists, Netflix viewing historiesand suffi-
ciently powerful computer hardware and algorithms to
perform the trainingtypically powerful graphics cards
developed for the computer game industry that can be
hijacked to conduct machine learning. This paradigm has
revolutionized multiple domains of science and technology,
with different variants of machine learning dominating, and
in some cases enabling, multifarious applications such as
retail recommendation engines, facial detection and recogni-
tion, language translation, autonomous and assisted driving,
spam filtering, and character recognition. The success of
these algorithms may be largely attributed to their enormous
flexibility and power to extract patterns, correlations, and
structure from data. These features can be nonintuitive and
complicated functions that are difficult for humans to parse,
or exist as weak signals that are only discernible from large,
high-dimensional data sets that defy conventional analysis
techniques.

There remains a fundamental difference between artificial
and human intelligenceno machine has yet exhibited
generic human cognition, and for now, the Turing Test
remains intact1but machine performance in certain
specific tasks is unequivocally superhuman. A prominent
example is provided by Google’s Go-playing computer
program AlphaGo Zero. This program was provided only
with the rules of the ancient board game and learned to play
by playing games against itself in a form of reinforcement
learning.2 After just 3 days of training, AlphaGo Zero
roundly defeated the best previous best algorithm (AlphaGo
Lee) that had itself beaten the 18-time (human) world
champion Lee Sedol 100 games to 0.3 Remarkably, AlphaGo
Zero employed previously unknown strategies of play that
had never been discovered by human players over the 2500
year history of the game.

Machine learning is also advancing into many aspects of
scientific inquiry, and the chemical sciences stand in the
vanguard through the establishment of new tools and
paradigms with which to engage important problems in
molecular design, quantum chemistry, molecular structure
prediction, and organic synthesis. The power and potential
of these new techniques is hard to overestimate. In a twist
on Eugene Wigner’s famous 1960 paper The Unreasonable
Ef fectiveness of Mathematics in the Natural Sciences,4 Alon
Halevy, Peter Norvig, and Fernando Pereira assert that
instead of relying exclusively on the development of ever
more sophisticated and elegant theories we should “embrace
complexity and make use of the best ally that we have: the
unreasonable ef fectiveness of data”.5 All applications of
machine learning in chemical science essentially engage
this goal by learning to extract models, rules, and predictions
from data, but one approach stands out for its remarkable
power and flexibility in a diversity of problemsdeep neural
networks.

Artificial neural networks (ANNs) are a type of machine
learning algorithm whose structure and function is loosely
based on the architecture of the animal brain. Each artificial

Published: August 8, 2018

© 2018 American Chemical Society 938 DOI: 10.1021/acscentsci.8b00528
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is our present deployment of machine learning to learn rules
by statistical data analysis; the third wave is the future devel-
opment of PAI technologies that learn through explanatory
models with the relevant physics “baked in”. These PAI
technologies promise to deliver superior performance by con-
straining the model to adhere to physical laws (e.g., con-
servation equations, symmetries) and cope better with sparse
and/or noisy data. XAI concerns the development of
machine learning models that come equipped with human
comprehensible explanations of their predictions and
actions.26 Accurate predictive performance and ease of
interpretability frequently stand in conflict, and it is the goal
of XAI to marry the interpretability of simple older models
(e.g., multiple linear regression) with the power of more
complex but less scrutable modern approaches (e.g., deep
neural networks). Opaque high-performance models may be
adequate for many applications, but increasing model
complexity has given rise to an increasing need for the
machine to tell us how it got to the answer it did. Providing
this rationalization can be critical in ensuring that we do not
erroneously overextrapolate and can trust and substantiate
the model predictions. Comprehensible explanations can be
absolutely critical for particular tasks to ensure that we are
getting the right answer for the right reasons (e.g., medical
diagnosis), and it is unlikely that machine learning tools will
become an accepted tool in these domains until XAI
becomes sufficiently mature. Understanding how the
machines “think” may tell us how to better understand the
system at hand and maybe even teach us something about
human cognition, a position vociferously advocated for in
Douglas Hofstadter’s entreaty “Why conquer a task if there’s
no insight to be had from the victory?”.27 Engaging the goals
of PAI and XAI will likely involve the establishment of
fundamentally new machine learning models and architec-
tures as well as substantial retrofitting of existing techniques,
the development of novel model analysis protocols, and the
hierarchical nesting of machine learning models of varying
complexity.
From a cultural and educational standpoint, machine learn-

ing approaches will be democratized and made broadly
available through cheaper and more powerful graphics
processing unit (GPU) hardware, the development of user-
friendly software, and access to larger and more freely
available databases. Data science training will become more
tightly integrated into disciplinary training at the under-
graduate and graduate levels, and there will be a prolifer-
ation of master’s degree programs focusing on data science
and machine learning. Barriers will be broken down between
chemical science and data science through these curricular

changes, and also through workshops, conferences, and
hackathons designed to bring these communities together.
Ultimately, the boundary between disciplinary and data
science will become blurred. These trends will conspire to
make machine learning a ubiquitous and indispensable tool,
with artificial intelligence working side-by-side with human
practitioners akin to the role played by the slide rule,
scientific calculator, and personal computer in their own
ages. In their respective Outlook articles, Aspuru-Guzik,
Lindh, and Reiher posit a “Chemical Turing Test” wherein
communication with an artificial intelligence environment is
indistinguishable from communicating with an expert
chemist,22 and Cronin and co-workers consider the
potential for intelligent chemical robots with a real-time
feedback loop between computational data analysis and
automated experimentation.24 Perhaps it is not such a jump
to contemplate a future confluence of these advances to
produce intelligent robotic lab assistants that can teach
themselves particular aspects of chemistry to attain
superhuman performance in the mold of AlphaGo Zero?
Beyond the realm of chemical science, is it so far-fetched to
think of deep learning technologies helping lawyers to
argue, composers to score, philosophers to reason, and
artists to create? The age of machine learning in chemical
science is upon us and it will leave few areas of our discipline
untouched. This special collection highlights just the tip of
iceberg, and we can look forward to many exciting
innovations and developments in the years to come.
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The National Science Foundation (NSF) 2018 Materials and Data Science Hackathon (MATDAT18) took

place at the Residence Inn Alexandria Old Town/Duke Street, Alexandria, VA over the period May 30–June

1, 2018. This three-day collaborative “hackathon” or “datathon” brought together teams of materials scien-

tists and data scientists to collaboratively engage materials science problems using data science tools. The

materials scientists brought a diversity of problems ranging from inorganic material bandgap prediction to

acceleration of ab initio molecular dynamics to quantification of aneurysm risk from blood hydrodynamics.

The data scientists contributed tools and expertise in areas such as deep learning, Gaussian process regres-

sion, and sequential learning with which to engage these problems. Participants lived and worked together,

collaboratively “hacked” for several hours per day, delivered introductory, midpoint, and final presentations

and were exposed to presentations and informal interactions with NSF personnel. Social events were orga-

nized to facilitate interactions between teams. The primary outcomes of the event were to seed new col-

laborations between materials and data scientists and generate preliminary results. A separate competitive

process enabled participants to apply for exploratory funding to continue work commenced at the

hackathon. Anonymously surveyed participants reported a high level of satisfaction with the event, with

100% of respondents indicating that their team will continue to work together into the future and 91%

reporting intent to submit a white paper for exploratory funding.

Objectives
The exponential increase in available
computing power has made it possible
to generate and analyze large amounts
of materials data. Initiatives such as the
Materials Project, OQMD, AFlowLib, and
NOMAD have created publicly accessible
databases containing the structure and
properties of tens of thousands of mate-
rials, and individual research groups are
generating large data sets for more spe-
cific materials research problems. One
of the leading challenges in materials
science and engineering is determining
how to best make use of this abun-
dance of materials data to accelerate
the development of new understanding

and novel technologies. Despite the
considerable progress that has been
made in the application of data science
to materials science in recent years,
there is still a fundamental problem in
that most experts in materials science
and engineering are not experts in data
science, and vice versa. Thus, it is diffi-
cult for materials researchers to effec-
tively make use of leading data science
techniques, and data scientists have
limited insight into how they can apply
their knowledge to problems in mate-
rials science and engineering in the
most impactful ways.

The first objective of the 2018 Mate-
rials and Data Science Hackathon
(MATDAT18) was to assemble new inter-
disciplinary teams – each composed of
materials researchers and data scien-
tists – to work together in applying ad-
vanced data science methods to address
important and challenging problems in
materials science and engineering. Suc-
cess in this goal will seed new collabora-
tions and generate preliminary data for

future funding opportunities. A second
aim was in forging connections and pro-
moting cross-fertilization between the
materials and data science communi-
ties. The hackathon provides for close
interactions between participants
wherein materials researchers are ex-
posed to cutting-edge statistics and
machine-learning techniques, and data
scientists are motivated to develop new
methods to analyze novel data streams
produced by the materials community.

Organization and
solicitation
Funding for the hackathon was pro-
vided by a grant from the National Sci-
ence Foundation. The organizing com-
mittee for the hackathon consisted of
two materials scientists, Andrew
Ferguson (University of Chicago) and
Tim Mueller (Johns Hopkins University),
and two data scientists, Sanguthevar
Rajasekaran (University of Connecticut)

462 | Mol. Syst. Des. Eng., 2019, 4, 462–468 This journal is © The Royal Society of Chemistry 2019
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ML and DS in materials design and engineering
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1		Classical	molecular	dynamics	in	15	minutes	

2		Enhanced	sampling	in	molecular	simulaDon	 
	 [ML-driven	search	of	conformaDonal	space]	

• collec&ve	variable	(CV)	discovery	
• accelerated	sampling	in	molecular	simula&ons	
• APPLICATION:	enhanced	sampling	of	protein	folding	w/	auto-encoding	ANNs	

3		Data-driven	design	of	self-assembling	π-conjugated	oligopepDdes		 
	 [DS-driven	search	of	chemical	space]	

• surrogate	model	construc&on	
• high-throughput	virtual	screening	
• APPLICATION:	oligopep&de	discovery	w/	 
coarse-grained	molecular	simula&on,	  
varia&onal	autoencoders,	Gaussian	process	  
regression,	and	ac&ve	learning

CV1

CV3

CV2
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3.	Data-driven design of π-conjugated  
	 oligopeptides

1.	Classical molecular dynamics in 15 minutes

2.	ANN accelerated sampling of molecular free 	 
	 energy landscapes [ML-driven	search	of	conformaDonal	space]

[DS-driven	search	of	chemical	space]



http://www.lbl.gov/CS/html/exascale4energy/nuclear.html

You are 
here

 9

http://www.lbl.gov/CS/html/exascale4energy/nuclear.html


What is molecular dynamics?
A computational microscope

An experiment on a computer

A simulation of the classical 
mechanics of atoms 

 10http://www.ks.uiuc.edu         http://www.123rf.com
F=ma

http://www.ks.uiuc.edu/Publications/Stories/tcbg_ytt/images/computational-microscope.jpg
http://www.123rf.com/


Milestones in MD
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1957
Alder & Wainwright
First MD simulation 
of hard sphere fluid
Alder, B.J. and Wainwright, T..E. J. Chem. Phys. 
27 1208 (1957) 

1960
Gibson et al.
Simulation of Cu 
radiation damage 
Gibson, J.B., Goland, A.N., Milgram, M., and 
Vineyard, G.H. Phys. Rev. 120 1229 (1960)

University of Virginia, MSE 4270/6270: Introduction to Atomistic Simulations, Leonid Zhigilei

First MD simulations
The first simulation using the MD method was reported in 1957 by Adler and Wainwright 
[Phase transition for a hard sphere system, J. Chem. Phys. 27, 1208-1209, 1957].  They 
investigated a solid-fluid transition in a system composed of hard spheres interacting by 
instantaneous collisions. 

For a system of 500 particles, simulation of 500 inter-particle collisions took ~ an hour on IBM 
704 computer.

1964
Rahman
First simulation of 
liquid Ar using 
realistic potential 
Rahman, A. Phys. Rev. A136 405 (1964)  

University of Virginia, MSE 4270/6270: Introduction to Atomistic Simulations, Leonid Zhigilei

First MD simulations

Computational cell composed of 
446 to 998 copper atoms was 
simulated.  One integration step 
took about a minute on an IBM 704 
computer.

Continuous repulsive Born-Mayer interaction potential was used for the first time in MD 
simulation of radiation damage in a Cu target performed at Brookhaven National Lab. in 1960 
[J.B. Gibson, A.N. Goland, M. Milgram, and G.H. Vineyard, Dynamics of radiation damage, 
Phys. Rev. 120, 1229-1253, 1960].  A constant inward force was applied to each atom on the 
boundary of the crystallite to account for the attractive part for the interatomic interaction.  This 
was probably the first application of the MD method in materials science.

1974
Rahman & Stillinger
First simulation of 
liquid water 
Stillinger, F.H. and Rahman, A.J. Chem. Phys. 
60 1545 (1974)

1977
McCammon et al.
First protein simulation
(BPTI) [8.8ps]
McCammon, J.A., Gelin, B.R., and Karplus, M. 
Nature 267 585 (1977)

1994
York et al.
BPTI hydrated xtal 
[1ns]
York, D.M., Wlodawer, A., Pedersen, 
L.G. and Darden, T.A. PNAS 91 18 
8715 (1994)

1998
Duan & Kollman
Villin headpiece in 
water [1μs] 
Duan, Y., and Kollman, P.A. Science 282 
5389 740 (1998)

2010
Shaw et al.
BPTI in water 
[1ms]
Shaw, D.E. et al. Science 330 
341 (2010)



MD simulates atomic motions using classical mechanics

Running a simulation is like cooking - just follow the recipe

Three ingredients:

1. An initial system configuration

2. A (classical) interaction potential for the system

3. A way to integrate F=ma

The fundamental idea

 12

V (�r)



The fundamental idea
Laplace’s Demon / “The Clockwork Universe”

 13

“Given for one instant an intelligence which could comprehend all 
the forces by which nature is animated and the respective 
positions of the beings which compose it, if moreover this 
intelligence were vast enough to submit these data to analysis, 
it would embrace in the same formula both the movements of 
the largest bodies in the universe and those of the lightest 
atom; to it nothing would be uncertain, and the future as the 
past would be present to its eyes.” 

- Pierre Simon de Laplace (1749-1827)

This is essentially molecular dynamics



Ingredient 1: Initial configuration
Specification of initial atomic  
coordinates and velocities

Classical mechanics is deterministic:  
initial state and interaction rules  
fully specify the system’s future*

 Wind up Laplace’s clockwork  
universe and — in principle — a  
“vast intelligence” could compute the future of the system

Our intelligence is insufficiently vast — the equations are 
hard! — and thus we resort to numerical simulation

 14* neglecting numerical integration errors and finite precision (i.e., uncertainty)   www.ks.uiuc.edu

http://www.ks.uiuc.edu


Initializing coordinates
Initial configurations can be 
generated “by hand” or short 
scripts for simple systems 
(e.g., liquid Ar, bulk Al)

Software tools for complex 
systems (e.g., proteins, 
complex defect structures)

PRODRG (http://davapc1.bioch.dundee.ac.uk/prodrg/)
ATP (http://compbio.biosci.uq.edu.au/atb/)
PyMOl (http://www.pymol.org/)
Chimera (http://www.cgl.ucsf.edu/chimera/)

Common protein structures 
are in Protein Data Bank

PDB (www.rcsb.org/pdb)
 15

http://davapc1.bioch.dundee.ac.uk/prodrg/
http://compbio.biosci.uq.edu.au/atb/
http://www.pymol.org/
http://www.cgl.ucsf.edu/chimera/
http://www.rcsb.org/pdb


Initializing velocities
Bad idea to start atoms from rest (absolute zero = 0 K) 
due to thermal shock upon starting simulation

Standard approach is to draw velocities randomly from a 
Maxwell-Boltzmann distribution at the temperature, T

 16http://ibchem.com/IB/ibfiles/states/sta_img/MB2.gif

http://ibchem.com/IB/ibfiles/states/sta_img/MB2.gif


Ingredient 2: Interaction potentials
The net force acting on each atom in the system is a result 
of its interactions with all other atoms

These interaction amount to a set of rules known as a 
force field or interaction potential 

Accurate, robust, and transferable force fields are critical to 
perform physically realistic molecular simulations

Force field development is an academic industry 
 
metals: EAM (Daw & Baskes), MEAM (Baskes) 
biomolecules: Amber (Kollman, UCSF), GROMOS (U. Groningen), CHARMM (Karplus, Harvard), 

OPLS (Jorgensen, Yale), MARTINI [coarse grained] (Marrink, U. Groningen)  
polymers: TraPPE (Siepmann, U. Minnesota), MM2 (Allinger, UGA) 
water: SPC (Berendsen), SPC/E (Berendsen), TIPnP(Jorgensen), ST2 (Stillinger & Rahman)  
general: DREIDING (Mayo et al.), DISCOVER(Rappe et al.), UFF (Hagler et al.)

 17



The potential energy of the system is a complicated 
function of atomic coordinates (this is why we have to 
simulate numerically rather than calculate analytically)

The net force on atom i is the negative gradient of the 
potential energy wrt the atomic coordinates

The potential energy is typically broken into four parts:

Energy, force, and acceleration

 18

Fi = �ri[V (r1, r2, ..., rN )]

V (�r) = Vbonded + Vnon�bonded + Vrestraints + Vfield



Bonded

 19http://www.mbnexplorer.com/users_guide/users_guide743x.png Hess et al. GROMACS Manual v. 4.5.4 (2010)
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Figure 4.5: Principle of bond stretching (left), and the bond stretching potential (right).

4.2 Bonded interactions

Bonded interactions are based on a fixed list of atoms. They are not exclusively pair interac-
tions, but include 3- and 4-body interactions as well. There are bond stretching (2-body), bond
angle (3-body), and dihedral angle (4-body) interactions. A special type of dihedral interaction
(called improper dihedral) is used to force atoms to remain in a plane or to prevent transition to a
configuration of opposite chirality (a mirror image).

4.2.1 Bond stretching

Harmonic potential

The bond stretching between two covalently bonded atoms i and j is represented by a harmonic
potential:

Vb (rij) =
1
2
kb

ij(rij � bij)2 (4.35)

See also Fig. 4.5, with the force given by:

F i(rij) = kb
ij(rij � bij)

rij

rij
(4.36)

Fourth power potential

In the GROMOS-96 force field [71], the covalent bond potential is, for reasons of computational
efficiency, written as:

Vb (rij) =
1
4
kb

ij

�
r2
ij � b2

ij

⇥2
(4.37)

The corresponding force is:
F i(rij) = kb

ij(r
2
ij � b2

ij) rij (4.38)
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Figure 4.7: Principle of angle vibration (left) and the bond angle potential (right).

4.2.5 Harmonic angle potential

The bond-angle vibration between a triplet of atoms i - j - k is also represented by a harmonic
potential on the angle �ijk

Va(�ijk) =
1
2
k�

ijk(�ijk � �0
ijk)

2 (4.50)

As the bond-angle vibration is represented by a harmonic potential, the form is the same as the
bond stretching (Fig. 4.5).

The force equations are given by the chain rule:

F i = �dVa(�ijk)
dri

F k = �dVa(�ijk)
drk

F j = �F i � F k

where �ijk = arccos
(rij · rkj)

rijrkj
(4.51)

The numbering i, j, k is in sequence of covalently bonded atoms. Atom j is in the middle; atoms
i and k are at the ends (see Fig. 4.7). Note that in the input in topology files, angles are given in
degrees and force constants in kJ/mol/rad2.

4.2.6 Cosine based angle potential

In the GROMOS-96 force field a simplified function is used to represent angle vibrations:

Va(�ijk) =
1
2
k�

ijk

�
cos(�ijk)� cos(�0

ijk)
⇥2

(4.52)

where
cos(�ijk) =

rij · rkj

rijrkj
(4.53)

The corresponding force can be derived by partial differentiation with respect to the atomic posi-
tions. The force constants in this function are related to the force constants in the harmonic form

4.2. Bonded interactions 73
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Figure 4.8: Principle of improper dihedral angles. Out of plane bending for rings (left), sub-
stituents of rings (middle), out of tetrahedral (right). The improper dihedral angle ⇥ is defined as
the angle between planes (i,j,k) and (j,k,l) in all cases.

4.2.10 Quartic angle potential

For special purposes there is an angle potential that uses a fourth order polynomial:

Vq(�ijk) =
5�

n=0

Cn(�ijk � �0
ijk)

n (4.60)

4.2.11 Improper dihedrals

Improper dihedrals are meant to keep planar groups (e.g. aromatic rings) planar, or to prevent
molecules from flipping over to their mirror images, see Fig. 4.8.

Improper dihedrals: harmonic type

The simplest improper dihedral potential is a harmonic potential; it is plotted in Fig. 4.9.

Vid(⇥ijkl) =
1
2
k�(⇥ijkl � ⇥0)2 (4.61)

Since the potential is harmonic it is discontinuous, but since the discontinuity is chosen at 180�

distance from ⇥0 this will never cause problems. Note that in the input in topology files, angles are
given in degrees and force constants in kJ/mol/rad2.

Improper dihedrals: periodic type

This potential is identical to the periodic proper dihedral (see below). There is a separate dihedral
type for this (type 4) only to be able to distinguish improper from proper dihedrals in the parameter
section and the output.

4.2.12 Proper dihedrals

For the normal dihedral interaction there is a choice of either the GROMOS periodic function or a
function based on expansion in powers of cos ⇤ (the so-called Ryckaert-Bellemans potential). This
choice has consequences for the inclusion of special interactions between the first and the fourth
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4.2 Bonded interactions

Bonded interactions are based on a fixed list of atoms. They are not exclusively pair interac-
tions, but include 3- and 4-body interactions as well. There are bond stretching (2-body), bond
angle (3-body), and dihedral angle (4-body) interactions. A special type of dihedral interaction
(called improper dihedral) is used to force atoms to remain in a plane or to prevent transition to a
configuration of opposite chirality (a mirror image).

4.2.1 Bond stretching

Harmonic potential

The bond stretching between two covalently bonded atoms i and j is represented by a harmonic
potential:

Vb (rij) =
1
2
kb

ij(rij � bij)2 (4.35)

See also Fig. 4.5, with the force given by:

F i(rij) = kb
ij(rij � bij)

rij

rij
(4.36)

Fourth power potential

In the GROMOS-96 force field [71], the covalent bond potential is, for reasons of computational
efficiency, written as:

Vb (rij) =
1
4
kb

ij

�
r2
ij � b2

ij

⇥2
(4.37)

The corresponding force is:
F i(rij) = kb

ij(r
2
ij � b2

ij) rij (4.38)
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Figure 4.10: Principle of proper dihedral angle (left, in trans form) and the dihedral angle potential
(right).

C0 9.28 C2 -13.12 C4 26.24
C1 12.16 C3 -3.06 C5 -31.5

Table 4.1: Constants for Ryckaert-Bellemans potential (kJ mol�1).
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Figure 4.11: Ryckaert-Bellemans dihedral potential.

74 Chapter 4. Interaction function and force field

-20 -10 0 10 20
ξ

0

5

10

15

20

25

V ξ
 (k

J 
m

ol
e-1

)

Figure 4.9: Improper dihedral potential.

atom of the dihedral quadruple. With the periodic GROMOS potential a special 1-4 LJ-interaction
must be included; with the Ryckaert-Bellemans potential for alkanes the 1-4 interactions must be
excluded from the non-bonded list. Note: Ryckaert-Bellemans potentials are also used in e.g. the
OPLS force field in combination with 1-4 interactions. You should therefore not modify topologies
generated by pdb2gmx in this case.

Proper dihedrals: periodic type

Proper dihedral angles are defined according to the IUPAC/IUB convention, where � is the angle
between the ijk and the jkl planes, with zero corresponding to the cis configuration (i and l on
the same side). There are two dihedral function types in GROMACS topology files. There is the
standard type 1 which behaves like any other bonded interactions. For certain force fields, type 9 is
useful. Type 9 allows multiple potential functions to be applied automatically to a single dihedral
in the [ dihedral ] section when multiple parameters are defined for the same atomtypes in
the [ dihedraltypes ] section.

Vd(�ijkl) = k�(1 + cos(n�� �s)) (4.62)

Proper dihedrals: Ryckaert-Bellemans function

For alkanes, the following proper dihedral potential is often used (see Fig. 4.11):

Vrb(�ijkl) =
5�

n=0

Cn(cos(⇥))n, (4.63)

where ⇥ = �� 180�.
Note: A conversion from one convention to another can be achieved by multiplying every coeffi-
cient Cn by (�1)n.

An example of constants for C is given in Table 4.1.

http://www.mbnexplorer.com/users_guide/users_guide743x.png


Non-bonded

van der Waals

 20http://atomsinmotion.com/book/chapter5/md http://guweb2.gonzaga.edu/faculty/cronk/chemistry/images/graph-electrostatic-PE-alt.gif

Coulomb

Approximate full n-body interactions as pairwise additive 
for simplicity and computational efficiency

VCoul(rij) =
1

4⇥�0

qiqj
rij

VLJ(rij) = 4�

"✓
⇥

rij

◆12

�
✓

⇥

rij

◆6
#

http://atomsinmotion.com/book/chapter5/md
http://guweb2.gonzaga.edu/faculty/cronk/chemistry/images/graph-electrostatic-PE-alt.gif


Restraints
Restraints can be part of, or supplemental, to a force field

Many applications, common uses include: 
 

- fixed bond lengths and angles (esp. for light atoms)  

 

- artificially immobilize part of the system  
  (e.g., rigid walls or boundary condition)

 21



Fields
Fields are commonly used to model: 
1. external potentials (e.g., electric field, flow field)  
2. continuum solvation (no explicit solvent molecules)

 22http://en.wikipedia.org/wiki/File:MM_PEF.png

http://en.wikipedia.org/wiki/File:MM_PEF.png


Ingredient 3: Integrators
[initial atomic coordinates and velocities] + [force field] 
⇒ entire future (and past!) modeled by F=ma

Analytical solutions for the dynamical evolution cannot be 
computed for all but the simplest systems (>2 body)

Solve Newton’s equations by numerical integration  
⇒ computers ideally suited to rapid, repetitive calculations

Solving by hand would require  
thousands of years

 23



Verlet algorithm
Many possible integration algorithms exist 
(e.g., explicit/implicit Euler, Gear predictor-corrector, nth order Runge-Kutta, Beeman, Newmark-beta)

The method of choice is the Verlet algorithm 
✓ fast 
✓ simple  
✓ low-memory  
✓ stable  
✓ time-reversible 
✓ symplectic (phase space volume & E conserving)

✗ poor accuracy for large time steps (Δt must be small) 

First recorded use by Delambre in 1791  
Popularized in MD by Loup Verlet in 1967

 24



Verlet algorithm
Derived from Taylor series:

 25

r(t+ �t) = r(t) + ṙ(t)�t+
1

2
r̈(t)�t2 + ...

r(t� �t) = r(t)� ṙ(t)�t+
1

2
r̈(t)�t2 + ...



Time-reversibility
Higher order integration algorithms have higher per step 
accuracy, enabling longer time steps and faster simulations 
(e.g., Runge-Kutta, Gear predictor-corrector)

But, do not respect time reversibility of Newton’s 
equations causing energy drift and error accumulation

 26http://einstein.drexel.edu/courses/Comp_Phys/Integrators/leapfrog/errors.gif

http://einstein.drexel.edu/courses/Comp_Phys/Integrators/leapfrog/errors.gif


Simulation overview

 27



MD software

 28

U. Groningen FREE
www.gromacs.org

Harvard $600
www.charmm.org 

Rutgers et al. $400
www.ambermd.org

UIUC FREE
www.ks.uiuc.edu

D.E. Shaw Research FREE
www.deshawresearch.com

Sandia National Lab FREE
http://lammps.sandia.gov

U. Michigan FREE
http://codeblue.umich.edu/hoomd-blue/

Folding@home FREE
http://folding.stanford.edu

OpenMM FREE
http://openmm.org 

AMBER

http://www.gromacs.org
http://www.gromacs.org
http://www.charmm.org/
http://www.ambermd.org
http://www.ks.uiuc.edu/Research/namd/
http://www.deshawresearch.com/resources_desmond.html
http://lammps.sandia.gov/
http://codeblue.umich.edu/hoomd-blue/
http://folding.stanford.edu/
http://openmm.org
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3.	Data-driven design of π-conjugated  
	 oligopeptides

1.	Classical molecular dynamics in 15 minutes

2.	ANN accelerated sampling of molecular free 	 
	 energy landscapes [ML-driven	search	of	conformaDonal	space]

[DS-driven	search	of	chemical	space]



“Two	 limita&ons	 in	 exis&ng	 simula&ons	 are	 the	 approxima&ons	 in	 the	 poten&al	
energy	func&ons	and	the	 lengths	of	the	simula&ons.	The	first	 introduces	systema&c	
errors	and	the	second	sta&s&cal	errors.”	

—	M.	Karplus	&	G.A.	Petsko	Nature	(1990)

outlook

M. Karplus and G.A. Petsko Nature 347 631-639 (1990) 
https://upload.wikimedia.org/wikipedia/commons/5/5c/MM_PEF.png 	 http://jonlieffmd.com/wp-content/uploads/2012/12/F3.large_.jpg 

Limitations of molecular simulation

1. Accurate force fields 2. Sampling configurational space

�30
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• Accelerated	sampling	techniques	par&&on	largely	into	two	classes:

outlook

C. Abrams and G. Bussi Entropy 16 163--199 (2013)	 M.A. Rohrdanz, W. Zheng, and C. Clementi, C. Annu. Rev. Phys. Chem. 64 295--316 (2013)

Accelerated sampling

Tempering	techniques CollecDve	variable	biasing
Simulated	annealing	

Mul&canonical	algorithm	

Replica	exchange	

Hamiltonian	exchange	

Parallel	tempering	

…

Umbrella	sampling	

Hyperdynamics	

Metadynamics	

Adiaba&c	free	energy	dynamics	(AFED)	

Temperature	accelerated	dynamics	(TAD)	

Temperature	accelerated	MD	(TAMD)	

Adap&ve	force	biasing	

…

• Tempering	modifies	T	or	Hamiltonian	to	accelerate	barrier	crossing 
➔	substan&al	CPU	&me	expended	on	condi&ons	not	of	direct	interest	

• CV	biasing	efficiently	directs	sampling	along	relevant	order	parameters 
➔	presupposes	a	priori	availability	of	“good”	CVs
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outlook
Automated CV discovery

• Given	a	simula&on	trajectory	data	mining	/	dimensionality	reducDon	can	
discover	“good”	CVs	that: 
 

	 (1)		Separate	metastable	system	states 
	 (2)		Characterize	important	large-scale	or	slow	conforma&onal	mo&ons  
	 (3)	Are	explicit	differen&able	func&ons	of	atomic	coordinates	

• (3)	is	required	to	propagate	CV	biases	to	atomic	forces

simulation trajectory

linear dim red 
(e.g., PCA, MDS)

nonlinear dim red 
(e.g., LLE, Isomap, dMaps)

✗ Many	required	to	separate	states	
✗ Poor	descriptors	of	molecular	mo&on	
✔ Explicit	func&on	of	atomic	coords

f tot
i = fU

i + fB
i

✔ Parsimonious	state	separa&on	
✔ Coincident	with	large-scale	mo&ons		
✗ Unknown	mapping	to	atomic	coords
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outlook
CV biasing: The chicken and the egg

�F

CV1 CV2

M.A. Rohrdanz, W. Zheng, and C. Clementi, C. Annu. Rev. Phys. Chem. 64 295--316 (2013)

“[n]o	 method	 can	 presently	 extract	 reac&on	 coordinates	 on	 the	 fly	 during	 MD	
simula&ons	 and	 at	 the	 same	 &me	 use	 them	 to	 enhance	 the	 sampling	 of	 the	
configura&onal	space”	

—	M.A.	Rohrdanz,	W.	Zheng,	and	C.	Clemen&	Annu.	Rev.	Phys.	Chem.	(2013)

Good	CVs	required	to	drive	sampling	of	configura&onal	space		 (chicken)	
Trajectories	with	good	sampling	needed	to	discover	good	CVs		 (egg)

�33
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• Biasing	step	frustrated	by	absence	of	CV	mapping	to	atomic	coords	

• Approximate	solu&ons: 
(i)		 correlate	data-mined	CVs	with	physical	variables	in	which	to	do	biasing	1 

(ii)	 select	from	(linear	combina&ons	of)	known	CVs	2 
(iii)	 use	CVs	not	for	biasing	but	smart	ini&aliza&on	of	new	runs	3 

(iv)	 approximate	CVs	with	func&onal	fit	or	by	“landmarks”	in	CV	embedding	4

outlook
Interleaved CV discovery and biased simulation

biased simulations in current CVs to expand exploration nonlinear learning to update CV estimate
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outlook
Selection among known CVs
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RAVE (Tiwary et al.)REAP (Shukla et al.)

irrelevant for sampling given the current state. Consider the “I”
(Illinois) potential in Figure 2a where the importance of the
order parameters X and Y changes in each basin. In the
situation, where sampling occurs in basin 2, a count-based38,39

adaptive sampling would give equal importance to both X and
Y, allowing structures in the orange regions to be chosen for
the next round of sampling. The disadvantage is that a lot of
these structures are irrelevant toward reaching the final area of
sampling, basin 3. The REAP algorithm is able to identify that
the most important structures, that is, the white highlighted
region (Figure 2b) since they facilitate sampling along the Y
direction. As a result, exploring low-energy, biologically
relevant regions of the landscape becomes faster, effectively
saving precious computational resources for the user.
The use of reward functions to increase the efficiency of

sampling has been implemented in other studies as well. For
example, Zimmerman and Bowman40 have developed one of
the first goal-oriented sampling methods named FAST that
consider exploration/exploration trade-offs. The reward
function, in this case, is a trade-off between maximizing (or
minimizing) a single collective variable and favoring poorly
sampled states. REAP differs from FAST since it does not
require a priori information regarding which single collective
variable should be maximized or minimized such as RMSD,
residue pair distance, solvent accessible area, etc. The only
input needed is a list of possible order parameters. Furthermore,
Perez et al.41 have used the concept relevant to RL such as
“explore-and-exploit”42 to enhance conformational exploration
using data derived from experiments. REAP differs from them
as it does not require modification of the original Hamiltonian.
This paper discusses and outlines the basic algorithm of

REAP and then evaluates its performance compared to
conventional single long trajectories (SL) and least counts
sampling (LC) using two idealized potentials; an L-shaped and
a circular landscape. The algorithm is then applied to alanine
dipeptide MD simulations and Src kinase. The kinase system
was sampled using a kinetic Monte Carlo sampling scheme
based on Markov state models obtained from a previous
study.29 For each case, we plotted the distribution of landscape
discovered using repeated simulation trials. The expected
values for the REAP distributions were consistently higher than
LC and SL, suggesting that REAP is a successful improvement

of LC since it explores new areas of conformational space more
efficiently. To avoid terminological confusion, we will
interchangeably use “collective variable” (CV) and “order
parameter” (OP) for the remainder of this article.

■ METHODS
REAP Algorithm. Here, we present each step involved in

the implementation of the REAP algorithm. We also introduce
the RL concept of a policy which defines the agent’s way of
behaving at a given time. In a mathematical sense, the policy π
is the mapping between “states” belonging to the environment
and “actions” to achieve the agent’s goal π: S → A. Put
differently, the policy tells the agent how to behave at any
point in time. The environment is defined as the landscape that
is to be explored; with the state S defined as the set of all
discovered points on the landscape or simply the current data
available. The action A is defined as the agent choosing protein
structures to run more simulations on. The user can provide
different policies which differ in the OPs provided. By
employing the sampling algorithm below, the user can evaluate
which of these different policies ensures the most reward while
sampling and then evaluate which OPs are relevant for
sampling. To avoid any misunderstanding, the definition of
“states” (S) here should not be confused with the common
usage familiar to biophysicists to represent one particular
protein configuration.
(1) Identify some sampling policy πK and its corresponding

set of OPs K = {θ1, θ2, ..., θk}. These OPs could be based on
known or likely OPs associated with the conformational
transition under investigation. Each policy differs depending on
the set of OPs and how new protein structures are chosen for
each round of simulation. In our implementation for this work,
the sampling policy involves choosing structures based on least
populated clusters (performed at step 5, denoted as Cp) and
the reward function of each cluster (eq 1).
(2) Set the weight wi for each θi ∈ K where wi ∈ [0, 1]. The

initialization of each wi signifies which OP θi is important for
the first round of sampling. Of course, if no prior knowledge is
available regarding the importance of each weight, each wi can
be fixed to the constant value of 1/k, where k is the total
number of OPs for the given policy πK. Every iteration of this
algorithm produces a new state S (the set of all discovered

Figure 2. (a) The “I” (Illinois) landscape illustrates that the local optimal sampling strategy changes depending which basin that is currently being
sampled (each labeled 1, 2, and 3). The importance of each order parameter is denoted as weights that are updated in each iteration of the REAP
algorithm, WX and WY. (b) Given that sampling occurs in basin 2, the orange regions shows structures selected from count based sampling are not
optimal for reaching basin 3, more efficiently than the count-based sampling. Instead, REAP is able to identify the appropriate structures (white
circular highlight) that facilitate sampling along Y, eventually reaching basin 3.
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points), and since wi is different for each S, we will introduce a
new notation for the weights wi

S.
(3) Run simulations to generate a series of initial structures.

This can be obtained either from a single trajectory or from
running short simulations from multiple structures that can be
obtained from homology modeling, crystal structures, biased
MD methods, etc.
(4) Cluster the data S into a set of L clusters C = {c1, c2, ...,

cL}. For each cluster cj ∈ C, identify all the structures that are
closest to the cluster cj. The user could also assign a
representative structure to each cluster, e.g., the centroid of
each cluster. The goal of this step is to reduce the data size by
clumping together structures in OP space. Nonetheless, the
clustering method can be arbitrarily chosen during this step.
(5) Identify the set of clusters Cp ⊂ C which contain the

least number of data points. The cardinality (size) of Cp is at
the discretion of the user. As mentioned in step 1, the set Cp
can be obtained using different criteria.
(6) Given the set of K OPs for policy πK, calculate the

reward for each cm ∈ Cp.

r c w
c C

C
( )

( ( ) ( )
( )

K
m

i

k

i
S i m i

i1
∑ θ θ

σ= | − ⟨ ⟩|
= (1)

where wi
S represents the weight or importance of each OP for a

given set of discovered points SRL, θi(cm) is the OP calculated
for the cluster cm, ⟨θi(C)⟩ is the arithmetic mean of θi for all cj
∈ C, and σi(C) represents the standard deviation of θi for all cj
∈ C. Vertical bars indicate the absolute value being taken.
(7) Calculate the cumulative reward.

R C r c( ) ( )p
m

C
K

m
1

p

∑=
=

| |

(2)

where the sum is over each element in the set Cp, and |Cp| is
cardinality of Cp.
(8) The next step is to maximize eq 2 by tuning the

parameter wi
S. This can be achieved by choosing from a myriad

of optimization algorithms already implemented. In our case,
we took advantage of the SciPy python library43 and used the
Sequential Least SQuares Programming (SLSQP)44 to find the
optimal weights that maximize the cumulative reward. The
following conditions were enforced as a constraint: ∑i wi = 1
and |wi

t−1 − wi
t |≤ δ, ∀i, where 0 < δ < 1. t represents the

current round of sampling while t −1 represents the previous
round. We found these constraints to make the algorithm more
robust. The first constraint is to normalize the values of
weights, while the second constraint prevents weights from
changing too much from round to round. If we do not consider
the second constraint, optimization algorithms would always
give a weight of one to a single OP and a weight of zero to all
other OPs due to the normalization factor (the first
constraint). If δ is closer to 1, we let the weights to move
freely regardless of the history of the reward function, just to
maximize eq 2. Whereas, if δ is closer to 0, we chose the
weights mainly based on the history of the reward function.
Choice of δ should be a balance between these two factors.
Given the updated weights, step 6 is repeated to find the new
rewards.
(9) Choose the structures from the clusters that give the

highest reward to start new simulations given the updated
weights. The two additional parameters, structures and
clusters, were chosen with the highest reward, which is up to
the discretion of the user.
(10) Repeat steps 3−9 until the user deems the sampling is

sufficient enough.
The primary reason for using least count adaptive sampling

as specified in step 4 is because it is widely considered as the

Figure 3. Regions sampled using (a) single long trajectory, (b) least count based adaptive sampling, and (c) REAP algorithm methods performed
on L-shaped potentials are shown with white circles on top of the potential. The white circles represent data points generated from eq 3 (d)
Weights for each OP signify the importance of each OP depending on the round number (or iteration of the algorithm). The fluctuations of
weights show that the algorithm is able to identify the importance of each weight. The weight of an additional OP orthogonal to X and Y, called Z,
was expected and shown to go to zero. For more information on what the weights signify, see step 2 in the REAP Algorithm section. (e) Plot
showing the distribution for the portion of landscape discovered using REAP, LC, and SL sampling over 100 repeated trials. Dashed lines represent
the expected value of each distribution.
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and decoder networks;19 the net result is that the VAE tends
to arrive at a learned low-dimensional latent variable repre-
sentation that can indeed capture the data’s main features. In
the context of this work, the latent variable representation will
describe a low-dimensional manifold for the molecular simula-
tion trajectories within the configuration space. The approach
that we take with the VAE, unlike other recent studies using
traditional or variational autoencoder methods for enhanced
sampling,12–14,16 focuses on obtaining a high resolution map-
ping of the original molecular simulation data into its correct
probability distribution along the latent space. It is this focus
on the probability distribution and not on the latent variable
itself that makes it unique among recent deep learning based
enhanced sampling methods. Such an approach is inspired in
part on some remarkable recent work on the Ising model, where
the VAE framework was found to be capable of automati-
cally learning both the block spin structure and also associated
probability distributions, in the process recovering the find-
ings commonly associated with the landmark renormalization
group theory.20

2. Neural network architecture

It is important when using the VAE framework to make
sure that the neural network architecture is suitable to the
problem at hand. Since neural networks can be thought of
as parametric function approximation machines, suitable neu-
ral network architectures amount to choosing an appropriate
parameter space within which to learn a good function approx-
imation. While approaches have been proposed to systemati-
cally optimize the network architecture,14 in general it remains
the case that the choice of the neural network architecture is
still the result of a great deal of trial and error. We provide
in Fig. 1 a brief schematic illustration of some parameters for
both the encoder and decoder used in the work here, while a
more detailed breakdown of the neural network architecture is
provided below.

1. Input layer: The molecular dynamics (MD) trajecto-
ries, which for the two model potentials consists of
200 000 2-dimensional datapoints, while for the problem

of fullerene unbinding consists of s6000 3-dimensional
datapoints.

2. Encoder hidden layers: These first map each input MD
datapoint into a sequence of three 512-dimensional vec-
tors via the transformations (�(A3(�(A2(�(A1x + b1))
+ b2)) + b3)), where � is the “exponential linear unit”
(ELU).21 These then map the resulting 512-dimensional
vector into two 1-dimensional parameters of a Gaus-
sian distribution, the mean and variance, via the linear
transformation A4h3 + b4.

3. Decoder hidden layers: These first map a 1-dimensional
latent variable, drawn from a Gaussian distribution using
the parameters above, into a sequence of three 512-
dimensional vectors via the analogous transformations
(�(A7(�(A6(�(A5z + b5)) + b6)) + b7)), with � the ELU
function. These then map the resulting 512-dimensional
vector into the space of the original MD dataset via
the transformation �(A8h7 + b8), where � is either the
sigmoid or tanh functions.

The implementation and training of the neural network
just described was done using a high level deep learning library
named Keras.22 The optimization algorithm that we have used
during training was the RMSprop, a variation of the stochas-
tic gradient descent, with a learning rate of 0.005. All other
parameters were left at their default values as implemented in
Keras. Training was performed for 100 epochs except in the
later rounds of the fullerene unbinding work due to the rather
large weights from the biased simulations forcing the training
to be over a longer period of time.

B. Reweighted autoencoded variational Bayes
for enhanced sampling (RAVE)

We now proceed to describe RAVE, which will seek to
leverage the learned distribution about the latent variable in
order to directly bias the potential and penalize the occurrence
of states with high probabilities, without resorting to previous
enhanced sampling techniques. It is this penalizing feature
that will enable us to sample distinct landscape minima that
are otherwise difficult to reach using conventional algorithms.
Although our description of RAVE will focus on using it on

FIG. 1. A generic schematic illustration of the variational autoencoder model that also highlights the depth and width parameters of the deep neural networks
specific to our work. The encoder neural network, in orange, maps a two-dimensional input into three sequential 512-dimensional vectors with the goal of learning
two one-dimensional latent variable parameters of a Gaussian distribution, zmean and zvariance. The decoder neural network, in blue, maps a one-dimensional latent
variable zsample taken from a Gaussian distribution into three sequential 512-dimensional vectors with the goal of reconstructing the original two-dimensional
input. Please note that for the fullerene unbinding example both the input and output dimensions are three.

072301-4 Ribeiro et al. J. Chem. Phys. 149, 072301 (2018)

FIG. 2. A flowchart illustrating RAVE.

top of MD simulations, keep in mind that it could be applied
with Monte Carlo simulations as well. Notice that in Fig. 2 a
flowchart summarizing the method is provided. As can be seen
from Fig. 2, RAVE is initiated by running of a short MD simu-
lation, which for a realistic system with barriers�kBT means
that the simulation will likely remain trapped in its initial state.
Feeding the data from this unbiased MD simulation into the
VAE, the deep neural network learns a concise 1-dimensional
latent space z within which the higher dimensional MD tra-
jectory is embedded, as well as the probability distribution
along this space. However, while the latent space definition
from the VAE is a continuous and differentiable function of
the original input variables, it lacks a clear physical inter-
pretation. Here, then, the emphasis is shifted from the latent
space definition itself to its probability distribution. RAVE,

after the VAE step generating the latent variable distribution,
P(z), screens through various linear and in principle non-linear
combinations of input order parameters that are user built from
experimental data and/or chemical intuition so as to determine
a RC � defined as the order parameter whose distribution as
sampled in the input MD trajectory is closest to the one learnt
from the VAE. Although the trial RCs in the current work are
restricted to being of the form c1x1 + c2x2 + · · · + cN xN under
the constraint that

P
i c2

i = 1, as mentioned above, more com-
plicated non-linear combinations can also be used. RAVE uses
the Kullback-Leibler divergence metric as a measure of this
resemblance between the two probabilities, which is defined as
follows:

DKL(P(z)| |P(�)) =
X

i

Pu(zi) log
Pu(zi)
Pu(�i)

. (4)

In Eq. (4), Pu(z) is the unbiased distribution stemming from the
VAE, Pu(�) is the unbiased distribution resulting from the pro-
jection of the MD data onto the combinations of input order
parameters, and the summation i is over the 1-dimensional
gridded spaces z and � that have been both normalized and
discretized to the same number of bins. It was found for
the purposes of the work presented here that discretizing
the reduced-dimensional representations z and � to 100 bins
was sufficient—although when a proper distribution about
the latent variable is learned, the candidate RCs that are not
suitable to enhance sampling in the simulations have such dis-
tinct qualitative features that adequate RCs can be identified
even when the gridded space is coarser. The Pu(�) minimiz-
ing Eq. (4) identifies the RC � given the current amount of
sampling. It is important to reiterate at this point that the dis-
tribution projected onto several of the candidate RCs can often
be quite similar to each other such that their associated KL
divergence values are close or such that slight variations in the
VAE learned latent variable distribution from different runs
can rearrange the ordering of their KL divergence values. The
observation of several similar projected distributions in fact
implies the well-known characteristic of enhanced sampling
that several different order parameters can be successful in
enhancing the sampling in an MD simulation. What this means
in the context of RAVE is that successful enhanced sampling
can be achieved when it discards the bad RCs via minimiza-
tion of Eq. (4) regardless of which of the several good RCs it
happens to choose. It is this idea in fact that lies at the heart
of RAVE and its focus on the probabilities along the reduced-
dimensional representations as opposed to the representations
themselves: Narrow the set of trial RCs to families of functions
that are interpretable and intuitive but that are also capable of
enhancing the sampling in MD simulations, and within that
set, RAVE will discard the bad ones incapable of aiding the
MD simulation. In the case that none of the available RCs is
capable of enhancing the sampling in the simulation then more
complicated non-linear families of RCs need to be introduced
into the set.

Now that both the RC � and the distribution about it have
been identified, RAVE proceeds to use the probability distri-
bution to construct the bias, Vbias(�), for a next round of MD
simulation, which is defined as follows:

Vbias(�) = kBT log Pu(�) = kBT logh�(� � �(t))i, (5)
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• Autoencoders	unique	among	unsupervised	nonlinear	dimensionality	
reduc&on	tools	in	furnishing	explicit	and	differenDable	latent	space	map
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• Autoencoders	unique	among	unsupervised	nonlinear	dimensionality	
reduc&on	tools	in	furnishing	explicit	and	differenDable	latent	space	map
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• Idea	is	to	discover	and	parameterize	with	CVs	a	low-dim	manifold	from	
which	atomic	coordinates	can	be	approximately	reconstructed
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• Generically	apply	bias	through	ar&ficial	poten&al	in	CVs 
 
 
 
where	CVs	are	explicit	and	differen&able	func&ons	of	atomic	coords
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• Perform	biased	MD	by	analy&cally	propaga&ng	CV	bias	into	atomic	forces
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• Autoencoders	permit	biased	simula&on	directly	in	the	discovered	CVs	

• Interleaved	on-the-fly	learning	and	biasing: 
Online	biasing	implemented	in	OpenMM	as	custom	force	plugin 
Offline	autoencoder	training	over	trajectory	using	Pytorch	Python	libraries
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Computational implementation
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AEForce plugin to OpenMM 
molecular dynamics package

autoencoder training over simulation 
trajectory using Pytorch Python libraries
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Alanine dipeptide in vacuum (Amber99sb)
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• MESA	converges	within	10	iteraDons	to	quan&ta&vely	accurate	FES	

• Autoencoder	discovers	correct	4D	flat	torus	topology	with	two	periodic	
collec&ve	variables	{Φ,Ψ}	

• Timings	on	single	Intel	i7-5820K	CPU	core: 
 

10	×	training	21-40-2-40-21	networks	w/	Q=1500	&	N=16	 	 				1200	s  
1	×	800	ps	unbiased	simula&on		 	 	 	 	 	 	 	 	 	 		12	s  
75	×	10	ps	biased	simula&ons			 	 	 	 	 	 	 	 	 	 130	s  
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 22	CPU-mins

φ ψ
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Open-source availability
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https://github.com/weiHelloWorld/accelerated_sampling_with_autoencoder 
https://github.com/weiHelloWorld/ANN_Force

https://github.com/weiHelloWorld/accelerated_sampling_with_autoencoder
https://github.com/weiHelloWorld/ANN_Force


�44

3.	Data-driven design of π-conjugated  
	 oligopeptides

1.	Classical molecular dynamics in 15 minutes

2.	ANN accelerated sampling of molecular free 	 
	 energy landscapes [ML-driven	search	of	conformaDonal	space]

[DS-driven	search	of	chemical	space]



Supramolecular biocompatible optoelectronics

S.R. Diegelmann, J.M. Gorham, and J.D. Tovar JACS 130 42 13840-13841 (2008)	    A.M. Sanders, T.J. Magnanelli, A.E. Bragg, and J.D. Tovar JACS 138 10 3362-3370 (2016) 
B.A. Thurston, E.P. Shapera, J.D. Tovar, A. Schleife, and ALF (submitted, 2019)	    https://phys.org/news/2011-08-smart-skin-electronics-temporary-tattoo.html

• Synthe&c	π-conjugated	pep&des	can	self-assemble	into	10-100	nm	fibers		

• Fibers	possess	emergent	op&cal	and	electronic	func&onality	due	to	e-	
delocaliza&on	along	overlapping	p	orbitals	

• Absorp&on	of	UV	light	produces	transient	electric	fields,	exciton	
genera&on,	and	organic	photovoltaic	ac&vity	

�45

https://phys.org/news/2011-08-smart-skin-electronics-temporary-tattoo.html


Sequence--structure--function relation
• Pep&de-wing	and	π-core	sequence	programs	self-assembly	behavior	

• Self-assembled	structure	governs	op&cal	and	electronic	func&on

�46

acid

Free energies and alignment

20
B.A. Thurston and ALF Mol. Sim. 44 11 930-945 (2018)

Free energies and alignment

20

Free energies and alignment

20



Coarse-grained MD of oligopeptide assembly
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• Coarse-grained	MARTINI	bead-level	representa&on	of	oligopep&des	

• Compromise	between	accuracy	and	speed	—	can	predict	aggrega&on	of	
hundreds	of	oligopep&des	over	microseconds

D.H. de Jong, G. Singh, W.F.D. Bennett, C. Arnarez, T.A. Wassenaar, L.V. Schäfer, X. Periole, D.P. Tieleman, S.J. Marrink J. Chem. Th. Comp, 9:687–697 (2013)

MARTINI

96 × DGAG-OPV3-GAGD 
GROMACS 2018 
Martini w/ explicit non-polarizable water 
T = 298 K, P = 1 bar 
t = 3,000 ns (100 h wall time)
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Coarse-grained MD of oligopeptide assembly
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• Coarse-grained	MARTINI	bead-level	representa&on	of	oligopep&des	

• Compromise	between	accuracy	and	speed	—	can	predict	aggrega&on	of	
hundreds	of	oligopep&des	over	microseconds

D.H. de Jong, G. Singh, W.F.D. Bennett, C. Arnarez, T.A. Wassenaar, L.V. Schäfer, X. Periole, D.P. Tieleman, S.J. Marrink J. Chem. Th. Comp, 9:687–697 (2013)

MARTINI

96 × DGAG-OPV3-GAGD 
GROMACS 2018 
Martini w/ explicit non-polarizable water 
T = 298 K, P = 1 bar 
t = 3,000 ns (100 h wall time)

The curse of dimensionality: 

The DXXX-Π-XXXD family comprises 203 = 8,000 sequences for each Π core 
DXXXX-Π-XXXXD ⟹ 204 = 160,000 
DXXXXX-Π-XXXXXD ⟹ 205 = 3,200,000 
... 

Trial-and-improvement AA or CG simulation too slow for high-throughput 
virtual screening and rational design



Machine learning can help
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ABSTRACT: We report a method to convert discrete
representations of molecules to and from a multidimensional
continuous representation. This model allows us to generate new
molecules for efficient exploration and optimization through
open-ended spaces of chemical compounds. A deep neural
network was trained on hundreds of thousands of existing
chemical structures to construct three coupled functions: an
encoder, a decoder, and a predictor. The encoder converts the
discrete representation of a molecule into a real-valued
continuous vector, and the decoder converts these continuous
vectors back to discrete molecular representations. The predictor
estimates chemical properties from the latent continuous vector
representation of the molecule. Continuous representations of molecules allow us to automatically generate novel chemical
structures by performing simple operations in the latent space, such as decoding random vectors, perturbing known chemical
structures, or interpolating between molecules. Continuous representations also allow the use of powerful gradient-based
optimization to efficiently guide the search for optimized functional compounds. We demonstrate our method in the domain of
drug-like molecules and also in a set of molecules with fewer that nine heavy atoms.

■ INTRODUCTION

The goal of drug and material design is to identify novel
molecules that have certain desirable properties. We view this
as an optimization problem, in which we are searching for the
molecules that maximize our quantitative desiderata. However,
optimization in molecular space is extremely challenging,
because the search space is large, discrete, and unstructured.
Making and testing new compounds are costly and time-
consuming, and the number of potential candidates is
overwhelming. Only about 108 substances have ever been
synthesized,1 whereas the range of potential drug-like molecules
is estimated to be between 1023 and 1060.2

Virtual screening can be used to speed up this search.3−6

Virtual libraries containing thousands to hundreds of millions
of candidates can be assayed with first-principles simulations or
statistical predictions based on learned proxy models, and only

the most promising leads are selected and tested experimen-
tally.
However, even when accurate simulations are available,7

computational molecular design is limited by the search
strategy used to explore chemical space. Current methods
either exhaustively search through a fixed library,8,9 or use
discrete local search methods such as genetic algorithms10−15 or
similar discrete interpolation techniques.16−18 Although these
techniques have led to useful new molecules, these approaches
still face large challenges. Fixed libraries are monolithic, costly
to fully explore, and require hand-crafted rules to avoid
impractical chemistries. The genetic generation of compounds
requires manual specification of heuristics for mutation and
crossover rules. Discrete optimization methods have difficulty
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Learn oligopeptide featurization
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1

https://i.imgur.com/ZN6MyTx.png

• Varia&onal	autoencoders	comprise	two	linked	deep	neural	networks 
—	The	encoder	Φ	learns	to	project	samples	x	into	a	low-dim	latent	space	z  
—	The	decoder	θ	reconstructs	samples	x	from	latent	space	vectors	z	

• Trained	to	reconstruct	its	own	inputs	(i.e.,	auto-encode)	the	VAE	performs	
unsupervised	nonlinear	dimensionality	reducDon



Learn oligopeptide featurization
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1

https://i.imgur.com/ZN6MyTx.png

• The	latent	space	is	regularized	to	a	Gaussian	for	mathema&cal	convenience	
—	the	encoder	infers	(μ,σ)	for	each	input	

• A	trained	VAE	is	generaDve	—	decoder	can	hallucinate	new	samples	from	
arbitrary	latent	space	vectors	sampled	from	the	latent	space



VAE

Learn oligopeptide featurization
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1

• We	train	VAEs	to	learn	latent	space	embeddings	=	essen&al	featuriza&ons	
of	all	20n	oligopep&des	for	a	given	Π	core	

• Represent	oligopep&des	to	VAE	as: 
(i)	vector	of	Mar&ni	bead	types	(composi&on)	  
(ii)	bead	adjacency	matrix	(molecular	topology)



VAE

Learn oligopeptide featurization

�51

1

• We	train	VAEs	to	learn	latent	space	embeddings	=	essen&al	featuriza&ons	
of	all	20n	oligopep&des	for	a	given	Π	core	

• Represent	oligopep&des	to	VAE	as: 
(i)	vector	of	Mar&ni	bead	types	(composi&on)	  
(ii)	bead	adjacency	matrix	(molecular	topology)



Learn oligopeptide featurization

�52

1

• We	train	VAEs	to	learn	latent	space	embeddings	=	essen&al	featuriza&ons	
of	all	20n	oligopep&des	for	a	given	Π	core	

• Construct	and	train	VAEs	in	TensorFlow	to	minimize	loss	func&on	error	on	
cross-valida&on	par&&ons



Regress oligopeptide fitness over latent space 
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2

• VAE	latent	space	provides	3D	featuriza&on	of	oligopep&des	 
—	leading	order	descrip&on	of	oligopep&de	composi&on	and	structure 
—	embeds	similar	oligopep&des	close	together



Regress oligopeptide fitness over latent space 
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2

• Run	Mar&ni	CG	simula&ons	for	O(10)	randomly	selected	oligopep&des	

• "Fitness"	is	number	of	inter-core	contacts	in	self-assembled	aggregate	 
—	more	core	contacts	⇨	be;er	p	orbital	overlap	and	e-/h+	paths	

• Construct	supervised	learning	of	Gaussian	process	regression	model  
—	fitness	=	f(VAE	latent	space)

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006 
M. Ebden "Gaussian Processes for Regression: A Quick Introduction", August 2008 arXiv:1505.02965v2

GPR	assumes	data	{y}	can	be	represented	as	a	sample	
from	a	mul&variate	Gaussian	distribu&on	over	x

training data

predictions

Condi&onal	probability	of	new	datum	y*	given	
training	{y}	follows	Gaussian

covariance



Optimally sample sequence space
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3

• Use	GPR	to	inform	opDmal	traversal	of	sequence	space	in	virtuous	cycle	 
—	GPR	strengthens	with	samples	⇔	be;er	guidance	from	GPR	

• AcDve	learning	paradigm	to	select	new	oligopep&des	to	simulate	from	GPR	
—	exploit	:	best	candidate	picked	by	GPR 
—	explore	:	sample	candidates	where	GPR	has	maximum	uncertainty

C. E. Rasmussen & C. K. I. Williams, Gaussian Processes for Machine Learning, the MIT Press, 2006

×

×
exploit

explore



Optimally sample sequence space 3

• Expected	improvement	(EI)	acquisi&on	func&on	balances	exploit	/	explore	

• Select	next	oligopep&de	to	simulate	as	that	which	maximizes	EI

�56E. Brochu, V.M. Cora, and N. De Freitas arXiv preprint arXiv:1012.2599 (2010)



Putting it all together...
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Mansbach, Rachael A., and Andrew L. Ferguson. "Coarse-grained molecular simulation of the hierarchical self-
assembly of π-conjugated optoelectronic peptides." The Journal of Physical Chemistry B 121.7 (2017): 1684-1706.

MARTINI model for DXXX systems

Monticelli, Luca, et al. "The MARTINI coarse-grained force field: extension to proteins." Journal of 
chemical theory and computation 4.5 (2008): 819-834.

Bradley, Ryan, and Ravi Radhakrishnan. "Coarse-grained models for protein-cell membrane 
interactions." Polymers 5.3 (2013): 890-936.

Mansbach, Rachael A., and Andrew L. Ferguson. "Control of the hierarchical assembly of π-conjugated 
optoelectronic peptides by pH and flow." Organic & biomolecular chemistry15.26 (2017): 5484-5502.

DXXX-OPV3-XXXD

GOAL:	ComputaDonally	idenDfy	opDmal	assembling	DXXX-OPV3-XXXD	oligopepDdes

peptide family to screen

    CG MD simulations 
— measure core-core contacts  
-- R1: O(10); R2+: 3-4

    unsupervised VAE (re)training 
and latent space embedding

    supervised GPR (re)training 
over VAE latent space

    active learning of next best 
oligopeptides to simulate 

0

1

2

3



Stopping criteria
• Determine	convergences	by	monitoring	GPR	model	performance	

• Terminate	when	model	predic&ons	stop	changing	with	addi&onal	samples	

• Model	converges	a�er	24	rounds,	186	chemistries,	558	μs	of	simula&on

�58

Cross validated R2 score on observed data Bhattacharya distance DB between GPR posteriors 
(change in posterior with added samples)



Stopping criteria
• Determine	convergences	by	monitoring	GPR	model	performance	

• Terminate	when	model	predic&ons	stop	changing	with	addi&onal	samples	

• Model	converges	a�er	24	rounds,	186	chemistries,	558	μs	of	simula&on
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Cross validated R2 score on observed data Bhattacharya distance DB between GPR posteriors 
(change in posterior with added samples)

ML model (GPR) capable of identifying optimal oligopeptides after 
active learning sampling of only 2.3% of accessible sequence space



Optimal candidates
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• Top	10	candidates	iden&fied	and	validated	throughout	25	rounds	of	ac&ve	
learning	protocol

average degree of core-core 
contacts interaction graph 

(higher is better)



Three classes of oligopeptides
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DFAG DGAG DWWW

ASSEMBLERSTRAPPERS FRAGMENTORS
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Lo-dim viz of assembly pathways
• Diffusion	map	dimensionality	reduc&on	over	interac&on	graphs	reveals	
mechanis&c	par&&oning	of	the	three	classes	iden&fied	by	ac&ve	learning

assemblers

trappers
fragmentors

monomers
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